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Abstract— Researchers often have access to a variety of dif-
ferent high-performance computer (HPC) systems in different
administrative domains, possibly across a wide-area network.
Consequently, the security infrastructure becomes an important
component of anoverlay metacomputer: a user-level aggregation
of HPC systems. The Grid Security Infrastructure (GSI) uses
a sophisticated approach based on proxies and certification
authorities. However, GSI requires a substantial amount ofinstal-
lation support and it requires human-negotiated organization-to-
organization security agreements.

In contrast, the Trellis Security Infrastructure (TSI) is l ayered
on top of the widely-deployed Secure Shell (SSH) and systems
administrators only need to provide unprivileged accountsto the
users. The contribution of the TSI approach is in demonstrating
that a single sign-on (SSO) system can be implemented without
requiring a new security infrastructure. We describe the design
of the TSI and provide a tutorial of some of the tools created to
make the TSI easier to use.

I. I NTRODUCTION

Some workloads and experiments in computational science
require large amounts of resources, both in terms of capability
and capacity. Highly-capable systems, such as those with large
processor counts within a shared memory or high-performance
networks, tend to exist entirely within one administrative
domain. In capacity computing, where high throughput is
often the main goal, aggregating different high-performance
computing (HPC) systems is a common technique to provide
the needed capacity. The individual jobs of the capacity-
oriented workload can be mapped to different servers in the
aggregate. However, when the HPC systems reside in different
administrative domains, there may be important issues related
to cross-domain security.

A practical problem that exists today is that many re-
searchers have access to a variety of different computer
systems in different administrative domains (Figure 1). The
researcher merely has an account on each of the systems; the
different administrative domains may not have and may not be
interested in entering into cross-domain security arrangements.
For example, Researcher A has access to his group’s system,
a departmental system, and a system at a high-performance
computing centre. Researcher B has access to her group’s

server and (perhaps) a couple of different high-performance
computing centres, including one centre in common with
Researcher A. It would be ideal if all of the systems could
be part of one metacomputer. But, the different systems may
be controlled by different groups who may not run the same
security software or have not have negotiated cross-domain
security policies. Yet, Researchers A and B would still liketo
be able to exploit the aggregate power of their systems.

Understandably, systems administrators desire modern and
effective cross-domain mechanisms for authentication, autho-
rization, and data management. For example, grid computing
and the Globus Alliance [1] include wide-ranging efforts to
define new service and software standards for sharing general
computer resources (not just HPC systems) across different
organizations. The Grid Security Infrastructure (GSI) [2], [3]
and, more generally, the Globus Toolkit, use Web services,
X.509 certificates, and other well-known standards to build
a scalable, cross-domain security infrastructure. Withinthe
original design goals of GSI, the resulting system is a modern
and elegant cross-domain security solution. However, GSI
is non-trivial to set up, requires administrator-level security
agreements, and is not yet widely deployed.

There is one cross-domain security tool that is both widely
trusted (from both technical and social perspectives) and
is almost universal across HPC and personal computing
systems: the Secure Shell (SSH), especially the OpenSSH
implementation [4]. SSH supports public-key authentication
and secure channels using strong encryption, has theforced
commandmechanism for authorization, and can use familiar
local protection mechanisms for data sharing and other aspects
of authorization. Consequently, the Trellis Project [5] has
proposed that a practical and portable security architecture
based on SSH can create anoverlay metacomputer(Figure 1):
a user-level aggregation of HPC systems [6], [7]. The overlay
metacomputer is per-user and can be as simple as one com-
puter, or as complicated as hundreds of computers in many
administrative domains.

The primary purpose of this paper is to describe and provide
a tutorial of the Trellis Security Infrastructure (TSI). Working
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Fig. 1. Overlay Metacomputers

entirely at the user-level with unprivileged accounts, TSIforms
the basis for all the other Trellis Project efforts in global
scheduling, data movement, and distributed file systems. As
per the desiredsingle sign-on(SSO) capability, once the TSI
has been configured and launched, the user (and applications)
can securely cross administrative domains without having to
type passwords or passphrases multiple times. Consequently,
TSI’s contribution to the field of metacomputing is in showing
that basic SSO functionality can be provided by layering on
top of the existing SSH infrastructure, instead of replacing it
with an altogether new system. In the future, it is our intention
to make the TSI available as open-source software.

II. T RELLIS SYSTEM OVERVIEW

The Trellis system is a thin layer ofsoftwarethat allows a
set of jobs to be load balanced (i.e., via a scheduler [6], [8])
across multiple HPC systems while also allowing the jobs to
access their data (i.e., via a distributed file system [9]). A
user submits jobs to the Trellis scheduler and it automates
the placement of jobs, movement of data, and collection of
the results. The Trellis Project, along with many partners,per-
formed the Canadian Internetworked Scientific Supercomputer
(CISS) experiments in 2002 and 2003 [7], with 18 different
administrative domains at 16 different institutions. Earlier
versions of the TSI were used for CISS and it has since been
improved. The lessons learned from the CISS experiments
have prompted the evolutionary design changes, described
here, to the underlying SSH-based security infrastructure. For
example, our experience with CISS reinforces our belief that
scalability concerns with SSH are primarily an implementation
(not architectural) issue. Improvements have also been made to
the user-level management of SSH keys and sessions. Finally,
the basic functionality of TSI has been extended. For example,
third-party data transfers are now possible (e.g., Agent A
transfers data from Agent B to Agent C without first moving
the data to A)

In contrast with other systems, Trellis is unique in its
relative simplicity, cross-platform support, and track record
with large-scale, on-line tests using real scientific applications.
We have learned many lessons by using Trellis to build the
CISS metacomputer [7]. Putting large HPC resources at the
disposal of scientists makes a complete parameter sweep of a
design space [10] or simulating large systems more practical.

III. R ELATED WORK

Of course, the basic idea of using a collection of HPC
resources has been around for decades. In various forms,
and with important distinctions, it has also been known as
distributed computing, batch scheduling, cycle stealing,peer-
to-peer systems, and (most recently) grid computing. Recently,
there is renewed interest in metacomputing and the broader
area of grid computing, fueled by the growth of high-speed
wide-area networks (WAN).

Some well-known application-oriented examples in this
area include SETI@home [11] and Project RC5/distributed.net
[12]. But, the contemporary challenge is in supporting ar-
bitrary applications across administrative domains. Related
examples of middleware infrastructure include Condor [13]
and the projects associated with the Globus Alliance and the
Open Grid Service Architecture (OGSA) [1]. SETI@home and
RC5 (and similar projects) are targeted at single applications
(e.g., signal processing) with low resource needs (e.g., can
run on a laptop), whereas Condor, Globus, and Trellis target
arbitrary applications with large resource requirements.Of
course, there are many other related projects around the world,
including some in Canada (for example, Grid Canada [14] and
the University of Victoria Grid Testbed [15]).

Of the recent systems and security infrastructure for grid
computing, Globus and GSI are the best known examples.
Authentication, confirming the identity of users and principals,
in GSI is based on the cryptographic signing of credentials and
keys by a certification authority (CA) [2]. CA-signed keys
can be used to securely identify a user or a process acting
on behalf of a user. Once the identity of a principal has been
established, configuration files can map a global identity to
a local identity and to associate privileges with the principal
(i.e., authorization). Proxies are temporary identities that allow
the delegation of rights and privileges. A key element of GSI
is the ability to accept credentials that have been signed by
different CAs. Therefore, if different administrative domains
have at least one trusted CA in common, it is possible for
a user to authenticate once, create a proxy or proxies as
necessary, and then login and access resources across the
domains. This is the SSO aspect of GSI.

GSI does have pragmatic, inter-related weaknesses, includ-
ing: (1) thea priori need for GSI software on all the system,
to be installed by systems administrators and configured
according to a (human) security agreement, such as the trust



accorded to CAs, (2) relative complexity, due to the wide
spectrum of potential application domains, and (3) the relative
lack of widespread deployments.

Within a project like WestGrid (www.westgrid.ca ),
which has acquired and configured a wide range of HPC
systems in Western Canada, it is possible to deal with Point 1
since the (human) administrative infrastructure already exists
and the use of GSI was mandatedbefore any system was
installed. However, what about other, independent HPC con-
sortia in Canada and what about existing projects and groups?
How can nation-wide HPC systems be aggregated if they
are not using GSI? In fact, many individual research groups
already have large HPC resources (witness the popularity
of project-specific clusters) that do not use GSI. Without
the common security infrastructure, the systems cannot be
aggregated. In the future, GSI may become much easier to
install and configure, but what happens in the meantime and
what about groups that have limited systems administrator
support? Although Point 3 is related to Point 1, they are not the
same; there are many systems that are both widely deployed
and also require at least some systems administrator support.
GSI is a technically-strong system, but there are significant
social factors that affect the adoption of any new system.

As an overlay system, Trellis and the TSI are designed to
run on top of on any platform, including GSI. For example,
within WestGrid, GSI handles the cross-domain authentication
between the WestGrid sites and the TSI handles the security
between WestGrid and non-WestGrid systems (e.g., our de-
partmental systems). The TSI is able to use GSI when it is
available; it is just that there are many systems where GSI is
not available and SSH is a practical alternative.

One disadvantage of the SSH-based approach is that the
user (not the systems administrator) assumes the responsibility
of managing the various keys, identities, and configuration.
Consequently, it might be argued, the basic SSH-based archi-
tecture may not scale to large numbers of systems. We agree
that this is a current (but diminishing) weakness of the Trellis
approach. However, in our experience, the common case for
overlay metacomputers is likely to be four or five different
administrative domains. For example, the Trellis Project has
access to over 1,500 processors in just four administrative
domains: (1) our group’s non-GSI cluster, (2) the GSI-based
WestGrid facilities at the University of Alberta, (3) at the
University of Calgary, and (4) at the University of British
Columbia and TRIUMF. And, as CISS has shown, the Trellis
system does scale, in practice.

Furthermore, the basic concepts behind SSH are well un-
derstood by, literally, hundreds of thousands of daily users.
And, the growing body of experience with SSH in production
environments means that bugs (like most systems, OpenSSH
is not necessarily bug-free) are fixed quickly and systems
administrators trust external users accessing the system over
SSH (as much as they trust local users), without the need for
special human security agreements. In fact, with SSH, there
is no need for human-negotiated organization-to-organization
security agreements; the systems administrators only have

to agree to give the user a normal, unprivileged account.
Nonetheless, the improvements in the TSI described here are
our attempts to ameliorate the actual and perceived weaknesses
of the SSH-based approach.

SSH has become more than “just a remote login facility”
and can be a platform for additional security mechanisms.
In fact, with GSI-enabled SSH, it is possible for Trellis
to create an overlay metacomputer that includes both GSI-
based and non-GSI systems. We demonstrate this capability in
Section IV. Notably, the extra Trellis software exists entirely
at the user-level and can be deployed by unprivileged users.

Finally, it should be noted that Plan 9’s factotum [16]
is similar to SSH’s agent. As with SSH’sssh-agent s,
factotums are also per-user “self-contained agents”. Whereas
ssh-agent s are (currently) only used by SSH, factotums
are designed to be used directly by a variety of programs that
require authentication. By layering on top ofssh-agent s,
TSI gives other applications access to the security features of
SSH, albeit via a level of indirection (i.e., applications use
SSH, which in turn uses the agent).

IV. T HE TRELLIS SECURITY INFRASTRUCTURE

The Trellis Security Infrastructure (TSI) relies on the exist-
ing SSH mechanisms of public-key authentication and agents.
Using a public-private pair of keys, it is possible to securely
authenticate to a system. In combination with thessh-agent
program, it is possible to use public-key authenticationand not
require the user to type in passwords or passphrases multiple
times.

The high-level strategy to provide SSO is to configure and
launchssh-agent processes on all the hosts such that any
of the user’s processes can, without human intervention or
manual authentication, access any other remote host. The
low-level implementation issues are related to making TSI
easier to configure for the different hosts, how to launch
the ssh-agent s, and how to check for (and fix) common
connectivity problems. Specifically, TSI’s SSO relies on the
agent on each system being set up and configured correctly
beforehand. Also, we need a way to verify that the agents
are working properly to create theSSH overlay: the SSH
connectivity between machines of an overlay metacomputer.

SSH overlays can have any shape: a fully-connected graph, a
star graph (e.g., client-server), or any other graph, depending
on the system setup. On top of the SSH overlay, the other
components of Trellis, including the global scheduler and
distributed file system, help to create the abstraction of the
overlay metacomputer.

The initial configuration of the overlay, the bootstrap start-
up of the overlay, and the monitoring of the overlay are all
handled by helper and diagnostic programs provided by the
Trellis system. In some cases, the SSH overlay will not func-
tion as expected because of connection failures. These failures
are usually due to one of several common-case problems in
configuring SSH and agents. For example, an agent will fail to
connect to a remote host if the remote host does not have the
public key of the user represented by the agent. Connection



dngo@st-brides hosts>createHost -i
Create Host Script - Interactive Mode Enabled
What is the name of the host you would like to create data for? s t-brides.cs.ualberta.ca
What is your user name on st-brides.cs.ualberta.ca? [dngo]
What type of host is this (linux, solaris, etc.)? linux
What type of batch scheduler does this host have?
1. Zero Infrastructure
2. PBS Infrastructure
>1
<snip>
dngo@st-brides hosts>ls -l ˜/.trellis/hosts
total 16
drwx--S--- 2 dngo man 4096 Jan 19 11:22 dngo@lattice.westgr id.ca/
drwx--S--- 2 dngo man 4096 Jan 19 11:21 dngo@nexus.westgrid .ca/
drwx--S--- 2 dngo man 4096 Jan 19 11:19 dngo@st-brides.cs.u alberta.ca/
drwx--S--- 2 dngo man 4096 Jan 19 11:20 pbsweb@lindale.cs.u alberta.ca/

Fig. 2. Adding and configuring hosts to the SSH overlay
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Fig. 3. Geographic view of all hosts in the example SSH overlay

failures could also simply result from the lack of an agent.
Or, if an agent is present, the user’s identity may not have
been properly added to the agent. Most causes of connection
failures can be determined and resolved with little or no user
intervention. The following example sessions show how to
create an overlay, start up the required processes, and diagnose
common malfunctions.

A. Example: Configuring, Launching, and Testing the SSH
Overlay

All of the tools shown in this section have been implemented
and the interactive sessions are demonstrated using the tools
themselves.

Creating and maintaining an SSH overlay has three basic
steps. First, we specify and configure all the hosts that we
want as part of the overlay. We use the Trellis-provided
createHost tool to interactively add an entry for each
host, as shown in Figure 2. In response to a short list
of configuration questions about the host and the type of

scheduler to be used, a new host entry is created. A host
entry is simply a directory named asuser@host in the
user’s standard̃/.trellis/hosts directory (similar to
the˜/.gnome directory for configuring the popular GNOME
desktop). Note that the user’s identity on the different hosts
can be different (i.e.,dngo versuspbsweb ). Once a host
has been configured, it does not need to be re-configured (not
shown) between sessions, unless there is a change.

In this example, we have created four hosts in three different
administrative domains: (1)st-brides and lindale are
in the Department of Computing Science, University of Al-
berta, (2)nexus is located within Computing and Network
Services (CNS), the University of Alberta, and (3)lattice
is located at the University of Calgary. Figure 3 illustrates a
geographic view of these four hosts. Since bothnexus and
lattice are both part of the WestGrid GSI-based grid, we
consider them to have some sort of administrative relationship.
Specifically, Trellis uses regular OpenSSH to cross between
(1)–(2) and (1)–(3), but Trellis uses GSI-enabled SSH to cross
between (2)–(3).

Second, we need to launch an SSH agent and leave it
running on each of the hosts. Recall that the well-known
ssh-agent process is the existing SSH mechanism to al-
low a process to authenticate, via a public-private key, to
a (possibly) remote host without requiring a password or
passphrase [4]. Whenever a Trellis process, whether interactive
or background, needs to make a remote connection, it uses a
configuration file to find the per-hostssh-agent , set the
appropriate environment variables (e.g.,SSH_AGENT_PID
andSSH_AUTH_SOCK), and authenticate without human in-
tervention.

We have created two OpenSSH-based tools,
ssh-agent-remote and ssh-add-remote , to help
launch and load the remote agents with the appropriate keys,
respectively. Both tools are wrappers around their original,
non-remote counterparts and allow for the set-up and
control of anssh-agent on a remote host. Figure 4 shows
how anssh-agent is started onnexus from st-brides .
Note that thessh-agent on nexus is given a private key
(from ˜/.ssh/keyfile on st-brides ) without that
private key ever being saved onnexus ; we have a modified



dngo@st-brides hosts>ssh-agent-remote nexus.westgrid. ca
Agent for dngo@nexus.westgrid.ca started (PID 881635)
dngo@st-brides hosts>ssh-add-remote nexus.westgrid.ca ˜/.ssh/keyfile
Enter passphrase for /usr/brule2/guest/dngo/.ssh/keyfi le:
Identity added: Using Stdin (Using Stdin)

Fig. 4. Starting an SSH agent onnexus from st-brides

--------------------------------------------------- --------------
Connectivity Report

Created: Tue Jan 20 15:15:21 2004 on st-brides.cs.ualberta .ca
--------------------------------------------------- --------------
Hosts found on st-brides.cs.ualberta.ca:
dngo@nexus.westgrid.ca
dngo@lattice.westgrid.ca
dngo@st-brides.cs.ualberta.ca
pbsweb@lindale.cs.ualberta.ca

Legend:
<--> Bidirectional connectivity
---> Unidirectional connectivity
-X-> No connectivity from specific host

Depth:
--------------------------------------------------- --------------------------------------------------- -----------------------

0 1 2 3 4
--------------------------------------------------- --------------------------------------------------- -----------------------
dngo@st-brides.cs ---> dngo@st-brides.cs
dngo@st-brides.cs <--> dngo@nexus.westgr ---> dngo@nexu s.westgr
dngo@st-brides.cs <--> dngo@lattice.west ---> dngo@latt ice.west
dngo@st-brides.cs <--> pbsweb@lindale.cs ---> pbsweb@li ndale.cs
dngo@st-brides.cs <--> dngo@nexus.westgr <--> pbsweb@li ndale.cs <--> dngo@st-brides.cs
dngo@st-brides.cs <--> dngo@nexus.westgr <--> dngo@latt ice.west <--> dngo@st-brides.cs
dngo@st-brides.cs <--> dngo@lattice.west <--> dngo@nexu s.westgr <--> dngo@st-brides.cs
dngo@st-brides.cs <--> dngo@lattice.west <--> pbsweb@li ndale.cs <--> dngo@st-brides.cs
dngo@st-brides.cs <--> pbsweb@lindale.cs <--> dngo@nexu s.westgr <--> dngo@st-brides.cs
dngo@st-brides.cs <--> pbsweb@lindale.cs <--> dngo@latt ice.west <--> dngo@st-brides.cs
dngo@st-brides.cs <--> dngo@nexus.westgr <--> pbsweb@li ndale.cs <--> dngo@lattice.west <--> dngo@st-brides.cs
dngo@st-brides.cs <--> dngo@nexus.westgr <--> pbsweb@li ndale.cs <--> dngo@lattice.west <--> dngo@nexus.westgr
dngo@st-brides.cs <--> dngo@nexus.westgr <--> dngo@latt ice.west <--> pbsweb@lindale.cs <--> dngo@nexus.westgr
dngo@st-brides.cs <--> dngo@nexus.westgr <--> dngo@latt ice.west <--> pbsweb@lindale.cs <--> dngo@st-brides.cs
dngo@st-brides.cs <--> dngo@lattice.west <--> dngo@nexu s.westgr <--> pbsweb@lindale.cs <--> dngo@lattice.west
dngo@st-brides.cs <--> dngo@lattice.west <--> dngo@nexu s.westgr <--> pbsweb@lindale.cs <--> dngo@st-brides.cs
dngo@st-brides.cs <--> dngo@lattice.west <--> pbsweb@li ndale.cs <--> dngo@nexus.westgr <--> dngo@st-brides.cs
dngo@st-brides.cs <--> dngo@lattice.west <--> pbsweb@li ndale.cs <--> dngo@nexus.westgr <--> dngo@lattice.west
dngo@st-brides.cs <--> pbsweb@lindale.cs <--> dngo@nexu s.westgr <--> dngo@lattice.west <--> dngo@st-brides.cs
dngo@st-brides.cs <--> pbsweb@lindale.cs <--> dngo@nexu s.westgr <--> dngo@lattice.west <--> pbsweb@lindale.cs
dngo@st-brides.cs <--> pbsweb@lindale.cs <--> dngo@latt ice.west <--> dngo@nexus.westgr <--> dngo@st-brides.cs
dngo@st-brides.cs <--> pbsweb@lindale.cs <--> dngo@latt ice.west <--> dngo@nexus.westgr <--> pbsweb@lindale.cs

Fig. 5. Connectivity Report: Checking an SSH Overlay

version ofssh-add that reads a private key from standard
in (i.e., stdin ) instead of from a file. Since thestdin
of ssh-add on nexus is connected to thessh channel
from st-brides , this means that the private key is always
encrypted until it arrives at thessh-agent process on
nexus , thus maintaining security.

Another tool, launchAgents (not shown), invokes
ssh-agent-remote and ssh-add-remote for all the
hosts in ˜/.trellis/hosts and loads the remote
ssh-agent processes with a common key. Therefore, with
one tool and after typing in only one passphrase, a user can
launch the whole SSH overlay.

Third, we can run the Report tool to generate a connectivity
report (Figure 5) for the SSH overlay, as shown in Figure 6.
Starting from the local host (the root node,st-brides in
our example), it establishes whether or not it can connect toall
the remote hosts that are specified in˜/.trellis/hosts .
Each of the remote hosts, in turn, is asked to perform the same
connectivity test using with their owñ/.trellis/hosts
(which may be different from other̃/.trellis/hosts
configurations, since there may be different local file systems).

Each line of output represents a path from the local host
to one or more remote hosts, and the type of connectivity
that exists between two hosts in the path. For instance, the
third line indicates that we can connect fromst-brides

nexusst−brides

lindale lattice

Fig. 6. Directed Graph of the SSH overlay

to lattice and vice versa, and also fromlattice back
to itself. The connectivity report is a map of the exact SSH
overlay per thestatic information in ˜/.trellis/hosts
and thedynamicstate of variousssh-agent processes on the
hosts. The connectivity between two hosts A and B is classified
as bidirectional if host A can connect to host B and vice versa,
or unidirectional otherwise. All connection failures (none exist



or are shown in the example) are also clearly marked on the
SSH overlay.

Note that Figure 5 and Figure 6 represent a fully-connected
graph with all the links working as desired. Once the user
authenticates to, say,st-brides it is possible to remotely
access any of the other systems in the overlay, either interac-
tively or from a background process of the Trellis scheduler
or file system. In this way, TSI provides the much-desired
SSO functionality. Security is maintained through the factthat
authentication still takes place between hosts; it is just that
the TSI has created a system where the authentication is done
automatically and transparently. Note that any private keys are,
as with the original SSH system, either kept inssh-agent s
or on disk with a passphrase; the system is no less secure than
the original SSH. Also, only the user that created and launched
the SSH overlay has the SSO functionality since the host
configurations and thessh-agent s are normal files or user-
level processes with the same identity as the user. Of course,
different users can create their own per-user SSH overlays
(and, thus, their own overlay metacomputers) and obtain SSO
functionality.

B. Example: Diagnosing and Fixing Problems in the SSH
Overlay

Naturally, the SSO abstraction is maintained as long as
everything is working. But, if a failure is detected, a Diag-
nosis tool can be used to perform several diagnostics on the
connection failures. The tests attempt to ascertain the cause of
the failure and whether it lies with host A or host B. Typically,
the cause of the failure is likely to be one of a small number
of possibilities. For example, thessh-agent process on a
host A may have disappeared. Or, the˜/.trellis/hosts
entry on host A may have been misconfigured with the wrong
user identity for host B. Or, thessh-agent process on
host A may not have been loaded with the proper key. Or,
the authorized keys2 file on host B may be missing a
required public key. By checking a list of common problems,
the Diagnosis tool attempts to find the cause of a connectivity
failure to restore SSO.

If the problems are diagnosed and are fixable, the Fix tool
tries to resolve the connection failures iteratively. It takes the
corrective action for one connection failure, and optionally
checks the connectivity before repeating the process.

To further demonstrate the functionality of the connectiv-
ity tools, consider the four hosts in the artificially-created
states as shown in Figure 7.st-brides , which has an arc
to itself, has a proper agent and itsauthorized keys2
file contains the correct public key.lindale has a proper
authorized keys2 file to allow an incoming connec-
tion from st-brides , but it lacks an agent so it cannot
make any outgoing connections.lattice has a proper
authorized keys2 file to allow an incoming connection
from st-brides and there is a local agent, but the agent is
missing the proper keys that allows for outgoing connections.
nexus has an agent but itsauthorized keys2 file does

lindale

A

nexus

PubKA

lattice

PubK

A PubK

st−brides

* User’s public key is missing

* Agent is missing user’s identity* No agent

Fig. 7. Example: Causes of Connectivity Failures

not have the proper public key, which prevents incoming
connections from the other hosts.

Figure 8 indicates the initial SSH overlay that we obtain
from the Report tool. Because the user’s public key is rec-
ognized by lattice and lindale , we have no trouble
in making connections. Their lack of working agents, for
outgoing connections, results in the unidirectional connectiv-
ity. On the other hand,st-brides and nexus have no
connectivity at all since public-key authentication failson
nexus as expected.

In order to determine these problems, the initial SSH
overlay is given to the Diagnosis tool. As Figure 9 shows,
it performs tests that check for problems on the client and
server sides of a connection. In the second connection failure
from lattice back tost-brides , for example, the tool
first pingsst-brides to verify its existence. Next, it checks
lattice and discovers that the user’s identity is missing
from the agent.st-brides is also checked, but no problems
are found.

The information from the diagnostics is in turn passed onto
the Fix tool. In an interactive session, the tool presents the user
with a list of the connection failures and the most likely causes,
as shown in Figure 10. For the first connection failure, the tool
needs to determine the exact problem beforehand in order to
enable connectivity betweenst-brides and nexus . The
Diagnosis tool is able to checkst-brides and finds no
client problems. However, it is not able to checknexus for
server problems since it cannot find a path to reach the host.
As a result, it tries to make a connection with the user’s help,
and is then able to determine the source of the connection
failure and correct it. Appropriate action is also taken forthe
other two failures by setting up a working agent. Specifically,
the agent onlattice is loaded with the user’s identity, and a
new agent is started onlindale and given the user’s identity
as well.

We then proceed to retest the connectivity between the
hosts. The final SSH overlay is the same as the one represented



--------------------------------------------------- --------------
Connectivity Report

Created: Wed Jan 21 15:58:37 2004 on st-brides.cs.ualberta .ca
--------------------------------------------------- --------------
Hosts found on st-brides.cs.ualberta.ca:
dngo@lattice.westgrid.ca
dngo@nexus.westgrid.ca
dngo@st-brides.cs.ualberta.ca
pbsweb@lindale.cs.ualberta.ca

Legend:
<--> Bidirectional connectivity
---> Unidirectional connectivity
-X-> No connectivity from specific host

Depth:
--------------------------------------------------

0 1
--------------------------------------------------
dngo@st-brides.cs ---> dngo@st-brides.cs
dngo@st-brides.cs -X-> dngo@nexus.westgr
dngo@st-brides.cs ---> dngo@lattice.west
dngo@st-brides.cs ---> pbsweb@lindale.cs

Fig. 8. Connectivity Failure (Initial State) as Reported bythe Report Tool

[FAILURE: dngo@st-brides.cs.ualberta.ca TO dngo@nexus. westgrid.ca]
Checking if dngo@nexus.westgrid.ca exists

dngo@nexus.westgrid.ca exists.
Checking dngo@st-brides.cs.ualberta.ca

Checking for a SSH agent
Agent found.

Checking if user’s identity has been added to the agent
Checking dngo@nexus.westgrid.ca

No path to dngo@nexus.westgrid.ca

[FAILURE: dngo@lattice.westgrid.ca TO dngo@st-brides.c s.ualberta.ca]
Checking if dngo@st-brides.cs.ualberta.ca exists

dngo@st-brides.cs.ualberta.ca exists.
Checking dngo@lattice.westgrid.ca

Checking for a SSH agent
Agent found.

Checking if user’s identity has been added to the agent
Identity not found in the agent.

Checking dngo@st-brides.cs.ualberta.ca
Checking for sshd

sshd found.
Checking ’authorized_keys’ for user’s public key

Public key found.

[FAILURE: pbsweb@lindale.cs.ualberta.ca TO dngo@st-bri des.cs.ualberta.ca]
Checking if dngo@st-brides.cs.ualberta.ca exists

dngo@st-brides.cs.ualberta.ca exists.
Checking pbsweb@lindale.cs.ualberta.ca

Checking for a SSH agent
No agent found.

Checking dngo@st-brides.cs.ualberta.ca
Checking for sshd

sshd found.
Checking ’authorized_keys’ for user’s public key

Public key found.

Fig. 9. Tests done by the Diagnosis tool

in Figure 5 and Figure 6, namely a fully-connected graph of
the hosts.

C. Empirical Results: Basic Overheads

So far, we have not measured the real-time overheads
of using the configuration, launch, diagnosis, and fix tools;
those overheads depend on too many user interactions and
transient network characteristics. As one would expect, since
they involve a variety of SSH connections across a WAN,

there is a noticeable overhead. However, since those tools are
invoked infrequently, we have not attempted any significant
optimizations. We expect the common case to beusing the
SSO capabilities of the overlay.

The more frequent use-case for TSI is in establishing SSH
connections in support of Trellis’s placeholder scheduling and
distributed file system. Therefore, to stress-test the system
we can do asimplemicrobenchmark. In our experiment, we
compare two versions of OpenSSH: (1) the unmodified version



Listed below are the connection failures found and their mos t likely causes.
Connections are from host A to host B.

------------------------------- -------------------- -----------------------
Connection Failure Reason

------------------------------- -------------------- -----------------------
Host A Host B

1) dngo@st-brides. dngo@nexus.west No path to host B
2) dngo@lattice.we dngo@st-brides. Private key not added t o SSH agent
3) pbsweb@lindale. dngo@st-brides. No SSH agent running on host A

Select a connection failure to fix (q to quit): 1
Attempting a manual connection to dngo@nexus.westgrid.ca
Public key not found in ’authorized_keys’ on dngo@nexus.we stgrid.ca
Attempting to fix. Please enter password when required.
Enter public key file: [/usr/brule2/guest/dngo/.trellis /keyfile.pub]
Copying public key to dngo@nexus.westgrid.ca

dngo@nexus.westgrid.ca’s password:
Adding public key to ’authorized_keys’

dngo@nexus.westgrid.ca’s password:
Fix successful.

Retest connectivity? (y/n) [y] n

Select a connection failure to fix (q to quit): 2
Enter private key file: [/usr/brule2/guest/dngo/.ssh/ke yfile]
Adding the specified private key to the agent
Enter passphrase for /usr/brule2/guest/dngo/.ssh/keyfi le:
Fix successful.

Retest connectivity? (y/n) [y] n

Select a connection failure to fix (q to quit): 3
Starting an agent on pbsweb@lindale.cs.ualberta.ca
Enter private key file: [/usr/brule2/guest/dngo/.ssh/ke yfile]
Adding the specified private key to the agent
Enter passphrase for /usr/brule2/guest/dngo/.ssh/keyfi le:
Fix successful.

Retest connectivity? (y/n) [y] y
Retesting connectivity...

<snip>

Listed below are the connection failures found and their mos t likely causes.
Connections are from host A to host B.

------------------------------- -------------------- -----------------------
Connection Failure Reason

------------------------------- -------------------- -----------------------
Host A Host B
<No connection failures>

Select a connection failure to fix (q to quit): q

Fig. 10. An interactive session with the Fix tool

that comes with the OpenSSH distribution (version 3.6p1),
which uses public-key authentication, and (2) the GSI-enabled
version of OpenSSH (version 3.6.1p2). Specifically, we mea-
sure the amount of time it takes to make 100 connections
betweennexus andlattice . Both of these hosts are on the
WestGrid network. Using GSI-enabled SSH, 100 connections
to run the date command takes 100 seconds. Using the
unmodified SSH, the same 100 connections takes 120 seconds,
which represents a 20% additional overhead for the TSI
approach. Of course, both 1.0 and 1.2 seconds of overhead per
connection is somewhat high compared to connections on a
local network, but cross-domain authentication across a WAN
is typically more expensive.

We suspect that TSI’s additional overheads, which are not
onerous, may be due to the more-complicated baseline SSH
protocol for authenticating the host (i.e.,nexus authenticating
lattice and vice versa, using public keys). Fortunately, we
have also developed a simple SSH proxy that creates per-

host SSH connections on demand and leaves the connection
open until it times out due to inactivity. The same 100
connections experiment took 9 seconds, again running the
date command, betweennexus and lattice using the
unmodified OpenSSH binary, with our proxy. Therefore, even
the 20% overhead can be avoided in the common case of
Trellis’s operation.

V. CONCLUDING REMARKS

The interest in aggregating HPC resources across a WAN
has been growing as the capacity needs of computational
scientists have increased. Cross-domain tools and security
infrastructure are an important part of metacomputing and
grid computing. The Grid Security Infrastructure, or GSI, is
a sophisticated and elegant system. However, GSI requires
a substantial amount of installation support and it requires
human-negotiated organization-to-organization security agree-
ments.



We have proposed an alternate security infrastructure based
on the widely-deployed SSH, called the Trellis Security In-
frastructure, or TSI. By layering TSI on top of SSH, it is
possible to deploy an SSH overlay and an overlay metacom-
puter entirely at the user-level, without compromising security.
SSH is a well-known and trusted system with public-key au-
thentication and secure channels. The only human-negotiated
agreement required for a TSI-based overlay metacomputer
is the user’s unprivileged account on the various hosts. In
contrast to the GSI approach, the contribution of the TSI
approach is in demonstrating that a single sign-on system can
be implemented without requiring a completely new security
infrastructure.
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