
 - 1 -

From Pseudcode Algorithms directly to C++ programs

(Chapter 7)

 Part 1: Mapping Pseudo-code style to C++ style

 input, output, simple computation,
 lists, while loops, if statements

 a bit of grammar

 Part 2: Details
 compilers, parsing, data types

 - 2 -

How does learning a high level computer language
add to understanding computation?

• Connects conceptual model of computation (finite state machine) with an

actual physical machine (digital computer)

! We return to the physical elements of the machine in 2nd half of the course

• Our finite state machine work connects the need for a precise grammar
that indicates how to construct sentences that the machine can map to
state transitions it can execute.

• The ‘rules’ that must be followed in communicating an algorithm to a

machine using a high level language reflect

- certain realities of how a physical machine represents & manipulates

symbols that mean whatever we want them to mean

3 “dog” equal to +

- how computation is a series of state transitions

 - 3 -

Consider assignment 1’s finite state machine problems

 Legal sentences are ones like

 the large brown fox runs across the large field near the blue bridge
 the clever bridge runs over the blue field

 Illegal sentences are ones like

 fox across brown an fox runs across the field

 near red fox runs a cat runs across the field

 a large brown runs large field the across fox

article = {a | the}
adj = {large | brown | red | blue }
noun = {fox | bridge | dog | field}
preposition = {near | across }

 - 4 -

The main portion of a computer program consists of

 1.specifying what goes in the machine’s state (start state)

 all the variables that will be manipulated

 2. getting values into the machine state start state

 3. specifying further instructions that set variable values,
 compare them, change them

 4. getting values out of the machine state
 (e.g., the answer, the solution)

 - 5 -

 Mapping Pseudo-code to C++ code –
simple input, computation, and output

 What we said in Pseudo code Corresponding C++ Instruction

 Print the message “Enter 2 numbers” cout << “Enter 2 numbers ”;
 Get a value for the variable X cin >> X;
 Get a value for the variable Y cin >> Y;

 Set W to X - Y W = X - Y;

 Print the value of the variable W cout << W;

 - 6 -

 Pseudo code

specify the contents of the machine
state—instructions reference these
things

Print the message “Enter 2 numbers”
Get a value for the variable limit
Get a value for the variable floor
Set max to limit + floor
Print the value of the variable limit

the body of a C++ program

{

int limit, floor, max;

 cout << “Enter 2 numbers”;
 cin >> limit;
 cin >> floor;
 max = limit + floor
 cout << max;

}

 - 7 -

{ int limit, floor, max;

cout << “Enter 2 numbers”;
cin >> limit;
cin >> floor;
max = limit + floor;
cout << max;

}

Not legal: max is not defined

 { int limit, floor;

 cout << “Enter 2 numbers”;
 cin >> limit;
 cin >> floor;
 max = limit + floor;
 cout << max;
 }

Legal, but strange, for illustration….
{
int limit, floor, max, dog, x, counter;

 cout << “Enter 2 numbers”;
 cin >> limit;
 cin >> floor;
 max = limit + floor;
 cout << max;
}

 recall Assignment 1: noun = {fox | bridge | dog | ….}

 - 8 -

 Simple vs. Structured Variables
Pseudocode Get value of a variable called length
 cin >> length;

Pseudocode Get a list of scores score1, score2, score3, score4

 cin >> score[1];
 cin >> score[2];
 cin >> score[3];
 cin >> score[4];

Pseudocode Set total to the sum of the scores 1..4 ,

 total = scores[1] + scores[2] + scores[3] + scores[4];

pseudocode print out all the values of scores1..4 and total

 cout << score[1];
 cout << score[2];
 cout << score[3];
 cout << score[4];
 cout << total;

 - 9 -

Lists in C++ are called arrays

{ int length, total, scores[4];

 length = 4;

 cout << “Enter 4 scores”;

 cin >> scores[1];
 cin >> scores[2];
 cin >> scores[3];
 cin >> scores[4];

 total = scores[1] + scores[2] + scores[3] + scores[4];

 cout << scores[4], scores[3], scores[2], scores[1];
 cout << total;

}

Not legal: cin >> scores;
 cin >> scores[5];
 cout << scores;

 - 10 -

Write a program that asks for 1000 integers, puts them in a list, totals them, averages
them, sorts them, whatever…

{ int length, total, scores[1000];

 length = 1000;

 cout << “Enter 1000 scores”;

 cin >> scores[1];
 cin >> scores[2];
 cin >> scores[3];
 cin >> scores[4];
 cin >> scores[5];
 cin >> scores [6];
 …. // all the other cin’s have to be written in
 cin >> scores[1000];

 total = scores[1] + scores[2] + scores[3] + scores[4] + scores[5] + {every single one!}

}

 - 11 -

 loops allow the repetition of the same
 basic instructions….

 int length, total, scores[1000], counter;

 length = 1000;

 cout << “Enter 1000 scores”;

 counter = 1; // why ?? //
 while (counter <= length)

 { cin >> scores[counter];

 counter = counter + 1; // why? //
 }

 counter = 1; // why ?? //
 total = 0; // why ?? //

 while (counter <= length)
 {
 total = total + scores[counter];
 counter = counter + 1;
 }

 - 12 -

Write the C++ program body that will
 ask the user to enter a maximum and minimum value
 ask the user to enter 1000 scores
 put them in an array (a list)
 As it puts them in the list, keeps track of how many scores are
 above the max value and below the max value

Pseudocode:

get the values for max, min, and scores1.. scores 1000

set counter to 1
set length to 1000

set totalLow to 0 a variable to keep track of how many below the min
set totalHigh to 0 a variable to keep track of how many above the max

while (counter <= length)
 get a value for scores counter

 if (scores counter < min) then
 set totalLow to totalLow +1
 else if (scores counter > max) then
 set totalHigh to totalHigh + 1
 set counter to counter + 1

 - 13 -

C++ program body
int max, min, totalLow, totalHigh, counter, scores[1000];

cout << “Enter the high value, and then the low value “;
cin >> max;
cin >> min;

counter = 1;
length = 1000;

totalLow = 0;
totalHigh = 0;

while (counter <= length)
 {
 cin >> scores[counter];

 if (scores[counter] < min) // no then!
 totalLow = totalLow +1;

 else if (scores[counter] > max)
 totalHigh = totalHigh + 1;

 counter = counter + 1;
 } // end of the while loop

 - 14 -

Syntax for if-statements

Simple:

 cin >> item;
 cin >> min;

 count = 0;

 if (item < min) count = count + 1;

 cout << “done”;

Multi way Branching

 if (item < min)

 lowcount = lowcount + 1;

 else if (item > max)

 highcount = highcount + 1;

 cout << “done;”

 - 15 -

Compound if statement must use { }

 if (item < min)
 {
 lowcount = lowcount + 1;
 cout << “found a low value”;
 }

 cout << “all done”;

Compare:
 if (item < min)
 lowcount = lowcount +1;
 cout << “found a low value”;
 cout << “all done”;

What the software checking your program operates on (recall FSM examples..}

if (item < min) {lowcount = lowcount + 1;cout << “found a low value”;} cout << “all done”;

if (item < min) lowcount = lowcount +1;cout << “found a low value”; cout << “all done”;

 - 16 -

 SUMMARY-1

• There is a fairly straightforward mapping from pseudo-code to high level
statements in C++

• punctuation counts. Indentation does not, except for humans

• C++ has a grammar—the instructions given for the program are being
validated against the grammar

• the program body consists of

 DECLARATIONS what variables constitute the state

 legal C++ instructions the state transitions
 get values in, set values,
 compare values, branch,
 loop, output values, etc.

