
CMPUT 366 — Assignment 4

Instructor: Russell Greiner
Due Date: Wednesday, 5 December 2007 at 6pm

(100 points, 12% of grade)

The following exercises are intended to further your understanding of Sequential Decision
Processes, Game theory, Natural Language, Machine Learning
(From Chapters 17, 18, 21, 22)

Problem 1 [5 points] Markov Decision Process – Foundation
In class, we formulated an MDP using a reward function R(s), that depends only on the
current state s. In general, we can consider reward functions R2(s, a) that take both the
state and the action, and again return a real value, or even R3(s, a, s′) that also depend on
the outcome state. Write down the Bellman equation for each of these formulations.

Problem 2 [30 points] Markov Decision Process – Example
The Markov Decision Process shown in Figure 1 has 4 states. Each state has 2 actions: L

(left) and R (right). The reward function is: R(S1) = 1, R(S2) = R(S3) = 0, and R(S4) = 3.

Let Uπ(Si) be the expected discounted sum of future rewards, starting from state Si and
following some policy π; recall this satisfies

Uπ(Si) = R(Si) + γ ×
∑

j

p
π(s)
i,j ∗ Uπ(sj)

where pa
ij represents the probability of a transition from state Si to state Sj when following

action a. Here, let the discount factor be γ = 0.5.

S1

R1 =1

�
�

�
�

R
������

�
��
0.75

L
��	��	

�
�

-

1.0

0.25

@@R
S2

R2 =0

�
�

�
�

R
������

�
��
0.75

L
��	��	

�
�

-

0.75

0.25

@@R

0.25

@@I

S3

R3 =0

�
�

�
�

R
������

�
��
0.75

L
��	��	

�
�

-

0.75

0.25

@@R

0.25

@@I

S4

R4 =3

�
�

�
�

R
������

�
��
1.0

L
��	��	

�
�

-

0.75

0.25

@@I

Figure 1: MDP: “4States”

a [2]: How many different possible policies are there?

b [5]: Policy Valuation
Assume we use the initial policy π0 of always choosing action “L” — π0(S1) = π0(S2) =
π0(S3) = π0(S4) = Left. Write down four linear equations interrelating the values of
{ Uπ0(Si) }i, then solve these equations.

c [5]: Policy Improvement
A new policy π1 is computed by policy improvement, i.e.,

π1(Si) = argmax
a∈L,R







R(Si) + γ
∑

j

pa
ij × Uπ0(Sj)







(1)

1



What is the new policy — i.e., what are the values for π1(Si) for each i = 1..4?

For this new policy, compute the values, Uπ1(Si) for each i = 1..4.

d [5]: Let π2 be the policy computed using Equation 1 mutatis mutandis; show the values
of π2(Si) and Uπ2(Si).

e [5]: Follow this iterative process one more time, to compute the π3 policy with associated
Uπ3 values. Show these values.

f [3]: Is this policy the optimal policy? Why or why not?

g [5]: Value Iteration
Start with initial values U0(S1) = U0(S2) = U0(S3) = U0(S4) = 0. Show the values U1(Si)
after one value iteration; then the values U2(Si) after a second value iteration. Then show
the policy corresponding to U2.

Problem 3 [20 points] 2-player MDP
Consider a two-player MDP that corresponds to a zero-sum turn-taking game (Chapter 6),
with player X and Y . Let R(s) be the reward for X. (Note the reward for Y is −R(s).) Let
UX(s) be the utility of state s when it is X’s turn to move in s, and let UY (s) be the utility
of state s when it is Y ’s turn to move in s. Like rewards, all utilities are calculuted wrt X

(just as we did for minimax game trees).

a [5]: Write down Bellman’s euqations defining UX(s) and UY (s).

b [5]: Explain how to do 2-player value iteration with these equations, and define a
suitable stopping criterion.

c [5]: Now consider the following game. X and Y start as shown below:

X Y
1 2 3 4

The players alternative moving, with player X moving first. On each move, the player
moves his token to an open adjacent square, in either direction. If the opponent occupies an
adjacent square, the player may jump over to the next open space, if any. (E.g., if X is on
3 and Y is on 2, then X may jump back to 1.) The game ends when on e player reaches the
opposite site — i.e., when X reaches 4 or Y reaches 1. The value of the game (to X) is 1 if
X reaches 4 first, and it is -1 if Y reaches 1 first.

Draw the state space (not the game tree), showing the moves by A as solid lines and
moves by B as dashed lines. Mark each state s with R(s). You will find it helpful to arrange
the states (sX , sY ) on a 2-dimensional grid, using sX and sY as coordinates.

d [5]: Now apply 2-player value iteration to solve this game, and derive the optimal policy.

Problem 4 [15 points] Game Theory
Solve 3-finger Morra: Each player, O and E, simultaneously holds out 1, 2 or 3 fingers —
call these actions sO ∈ {1, 2, 3} and sE ∈ {1, 2, 3}. If the sum sO + sE is even, then player

2



E will win sO + sE (and player O will loose that amount). If that sum is odd, then O will
win sO + sE and E will lose that amount.

Problem 5 [10 points] Decision Tree Learning
When constructing a decision tree, we may decide to stop at a node that has p positive
examples and n negative examples. — perhaps because all of the attributes have been used.

a [5]: The obvious algorithm here would return + if p > n, and − otherwise. Show that
this minimizes the total number of errors, over the set of examples that have reached this
leaf.

b [5]: Alternatively, suppose the decision tree can return some probability q = q(p, n) ∈
[0, 1]. at this leaf. What value of q minimizes the sum of squared errors, over the examples.
(Here, the tree should have returned “1” for each positive instance, which means the squared
error for that instance is (1 − q)2. Similarly, its squared error is (0 − q)2 for each negative
example.

Problem 6 [10 points] Universal Set; tools from PAC learning

A set S = {x1, . . . , xm} of binary d-tuples (i.e., each xk = 〈 x
(k)
1 , . . . , x

(k)
d 〉 ∈ {0, 1}d) is

a (d, k)-universal set if, for every assignment to any subset of k variables, S includes an

element that agrees with that assignment. That is, pick any of the
(

d

k

)

size-k subsets of the

d variables — call them {Xi1, . . . , Xik} where each ij ∈ {1, . . . , d} — and then pick any one
of the 2k assignments to these variables, say tij ∈ {0, 1} for each j. Then there is (at least)
one element x ∈ S such that xij = tij for all j = 1..d.

As an example, consider the set of d = 4 tuples:

S =

















x1 x2 x3 x4

0 0 1 0
0 1 0 1
1 0 0 0
1 1 1 1

















To be a (4, 2)-universal set, it would have to include all 22 = 4 assignments to each of the
(

4
2

)

= 6 pairs, 〈 xi, xj 〉. Note that S does include all 22 = 4 assignments to 〈 x1, x2 〉 — i.e.,

it includes 〈 x1, x2 〉 = 〈 0, 0 〉, 〈 0, 1 〉, 〈 1, 0 〉 and 〈 1, 1 〉. It also includes all 4 assignments to
〈 x1, x3 〉, 〈 x1, x4 〉, 〈 x2, x3 〉, and 〈 x3, x4 〉. However, this S is not a (4, 2)-universal set as
it does not include every possible assignment to 〈 x2, x4 〉: while it includes 〈 x2, x4 〉 = 〈 0, 0 〉
and 〈 1, 1 〉, it does not include either 〈 0, 1 〉 or 〈 1, 0 〉.

Now consider

S ′ =



























x1 x2 x3 x4

0 0 1 0
0 1 0 1
1 0 0 0
1 1 1 1
1 0 1 1
1 1 1 0



























3



and notice this S ′ is a (4, 2)-universal set.

There are elaborate algorithms that are guaranteed to produce such (d, k)-universal sets.
But how hard is it, really?

Suppose you just generate a set of m(d, k) binary d-tuples, RANDOMLY — i.e., each

x
(k)
i is drawn uniformly from {0, 1}. How large does m(d, k) have to be, to be 1− δ confident

that this set is a (d, k)-universal set?

[Hint: Just use Hoeffding’s Bound, and don’t worry too much about the constant :-) Also, you

should expect this to be at least 2k, for obvious reasons.]

Problem 7 [10 points] Parsing
[Russell/Norvig:Exercise 22.9, page 832]

4


