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A Robust and Privacy-Aware Federated Learning
Framework for Non-Intrusive Load Monitoring
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Abstract—With the rollout of smart meters, a vast amount
of energy time-series became available from homes, enabling
applications such as non-intrusive load monitoring (NILM). The
inconspicuous collection of this data, however, poses a risk to the
privacy of customers. Federated Learning (FL) eliminates the
problem of sharing raw data with a cloud service provider by
allowing machine learning models to be trained in a collaborative
fashion on decentralized data. Although several NILM techniques
that rely on FL to train a deep neural network for identifying the
energy consumption of individual appliances have been proposed
in recent years, the robustness of these techniques to malicious
users and their ability to fully protect the user privacy remain
unexplored. In this paper, we present a robust and privacy-
preserving FL-based framework to train a bidirectional trans-
former architecture for NILM. This framework takes advantage
of a meta-learning algorithm to handle the data heterogeneity
prevalent in real-world settings. The efficacy of the proposed
framework is corroborated through comparative experiments
using two real-world NILM datasets. The results show that
this framework can attain an accuracy that is on par with a
centrally-trained energy disaggregation model, while preserving
user privacy.

Index Terms—energy disaggregation, transformers, federated
learning, privacy, poisoning attack.

I. INTRODUCTION

ELECTRIC utilities were historically grappling with the
challenge of increasing efficiency and detecting outages,

because they had limited visibility into their networks, espe-
cially in the last mile of distribution. With the advent of smart
meters and advanced metering infrastructure [1], they were
finally able to gather high-resolution, aggregate data from their
customers for billing purposes in addition to generating useful
insights, from monitoring aberrant power usage patterns and
developing virtual energy audits to demand response. Some
of these applications rely on the power consumption profile of
home appliances, which is not readily available and must be
inferred from the aggregate data.

Non-Intrusive Load Monitoring (NILM) [2] is the problem
of disaggregating the total household energy use, measured
by a smart meter, into the load of individual appliances. It
helps reduce the energy consumption and electricity bill of
homeowners by providing real-time feedback on appliance-
level power consumption [3], improving the load forecasting
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accuracy, and suggesting load shifting strategies during peak
hours [4]. While there are several promising techniques for
NILM, including signal processing and probabilistic graphical
models, deep learning, and in particular the attention mech-
anism, has been shown to be more effective [5]. One such
deep learning model is based on the notion of sequence-to-
sequence (seq2seq) translation, in which a sequence of words,
e.g. in one language, is mapped to a sequence in another
language. By analogy, in energy disaggregation, the seq2seq
translation can be used to map the sequence of the aggregate
household demand into the power consumption of individual
home appliances. However, traditional seq2seq models often
struggle with long input sequences because they use recurrent
neural networks (RNNs), which process the input one token at
a time. This processing can become computationally expen-
sive for long sequences and make it difficult for the model
to learn dependencies between tokens that are far apart in
the input sequence [6]. Transformers, however, handle long
input sequences more efficiently by processing all tokens in
parallel [7]. They use a self-attention mechanism to weigh the
importance of each token in the input sequence for each output
token, allowing the model to capture long-range dependencies
more effectively. This makes transformers a more suitable
choice for NILM, where the input sequences can be long and
complex, and the model needs to learn dependencies between
different parts of the sequence to accurately identify individual
loads [8].

Regardless of which machine learning model is used for
NILM, sending the smart meter data along with groundtruth
power profiles of home appliances to a remote server that
trains or runs this model could raise privacy concerns. This
is because a passive adversary or an intruder can obtain
appliance-level information and use this private information
to learn the user’s habits and lifestyle, such as when they
come home, their preferred temperature setting and activities
of daily living [9], [10]. To address these privacy concerns
and enable training the NILM model on decentralized data
that belong to many clients, possibly with unique appliances
and usage patterns, Federated Learning (FL) has been adopted
in recent work [10]–[13]. In this framework, the NILM model
can be trained by the clients in a collaborative fashion, without
requiring them to share their data with a central server [14].
The global model is built by aggregating the model updates
performed independently by the clients on their local data.

While FL addresses the concern related to sharing raw data
with a central server, there are still several challenges that limit
its real-world application. Firstly, FL algorithms are prone to
privacy attacks during the exchange of parameters between
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clients and the aggregation server [15], [16]. The server might
be Honest-But-Curious (HBC), i.e., a passive adversary that
follows the aggregation protocol but takes a peek at the
clients’ updates to extract additional (private) information.
Different techniques have been proposed to mitigate this
attack, from differential privacy to homomorphic encryption
and secure multiparty computation [17]. Secondly, malicious
clients may attack the FL model by sending incorrect updates
to the server during the training process. This client-side
attack has multiple types, namely the poisoning attack, model
inversion attack, membership inference attack, and backdoor
attack [18]. However, existing defense mechanisms against
malicious clients in FL are inadequate and more research must
be done on developing robust defense mechanisms against
adversarial attacks, particularly those that are difficult to detect
or prevent [16]. Moreover, the current FL-based frameworks
are not fully effective in the presence of heterogeneity, e.g.
when homes contain different appliances or exhibit dissimilar
feature distributions [19], [20].

Recent advances in FL motivated researchers to apply this
paradigm to NILM [10], [12], [13], but the related work builds
on the standard FL framework, failing to address the specific
challenges of FL in NILM, namely dishonest clients and het-
erogeneity. We address this gap in the literature by introducing
a robust and privacy-aware FL-based NILM framework. The
main contributions of this paper are summarized below.

• We propose a robust NILM framework based on FL.
We use the bidirectional transformer architecture that
follows the pattern of sequence-to-sequence learning for
energy disaggregation to achieve better performance in
terms of the diverse smart meter clients. To address the
challenge of data heterogeneity, we use Model-Agnostic
Meta-Learning (MAML) which allows fast and dynamic
adaptation of the model according to the client updates.

• To make the model robust against dishonest clients, we
devise a reputation scheme for the selective sampling
of clients in every round of FL based on their gradient
updates during the global model training.

• Through extensive experiments, we corroborate the effec-
tiveness of the proposed FL-based NILM framework by
comparing it with the centrally-trained model.

To the best of our knowledge, this is the first work to study and
mitigate the model poisoning attack using real-world NILM
datasets that exhibit a high degree of heterogeneity.

II. RELATED WORK

A. NILM Techniques

In the early 1980s, Hart [2] introduced NILM for disag-
gregating electricity usage measurements. With the growing
number of smart meters, more attention has been drawn to
this problem, leading to the development of a wide range of
algorithms for NILM. This includes probabilistic techniques
based on a Hidden Markov Model (HMM) [21], as well
as a diverse set of supervised and unsupervised learning
techniques, from deep neural networks (DNN) [22]–[25] to
clustering analysis [26], transfer learning [27] and factorial
HMM [28], [29]. Kelly and Knottenbelt [30] show that

DNN yields superior performance compared to combinatorial
optimization and factorial HMM. Recent work in this area
casts NILM as an instance of sequence-to-point, sequence-
to-sequence, or sequence-to-subsequence problem for energy
usage prediction. This has led to the use of a bidirectional
transformer (BERT) for NILM – a model that is based on
the self-attention mechanism and transformer architecture [31],
and was originally introduced for natural language processing.
Yue et al. [5] proposed addressing NILM using a BERT
model that utilizes the self-attention and sequence-to-sequence
(seq2seq) mechanism.

Despite their higher accuracy, abundant and diverse data is
usually required for training DNN-based NILM models. Thus,
applying them to a real-world scenario becomes challenging
because every user may not possess enough data, and band-
width and privacy concerns might dissuade users from sending
their data to a central server responsible for model training.
These issues can be largely addressed, should the NILM model
be trained in a federated manner.

B. Privacy Attacks against FL

An ML model can be attacked in both training and deploy-
ment phases. The training-time attacks are poisoning attacks
and the inference-time attacks are evasion attacks [32]. In
a poisoning attack, the attacker inserts malicious data into
the training dataset with the goal of introducing bias into
the model so as to make it more likely to misclassify data
in a specific way. In an evasion attack, the attacker crafts
adversarial examples that can fool the trained model into
making incorrect predictions. The attacker’s goal is to make
the model misclassify a legitimate data point by adding small
perturbations to it. Evasion attacks launched against an ML
model can be either white-box or black-box. In a white-box
attack, the attacker is assumed to have full knowledge of the
ML model and its parameters, whereas a black-box attack [33]
assumes no knowledge of the model and its parameters but the
attacker would have access to its output/prediction (i.e., query
access to the model).

Depending on the objective of the attacker, poisoning at-
tacks can be further classified into either targeted or untar-
geted [34]. In the first category, the adversary compromises
the integrity of the model by corrupting certain targeted
subtasks while maintaining a good accuracy for other tasks.
For instance, an attacker may target an image classifier such
that it assigns a wrong label to images with some specific
features, while other images are classified correctly. Turning to
untargeted attacks, the aim is to poison the whole global model
so as to reduce its overall accuracy. The poisoned updates
can be either generated during the local data collection (data
poisoning attacks) or while training the local model (model
poisoning attacks). Nevertheless, poisoning attacks attempt to
change the behaviour of the global model in some unwanted
manner. Since the model updates are typically based on the
updates collected from a large number of clients, the impact
of this attack is relatively higher in FL. Intuitively, the easiest
way to prevent poisoning attacks would be to evaluate and rate
the updates sent by the clients. However, since the client’s raw
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data is not accessible to the server, this evaluation cannot be
done reliably.

The attacks listed above are well-studied in the FL litera-
ture [15], [35]. In this paper, we mainly focus on mitigating
targeted poisoning attacks that can be either backdoor or label-
flipping attacks [36] when user data are non-IID. In label-
flipping attacks, the attacker aims to modify the labels of
honest training examples of one class to another class, while
keeping the features of the data unchanged. Backdoor attacks,
on the other hand, involve an attacker injecting a secret pattern
into the training data of the targeted class. The pattern acts as
a trigger that can be exploited by the attacker to control the
model’s output when it is presented with input containing that
pattern.

C. FL-based NILM Techniques

Despite the extensive research on FL, it has been only
recently applied to NILM [10]–[13]. Liu et al. [37] proposed
FedMeta, a decentralized and task-adaptive learning scheme,
combining FL and meta-learning, to create task-specific mod-
els collaboratively. Dai et al. [38] introduced DP2-NILM, a
framework for NILM, focusing on utility optimization and
privacy preservation. It evaluates two FL strategies, FedAvg
and FedProx, to address data heterogeneity and applies local
and global differential privacy for diverse privacy needs.
MTFed-NILM [39] is a multi-task FL algorithm for NILM,
focusing on disaggregating main readings into appliance-
level energy consumption while preserving user privacy. Zhou
et al. [40] proposed a household load forecasting method
utilizing federated deep learning (FedDL) and NILM. The
method disaggregates integrated power into individual ap-
pliance consumption, using a federated bidirectional LSTM-
Attention model for accurate prediction while ensuring the
accuracy of the forecast. Although our NILM framework is
also based on FL, we mainly assess the NILM performance
when user data are not independent and identically distributed
(i.e., the non-IID case). This is important because customers
have different kinds of appliances and usage patterns in the real
world. To tackle this problem and enhance the performance
of the NILM model in real-world settings, we apply meta
learning to federated learning. Thus, our novelty lies in the
implementation of this NILM technique and incorporating a
reputation model for the detection of poisoning attacks as
described in the next section.

III. PRELIMINARIES

A. Non-Intrusive Load Monitoring (NILM)

The aim of NILM is to identify the electricity consumption
of individual appliances using aggregate data, e.g. from a smart
meter. Since it requires only a single point of measurement
and no extra equipment needs to be installed in the house,
this identification technique is deemed non-intrusive. The
aggregated power load for a home is time-series data denoted
by P = [p1, p2, · · · , pT ] where pt represents the smart meter
reading at time t. This value is the sum total of the energy
usage of all appliances that were not in the OFF state. Suppose

there are I appliances in a given home, the total power
consumption at t is given by

pt = αt +

I∑
i=1

eit, (1)

where eit is the energy usage of ith appliance and αt represents
the measurement error, which is assumed to be small. The dis-
aggregation problem concerns recovering Ei = [ei1, · · · , eiT ]
for every appliance i from the aggregate measurement P =
[p1 · · · , pT ]. Thus, NILM algorithms approximate a function
G that performs the following mapping for every time slot:

G(pt) = [e1t , · · · , eit, · · · , eIt ]. (2)

For the disaggregation task, each target appliance must have
a threshold value so that we can determine if it is in the ON
or OFF state. Hence, the state for each appliance depends
on the specified minimum on and off duration, maximum
power, and the on-power threshold. In our experiments, the
ON/OFF states are determined by a simple comparison with
the on-status thresholds, but the status changes are considered
valid only when they last longer than the minimum ON and
minimum OFF duration. The state sit of an appliance i at time
t is determined as

sit =

{
1, eit ≥ λi

−1, otherwise
(3)

where λi represents the threshold value of the ith appliance,
and -1 and 1 correspond to the OFF and ON states, respec-
tively.

We note that disaggregation is a regression task in which
the energy consumption of individual appliances is estimated.
Once the estimates are obtained, they are utilized to determine
the state of each appliance. Therefore, NILM is simultaneously
a regression task and a status classification task. This inspired
the choice of the loss function as we discuss in Section V-C.

Ethical Considerations: In our FL framework for NILM,
ethical concerns extend beyond data privacy and include
fairness. The risk of data breaches and unauthorized access
to sensitive information poses significant challenges to the
NILM community. Using standard and widely used and recog-
nized datasets, we ensure the adherence to privacy standards.
These datasets have undergone necessary ethical reviews and
clearances, particularly with respect to data collection, and
are anonymized to protect individual privacy, aligning with
standards for research involving human subjects. Furthermore,
our use of two representative NILM datasets, which are
collected in two countries from households that may contain
different types of each appliance, is a step towards addressing
issues of fair and equitable representation.

B. Federated Learning (FL) and Non-IID Data

The idea of FL is to take advantage of decentralized data
and compute power of client devices to train a machine
learning model that achieves high accuracy on the dataset of
every individual client. One of the popular algorithms used
to aggregate model updates from multiple clients is federated
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averaging (FedAvg) [14]. Concretely, in FedAvg, a server
calculates the average of all updates received from clients in
every round to obtain a global model. The global model is
sent to the clients that participate in the next round so they
can further update it according to their own data distribution.
Given a loss function f, the FL’s objective can be written as:

min
w

f(w), where f(w) =
1

n

n∑
i=1

f(Xi, Yi;w), (4)

where f(Xi, Yi;w) is the prediction loss on samples of client i,
denoted {Xi, Yi}, with w being the vector of model parameters
and n being the number of participating clients in one round
of FL. We assume that clients’ datasets have the following
characteristics:

• Non-IID: Every client’s data may be from a different
distribution, such that the data points and labels available
locally do not match the global distribution.

• Unbalanced: The number of training samples in the
dataset of each client may vary drastically depending on
the amount of data they hold.

In the NILM application, clients will likely have different
type and number of appliances, e.g., some customers may
not have a microwave at all while others have microwaves
of different makes and models. Hence, it is reasonable to as-
sume that clients’ datasets are independent and not identically
distributed.

Some of the existing works use FedProx [41] for handling
non-iid data, which introduces an additional regularization
term, known as the proximal term, to the standard federated
averaging process. However, FedProx relies on hyperparameter
tuning that can significantly impact its performance. Selecting
appropriate values for hyperparameters, such as the proximal
term weight and learning rate, can be nontrivial. Model-
Agnostic Meta-Learning (MAML) [42], on the other hand,
aims to learn a general initialization that can be quickly fine-
tuned to new clients or tasks. This enables MAML to handle
variations and imbalances in non-IID data more effectively
compared to FedProx. This motivates the use of MAML for
handling heterogeneity in this work.

C. Threat Model

In this paper we assume the aggregation server is honest,
but clients can be dishonest (malicious). The dishonest clients
manipulate their own data, but they cannot observe or manip-
ulate the data of other clients. Multiple dishonest clients may
collude and form a group of sybils to perform coordinated
attacks in federated learning. Non-colluding adversaries can
control multiple sets of sybils to carry out poisoning attacks
concurrently. We assume that every class of data required in
the global model is included in the dataset of at least one
honest client. This assumption is necessary because, in the
absence of any honest client, the model would not be able to
learn anything about the correct classes in the first place.

We primarily focus on targeted poisoning attacks where the
attacker sends malicious updates to manipulate the parameters
of the global model. The goal of the attacker is to increase
the chance of one class being classified incorrectly without

changing the probabilities of other classes. This can be done
using the label-flipping strategy [18].

D. Motivations for the Poisoning Attack

The rationale behind poisoning attacks on NILM-based
systems is either to obtain economic advantages or avoid
regulatory compliance issues. One prominent motivation is
the exploitation of virtual energy auditing [43]. Here, NILM
applications, which analyze appliance-level energy consump-
tion, could be manipulated by attackers possibly affiliated with
appliance manufacturers. Attackers could deceive homeowners
into purchasing new, seemingly more efficient models by
tampering with data to show false inefficiencies in appliances
like air conditioners. This reveals a strong economic reason
for engaging in poisoning attacks. Moreover, attackers could
manipulate NILM data to show reduced energy consumption
to falsely claim incentives offered for buying energy-efficient
appliances. In commercial contexts, rival companies might
engage in poisoning attacks to impair the NILM systems
of competitors, thereby gaining an unfair market advantage.
Furthermore, attackers could alter energy consumption pat-
terns to either mask aberrant characteristics or create fictitious
profiles of a household’s energy usage to satisfy regulatory
requirements.

IV. THE PROPOSED SOLUTION: REPUTATION-BASED
AGGREGATION AND SELECTION

Suppose there are several homes that have different kinds of
appliances, record their electricity consumption using a smart
meter, and are interested in training an accurate NILM model
in a collaborative fashion. These homes are the clients in FL.
There is also an aggregation server, presumably owned by the
NILM service provider, that receives all the updates from the
clients. We outline steps of the proposed FL framework below:

1) The model parameters are initialized and the first round
of training begins. At the central FL server, parameters
of the global model are initialized randomly and sent
to participating clients (households) as illustrated in
Figure 1.

2) The households train the received global model on their
own data (locally). They follow the BERT deep learning
model for NILM as discussed in the next section. As
shown in Step 2 of Figure 1, the local model updates
are then sent to the global server for model aggregation.

3) The FL server uses the FedAvg algorithm to update the
global model. For robust and fault-tolerant aggregation
of the updates, we adopt a reputation model and a
client sampling technique that takes into account clients’
reputation (Steps 3 and 4 of Figure 1) as described in
Section IV-B2.

4) The new aggregated optimal model (Step 5 of Figure 1)
is then broadcast to the clients and this process repeats
until a stopping criterion is met (e.g. maximum number
of training rounds reached).
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Figure 1: Illustration of the proposed mechanism.

A. The BERT Model for NILM

The model we choose for NILM is the Bidirectional En-
coder Representations from Transformers (BERT) model with
sequence-to-sequence learning. This model is considered the
state-of-the-art and outperforms the other NILM techniques,
according to different metrics [5]. The BERT model, with
its foundation in transformer architectures, presents a sig-
nificant advancement over traditional neural network mod-
els such as RNNs. Transformers employ the self-attention
mechanism, allowing the model to process entire sequences
of data simultaneously. This contrasts with older sequence
processing methods that handle one data point at a time. The
attention mechanism in transformers enable dynamic focus on
different parts of the input sequence, which is essential for
understanding context and relationships within data. BERT
builds upon this by analyzing data bidirectionally, considering
both prior and subsequent information in the sequence. This
bidirectional processing is particularly effective in NILM,
where understanding the sequential context of energy usage
is crucial for accurate predictions.

The basis of the model is BERT [31] which consists of
an embedding module, transformer layers, and an output
multilayer perceptron (MLP). It is shown in [31] that the
bidirectional model attains a deeper understanding of the
context compared to unidirectional models. The model takes
fixed-length sequential data as input and predicts the energy
usage of individual appliances, an output of the same shape.
The on-power thresholds can then be used to determine the
state of each appliance.

The transduction model has an encoder-decoder architec-
ture, where the encoder maps an input sequence to a continu-
ous sequence of symbols. The decoder then uses the encoding
to generate an output sequence of symbols by spitting out
one element at a time. In the BERT model, the input data is
first mapped to a convolutional output by extracting relevant
features from the one-dimensional input sequence and increas-

ing the dimensionality of the hidden representation sequence.
By employing this convolutional layer, the network is able to
capture important patterns and enhance the latent representa-
tion of the input data. This layer is then pooled and added
to a positional embedding matrix that makes up the sequence
positional encoding. The formed embedding matrix is then
sent to a bidirectional transformer consisting of several layers
of transformers and attention heads within each layer. After
the multi-head attention operation in every transformer layer,
the previous matrix is further passed through a position-wise
feed-forward network (PFFN). By incorporating the PFFN into
the architecture, the model captures intricate relationships and
patterns within the matrix, leading to improved learning and
representation capabilities. Finally, the output MLP consists
of a deconvolutional layer followed by two linear layers. The
various layers of the BERT model are shown in Figure 2. The
training process of BERT involves masking a portion of the
input sequence with a special token. This random masking,
where a fraction of input elements are masked, allows the
model to learn from the surrounding context and predict the
masked items. By focusing on the output results from the
masked positions, the model is compelled to capture significant
patterns from the whole input sequence. Energy prediction is
done by the output values multiplied by the maximal device
power while corresponding on-power thresholds are used to
obtain the appliance status.

B. Reputation-based Aggregation for FL

We propose a reputation-based mechanism for the detection
of dishonest clients at the aggregation server. Let cj,t be the
gradient received at the server from client j in iteration t.

1) Detecting malicious clients: Sybils in FL provide up-
dates that lead to the poisoning of the global model towards a
common objective. In non-IID case, one key insight is that the
diversity of the gradient updates can be used to separate honest
clients from sybils. Specifically, since the data distribution
of each client is different, the updates from sybils will be
more similar to each other compared to the ones from honest
clients [36]. Using this insight, we assign a reputation value
to clients that help in the aggregation process by reducing
the chances of suspicious clients being selected. As described
in Algorithm 1, cosine similarity is used to calculate the
angular distance between client updates. We choose cosine
similarity over Euclidean distance because the magnitude of a
gradient can be manipulated by sybils to achieve dissimilarity.
But they cannot easily change its direction without reducing
the effectiveness of the attack. We maintain a history for
each client and update the history vector at every iteration
into a single aggregated gradient. Thus, instead of using just
the update from the current iteration, cosine similarity is
calculated using the aggregated historical updates. Finally, the
maximum cosine similarity a client has with some other client
is compared to the average cosine similarity to calculate the
reputation of that client.

2) Reputation calculation and client selection: The selec-
tion of clients for an iteration is based on their calculated
reputation for high accuracy and robust model training. For
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Figure 2: Architecture of the BERT model used in this work.

non-IID data, the reputation is calculated on the basis of cosine
similarity with other clients. The value of reputation, rj is
compared to the average of the maximum cosine similarity
of all clients and computed according to Steps 11 and 13 of
Algorithm 1. In this algorithm, δ represents a hyperparameter
that can be tuned to adjust the rate at which reputations are
updated. The choice of t log t as the reputation update function
in the algorithm allows for a gradual and balanced growth of
the reputation score that reflects the long-term contributions
and reliability of each client. It grows faster than linear but
slower than quadratic or exponential functions, making it a
better choice for updating the reputation. Since the model
should converge to the optimal point, changes in reputation
become more substantial as the number of iterations increases.

If the reputation score of a client j becomes greater than
or equal to the threshold β (determined experimentally), it
means this client can be chosen for aggregation, as it is
considered reputable (Step 14 of the algorithm). Finally, we
select K number of clients with the highest reputation scores
for aggregation in this iteration. By iteratively updating the
reputation scores based on the similarity between client histo-
ries and selecting the most reputable clients for aggregation,
the algorithm aims to identify and choose reliable clients,
while detecting potentially malicious or unreliable ones. The
reputation scores serve as a measure of trustworthiness, and
the threshold β determines the minimum reputation required
for a client to affect the global model.

3) Adapting to time-varying clients’ behavior: An assump-
tion made in our work is that clients do not change their
type, which dictates their behavior, during model training; e.g.
an honest client will not start behaving maliciously and vice
versa. This can be justified given the short duration of the
training phase, which makes type changes unlikely to occur.
But this assumption can be relaxed, and clients’ reputation can
be updated differently to address the following conditions: a)
A client initially deemed trustworthy could begin to exhibit
malicious behavior; b) A client initially categorized as mali-
cious could later demonstrate normal behavior.

To enhance the adaptability of our framework to behavior
changes, our reputation mechanism can be modified to place
greater emphasis on the most recent contributions from clients,
rather than a cumulative analysis of their entire historical

data, enabling a more agile and current reflection of a client’s
reliability. This can be achieved by considering a sliding
window for calculating each user’s reputation or implementing
exponential smoothing as a forgiveness mechanism.

C. Model Agnostic Meta-Learning for FL
In meta learning, which is a “learning to learn” approach,

the goal is to train a model (i.e., the main task) by learning
from multiple related subtasks. This model can adapt quickly
to new tasks by making use of only a few training iterations
and data points. We use the MAML algorithm of [42] as it is
compatible with task definition in FL and allows us to address
the data heterogeneity challenge. Concretely, in our NILM
framework, each subtask involves training the described BERT
model on a client’s electricity data. The global NILM model
is optimized towards the direction that could quickly adapt
to all subtasks, each associated with a user’s local data. This
enables better generalization to heterogeneous data.

The benefits of meta-learning in the NILM framework
are manifold. First, it allows the global NILM model to
exploit the knowledge gained from training on multiple client
datasets, enabling better generalization to heterogeneous data.
This is particularly advantageous in FL, where clients may
have different types of appliances, energy usage patterns,
or household characteristics. Furthermore, meta-learning can
enhance the efficiency of the overall NILM process. Since
the global model is pre-trained on a diverse set of subtasks,
it can quickly adapt to new client data with only a few
iterations and data points. Additionally, meta-learning enables
knowledge transfer across clients. The global NILM model can
capture common patterns and dependencies across different
households, appliances, or energy usage scenarios. Overall,
meta-learning in the NILM framework enhances adaptability
and generalization capabilities of the global model.

The model parameters are trained by minimizing the meta-
loss, which measures the performance of the adapted model
fθ0i with respect to the model parameters θ across a set of
tasks sampled from the distribution p(T ). This meta-loss can
be expressed as [42]:

min
θ

∑
Ti∼p(T )

ℓTi
(fθ0i) =

∑
Ti∼p(T )

ℓTi
(fθ−α∇θLTi

(fθ)) (5)

Here, ℓTi
represents the loss function for each task Ti (given

in Eq. (9)), fθ denotes the model with parameters θ, θ0i repre-
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sents the updated model parameters obtained through gradient
descent updates, and α is the step size or learning rate. In
summary, our objective is to find the optimal model parameters
θ that lead to the best result when updated using one step of
gradient descent on subtasks. This process facilitates the global
model’s ability to adapt swiftly to individual client tasks with
minimal fine-tuning.

Algorithm 1 Detecting malicious clients at server

1: Input: Initial history hj = cj,1, initial reputation rj = 1.
2: for iteration t do
3: for every client j do
4: Receive cj,t for this round and append it to hj
5: while i ̸= j do
6: sj,i ← hj · hi/(∥hj∥∥hi∥)
7: wj ← maxi(sj) //max cosine similarity of client j
8: τ t ← average of w for all clients
9: for every client j do

10: if wj > τ t then
11: rj ← rj − δ · t log t
12: else
13: rj ← rj + δ · t log t
14: if rj ≥ β then
15: Client j can be chosen for aggregation
16: Select the most reputable K clients for aggregation

V. PERFORMANCE EVALUATION

A. Dataset and Preprocessing

We used two real-world energy datasets to evaluate the
performance of our framework:

• REDD [44]: The Reference Energy Disaggregation
Dataset consists of the electricity consumption data for
6 real houses in the U.S. over several months, with the
sampling period of 1s for mains and 6s for appliances.

• UK-DALE [45]: The UK-Domestic Appliance-Level
Electricity consists of data from 5 houses in the UK with
a sampling period of 1s for mains and 6s for appliances.

These datasets were selected due to their status as standard
benchmarks in the field of NILM, offering comprehensive in-
sights from diverse environments. These datasets include both
individual appliance and aggregated consumption data, making
them appropriate for use in training and test phases [46].
Moreover, they encompass a broad range of appliances, pro-
viding a more extensive and varied dataset compared to others
that may lack complete appliance coverage or proper labeling.
This diversity not only adds reliability to our evaluation but
also allows us to effectively test our framework in non-IID
scenarios, which is critical for assessing performance in real-
world settings.

For the REDD dataset, we choose four specific appliances
for training our model: microwave, dishwasher, washer and
dryer, and refrigerator. For the UK-DALE dataset, we also
include the kettle along with these four appliances. Similar
to the preprocessing of BERT4NILM [5], the raw data is
resampled and clamped to specify the minimum on- and off-
duration, on-threshold, and maximum power of each appliance

Table I: Overview of different appliance values.

Dataset Appliance Max
Power (W)

On-power
threshold (W)

Minimum on
Duration (s)

Minimum off
Duration (s)

REDD

Microwave 1800 200 12 30
Dishwasher 1200 10 1800 1800
Washer 500 20 1800 160
Fridge 400 50 60 12

UK-DALE

Microwave 3000 200 12 30
Dishwasher 2500 10 1800 1800
Washer 2500 20 1800 160
Fridge 300 50 60 12
Kettle 3100 2000 12 0

Table II: Dataset details for the appliances in different houses.
House No. 1 2 3 4 5 6

# Appliances 18 9 20 18 24 15

Microwave ✓ ✓ ✓ ✓
Dishwasher ✓ ✓ ✓ ✓ ✓ ✓
Washer ✓ ✓ ✓ ✓ ✓ ✓
Fridge ✓ ✓ ✓ ✓ ✓

(a) REDD Dataset
House No. 1 2 3 4 5

# Appliances 52 19 4 11 24

Microwave ✓ ✓ ✓ ✓
Dishwasher ✓ ✓ ✓
Washer ✓ ✓ ✓ ✓
Fridge ✓ ✓ ✓ ✓
Kettle ✓ ✓ ✓ ✓ ✓

(b) UK-DALE Dataset

as given in Table I. The ON/OFF status of each appliance is
determined by a comparison between the received data and
the on-power thresholds, with the status changes being valid
if they last longer than the minimum on/off duration. In the
case of REDD, house number 1 is used for testing and other
houses are used for training, whereas in UK-DALE, house
number 2 is used for testing and other houses are used for
training. Different appliances present in the given houses of
these datasets are listed in Table II.

B. Baselines

To assess the performance of our proposed approach, we
compare with the disaggregation results of the following learn-
ing schemes while keeping the neural network architecture
unchanged:

• Centrally-trained model: The centrally-trained model is
the primitive form of ML training where raw data from all
the households is aggregated and processed at a central
location. Only one central model is trained and tested for
all the clients.

• FL-based NILM model (using FedAvg): Each client
uses its raw dataset to train a local model and sends
model updates to the aggregation server. The server then
aggregates the updates via FedAvg and trains the final
NILM model over several iterations (100 to 150) between
the clients and server. Hence, the clients do not need
to share their actual data with the server. This baseline
is used for evaluating the following two schemes in the
proposed framework for non-iid datasets:
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– FL-based NILM in the presence of malicious clients:
An adversary can impersonate the clients participat-
ing in the aggregation process leading to a targeted
attack, i.e., the label flipping attack.

– Robust FL-based NILM: The clients can be ad-
versarial aiming to poison the model. We use the
aggregation technique outlined in Algorithm 1.

C. Federated Experiments

We evaluate our framework using the sequence-to-sequence
(seq2seq) benchmark evaluation and train the BERT model for
NILM. In this paper, we have used the PyTorch implementa-
tion of BERT4NILM as our base model 1. To train our model,
we split the dataset differently for IID and non-IID settings
to simulate a higher number of clients for accurate training as
follows:

• IID Scenario: The data from a single house in our dataset
is split day-wise and distributed proportionally amongst
n clients. This is because data from a house will have the
same probability distribution and is therefore suitable for
the IID scenario.

• Non-IID Scenario: We know that the same appliances
from different houses can differ in many aspects, such
as voltage and power profiles, energy efficiency, etc.
Therefore, for the data to be split in a true non-IID
fashion, we assign the data of one appliance from every
house to each client.

We set the default sampling period to 6s with a learning rate of
10-4 for training the model. We use Adam as the optimization
function as it performs better by faster convergence and
requires lesser parameters for tuning. The loss function used
for training (in all learning schemes) is described next.

1) Loss Function: Following [5], the loss function we
use for training the BERT model has multiple terms, each
described below.
The first one is the Mean Square Error (MSE) loss for observed
and predicted power usage values, which is given by:

ℓmse =
1

T

T∑
t=1

(êit − eit)
2, (6)

where T is the disaggregation length, i.e., the total number of
time steps, êit is the predicted energy usage of appliance i at
time t, and eit is the corresponding observation as described
in Section III. The energy usage values êit, e

i
t are normalized

between 0 and 1 by dividing them by the maximum power
limit. This ensures that the power usage sequences are com-
parable and consistent across different appliances, regardless
of their individual power profile.

To minimize the relative entropy between the predicted
and observed power usage, we also incorporate the Kull-
back–Leibler (KL) divergence in the loss function. The tem-
pered softmax operation applies a temperature parameter to
the softmax function that converts a vector of real numbers
into a probability distribution. Since electrical appliances are
frequently in an off state, we have chosen a temperature

1https://github.com/Yueeeeeeee/BERT4NILM

parameter of 0.1 to account for the distinction between on-
loads and off-loads. This adjustment aims to enhance the
performance of the model on error metrics, especially for
rarely utilized appliances such as the kettle. A hyper-parameter
η is introduced to fine-tune the temperature for our designed
loss function. It can be given mathematically as:

ℓkl = DKL(softmax(
êit
η
)||softmax(

eit
η
)) (7)

Finally, to reduce the effect of misclassification and penalize
inconsistent predictions, we consider a soft-margin loss and
an L1 term which are given by:

ℓsm =
1

T

T∑
t=1

log(1 + exp(−sitŝit)) (8)

such that sit is the state label of an appliance as described in
Section III and ŝit is the corresponding prediction.

Putting these together, the loss function used to train the
BERT model for NILM is as follows:

ℓtotal = ℓmse + ℓkl + ℓsm (9)

This loss is specifically designed to encourage the model to
make more accurate and consistent predictions, reducing the
impact of misclassification. Note that the above loss function
is specific to a single appliance, and during training, the losses
for all appliances are summed up to compute the total loss.

(a) REDD Dataset

(b) UK-DALE Dataset

Figure 3: Disaggregation accuracy at 150 epochs.

2) Evaluation criteria: For the evaluation of our frame-
work, we adopt three widely used metrics in NILM research:
accuracy, F1 score, and mean absolute error (MAE). Accuracy
measures the overall correctness of appliance state predictions.
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Table III: Average performance scores for REDD

Microwave Dishwasher Washer Fridge
Accuracy F1 MAE Accuracy F1 MAE Accuracy F1 MAE Accuracy F1 MAE

Centrally-
trained model 0.991 0.476 17.58 0.986 0.523 20.49 0.997 0.559 34.96 0.895 0.756 32.35

Proposed
(IID) 0.988 0.421 17.21 0.955 0.413 22.13 0.989 0.547 35.13 0.736 0.621 36.91

Proposed
(Non-IID) 0.896 0.413 18.408 0.964 0.510 21.56 0.951 0.516 35.87 0.656 0.543 38.34

Table IV: Average performance scores for UK-DALE

Microwave Dishwasher Washer Fridge Kettle
Accuracy F1 MAE Accuracy F1 MAE Accuracy F1 MAE Accuracy F1 MAE Accuracy F1 MAE

Centrally-
trained model 0.997 0.014 6.57 0.985 0.667 16.18 0.974 0.325 6.98 0.873 0.766 25.49 0.998 0.907 6.82

Proposed
(IID) 0.951 0.121 5.45 0.963 0.533 17.02 0.956 0.312 6.99 0.687 0.567 31.26 0.785 0.601 15.71

Proposed
(Non-IID) 0.876 0.012 4.95 0.919 0.512 21.45 0.898 0.297 8.96 0.632 0.498 32.43 0.701 0.479 19.21

Table V: Parameters used in our experiments

Parameter Value/Description

Datasets REDD and UK-DALE
Sampling Period 1s for mains, 6s for appliances
Learning Rate 10-4

Optimization Function Adam
Number of Epochs 150
Batch Size 128
Number of Clients 20 to 100
Model Architecture BERT4NILM
Software Environment PyTorch 1.7
Loss Function MSE + KL divergence + soft-margin loss
Aggregation Algorithm FedAvg

It is calculated as the ratio of correctly predicted states
(both ON and OFF) to the total number of appliance state
predictions. F1 score, on the other hand, combines precision
and recall into a single metric and is particularly useful when
the dataset is imbalanced, which is often the case in NILM.
Lastly, MAE is calculated by taking the average of the absolute
differences between the predicted and true power consumption
values per appliance. A summary of the simulation parameters
used in our experiments is given in Table V.

VI. RESULTS AND ANALYSIS

For the centrally trained model and our model trained using
FL (in the case of IID and non-IID data), we initially set the
number of epochs to 70. Table III and IV show the average
performance of these models for different home appliances.
It can be seen that the models trained using FL yield satis-
factory performance for most of the appliances compared to
the traditional models. For fridge, which has a less evident
signature due to its relatively low power consumption, the
FL-trained models cannot compete with the centrally trained
model. Moreover, for less often used appliances such as kettle,
an improved masking strategy and more training data could

(a) REDD Dataset.

(b) UK-DALE Dataset.

Figure 4: Changes in accuracy when using more epochs

help improve the scores, given the BERT model’s complex
training mechanism. We have found that by fine-tuning model
parameters and increasing the number of global rounds, the
FL-trained model achieves better performance. Specifically,
when we set the number of global rounds to 150, the perfor-
mance scores improve drastically as can be seen in Figure 3a
and 3b. Moreover, Figure 4 shows that the accuracy increases
with the increase in the number of epochs. In these figures
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(a) REDD (b) REDD (c) UK-DALE (d) UK-DALE

Figure 5: Example power profile of a fridge (samples are taken every 6 seconds).

and the subsequent ones where appliances are represented on
x-axis, we abbreviated the appliance name. Thus, microwave,
dishwasher, washer, fridge, and kettle are denoted as M, D,
W, F, and K, respectively. Overall, we conclude that federated
learning makes possible high performance in the NILM task.

(a) REDD Dataset

(b) UK-DALE Dataset

Figure 6: Average accuracy in the non-IID case.

A. Investigating the Non-IID Case

We observe through experimentation that by incorporating
MAML into our model training, the accuracy for non-IID
data is improved by 4% to 6%. Although the scores for the
federated model achieved satisfying performance, the values
for non-IID cases are still subpar than both the IID and the
centralized NILM models. We speculate that the usage patterns
and load consumption signatures of the same appliances from
different houses may be dissimilar due to several factors. It can
be seen from Figure 5 that the load consumption distribution
of the appliance fridge for separate houses differs significantly
in both datasets. Therefore, we present a comparison of two
cases of data heterogeneity that can be taken into account for
the non-IID data distribution:

(a) REDD Dataset

(b) UK-DALE Dataset

Figure 7: Performance under model poisoning attack.

(a) REDD Dataset. (b) UK-DALE Dataset.

Figure 8: Performance of the attack model for varying number
of sybils in case of non-iid data.

• Case 1 (missing classes): Each client owns the data from
a particular appliance of a different house.

• Case 2 (heterogeneous data): 80% of the data owned by
a client is from a particular appliance of a specific house
and 20% of the data can belong to other heterogeneous
classes of appliances.

Figure 6a and 6b present the average accuracy for the two
cases and highlight the improvement when the degree of
heterogeneity is decreased.
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(a) Reputation scores for different clients.

(b) Probability of a malicious client being selected.

Figure 9: Visualization of reputation scores.

B. Evaluating the Robust FL Framework
We now evaluate the performance of our reputation-based

aggregation scheme in the non-IID case when there are some
dishonest clients. Figure 7a and 7b show the performance of
our NILM model in REDD and UK-DALE datasets, respec-
tively. It can be seen that without using the proposed robust
FL framework the model performance drops drastically under
the model-poisoning attack. However, using our framework,
we can keep the accuracy high despite the model-poisoning
attack. Moreover, the model performance does not decline with
the increase in the number of dishonest clients as can be seen
from Figure 8a and 8b. We also show that the probability by
which a client is selected in a particular round decreases with
the decrease in his reputation, thus mitigating the selection of
dishonest clients. Figure 9a represents the variation of reputa-
tion values for a benign client (honest and accurate), unreliable
client (honest but might be inaccurate due to non-iid data), and
malicious client (dishonest). As we can see from Figure 9b,
if we set the value of δ to 0.01, the probability of selecting
a client falls below 50% if its reputation goes below 0.6.
In conclusion, our reputation mechanism demonstrates robust
capabilities in identifying dishonest clients, safeguarding the
model’s integrity and contributing to the overall reliability of
our framework.

VII. CONCLUSION

In this paper, we proposed a federated learning-based frame-
work for real-life NILM applications. The proposed framework
offers a solution for energy consumption monitoring while
preserving user privacy. By using a bidirectional transformer
architecture, a meta-learning algorithm to handle data hetero-
geneity, and a reputation mechanism for the selective sampling

of clients, we were able to achieve high accuracy and robust
against privacy attacks by malicious clients. The experimental
results demonstrate the efficacy of the proposed framework
on real-world energy datasets in terms of various parameters.
In future work, we aim to study the trade-off between model
performance and privacy protection. We will focus on other
privacy attacks that could pose a threat to our framework and
develop techniques to mitigate them.
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