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Abstract—This paper studies the problem of locating harmonic
sources and estimating the distribution of harmonic voltages in
unbalanced three-phase power distribution systems. We develop
an approach for harmonic state estimation utilizing two types of
measurements from smart meters and distribution-level phasor
measurement units (DPMUs). It involves regression analysis for
power flow calculation, prediction of demands using recurrent
neural networks, and sparse Bayesian learning for state esti-
mation. The proposed approach requires fewer DPMUs than
nodes, making it more applicable to existing distribution grids.
We show the effectiveness of the proposed estimator through
extensive numerical simulations on an IEEE test feeder. We also
investigate how the increased penetration of distributed energy
resources could affect the performance of our state estimator.

Index Terms—Power system harmonics, harmonic state esti-
mation, load forecasting, supervised learning, power distribution.

I. INTRODUCTION

THE growing adoption of power electronic devices and
distributed energy resources (DERs) has exacerbated

harmonic-related power quality issues in the distribution sys-
tem. Harmonics introduce distortion in the fundamental wave-
form of voltages and currents, which may damage electric de-
vices and interfere with control and protection equipment [1].
Given the adverse consequences of harmonics, it is imperative
to monitor harmonic generation and propagation in real-time.
Thus, an advanced distribution system monitoring would rely
on Harmonic State Estimation (HSE) to locate harmonic
sources and estimate the harmonic voltage distribution.

There is an abundant literature addressing HSE for power
transmission grids using various techniques, such as least
squares estimation (LSE) [2], singular value decomposition
(SVD) [3], evolutionary strategies [4], Lasso regression [5],
and sparse Bayesian learning (SBL) [6]. HSE was first solved
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using harmonic load flow and LSE [7]. An adaptive Kalman
estimator [8] is proposed later to track harmonics without
the exact knowledge of the noise covariance matrix. Ref. [9]
addresses the uncertainty of network parameters by solving a
parametric interval linear system of equations. This approach
cannot cope with the situation where DPMUs are sparse, hence
it cannot be presently applied to distribution grids. Ref. [10]
utilizes a Newton method based on numerical differentiation
to calculate a fast periodic steady state in time domain. This
is combined with Kalman filter for performing HSE. In recent
work [11], HSE in time domain is formulated for three-
phase unbalanced systems exploiting the half-wave symmetry
property. Despite the well-established tradition of solving HSE
at the transmission level, this problem was not studied at
the distribution level until recently. This is primarily because
measurements used to be very scarce and often nonexistent
beyond the distribution substation.

Distribution-level phasor measurement units (DPMUs) have
been a “game changer”. The availability of high-frequency
harmonic measurements from multiple locations across the
distribution grid has made it possible to study HSE at the
distribution level in recent years [12]–[18]. For example, the
weighted least squares (WLS) method is used in [14] to
identify the type of harmonic sources, leveraging the fact that
different types of loads have distinct angle distributions of
the fifth harmonic. In [17], the Metropolis-Hastings approach
is utilized to compute the posterior distribution of harmonic
sources, improving the estimation performance. There are
usually limited measurements in distribution networks, making
the system not fully observable. Thus, a manifold of states cor-
respond to the same measurement [19]. To address this issue,
a SVD-based method [16] is adopted to estimate harmonics in
unbalanced systems. More recently, deep learning is employed
to learn the mapping between the states and measurements
using training data sampled from the load distribution [19],
[20]. The optimal meter placement is explored in [18] using
branch-and-bound and genetic algorithms. A Dirichlet process
mixture model [21], [22] is proposed to capture the uncertainty
of load power and wind generation. Refs. [23]–[25] deal with
the problem of detecting and correcting gross errors commonly
encountered in field measurements. To enhance the accuracy
of the state estimator, bad data identification and correction
techniques [23] must be applied before carrying out HSE.

Despite these attempts to address the HSE problem at the
distribution level, related work has one fundamental shortcom-
ing which renders it of limited practical value. It assumes
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the knowledge of the measurement matrix, which describes
the relationship between measurements and state variables.
This matrix is unknown in real-world scenarios because it is
difficult to track the real-time operational structure of the dis-
tribution network, and to estimate aggregated demands at load
buses in the primary distribution network. This paper addresses
this shortcoming by learning the measurement matrix from
smart metering data, thereby improving the accuracy of HSE in
unbalanced three-phase distribution networks. In particular, we
utilize supervised learning techniques to (a) predict aggregate
demands at nodes in the primary network, and (b) learn
the relationship between power flow in the primary network
and demands of downstream customers measured by smart
meters. The measurement matrix is updated with these pseudo
measurements, and the state estimation is then performed using
the high-sample-rate DPMU measurements.

We postulate that harmonic sources are sparse in a distribu-
tion network as only a small number of devices produce signif-
icant harmonics simultaneously. For distribution networks that
are not fully observable, we propose an SBL-based harmonic
state estimator by drawing on the idea of sparse Bayesian
learning [26], which is capable of locating harmonic sources
with sufficiently high accuracy. The contribution of this paper
is threefold:
• We propose a data-driven approach to HSE which copes

with the unknown measurement matrix leveraging data
from smart meters.

• We propose an SBL-based estimator for networks that are
not fully observable to locate the harmonic sources, and
to estimate the voltages using considerably fewer DPMUs
than distribution nodes.

• We show through extensive simulations that a photo-
voltaic system (PV) connected to the primary distribution
network does not negatively affect the performance of the
proposed state estimator.

We assume that DPMUs installed in the network are capable of
providing synchronized harmonic phasors, which are obtained
from voltage or current waveforms and precisely referenced
to a common time base. Harmonic synchrophasor measure-
ment techniques have been proven useful in improving power
quality monitoring and state estimation in power grids [27]–
[33]. In recent years, extensive research has been devoted to
estimation methods [29], [33], measuring instruments [27],
[28] and applications [34] of harmonic synchrophasors. For
example, a harmonic phasor measurement unit (PMU), which
includes a digital signal processor (DSP) and a time synchro-
nization unit, is designed in [27] for wide-area distribution
systems. Furthermore, a prototype PMU based on PXI modular
hardware [28] could provide precise harmonic voltage and
current phasors.

This paper is organized as follows. Section II presents
harmonic models of the main distribution components and
formulates the HSE problem. Section III outlines the proposed
methodology. Section IV describes the evaluation metrics and
simulation scenarios. Section V summarizes the simulation
results. Finally, the conclusion is drawn in Section VI.

II. PROBLEM FORMULATION

In the following, we denote the set of real numbers (or
matrices) by R, the set of complex numbers (or matrices) by
C, the set of symmetric complex matrices by S, transpose and
inverse of a matrix A by A> and A−1 respectively, and the
element in its ith row and jth column by Aij . The magnitude
of a complex number u is denoted by |u|, and the cardinality
of a set S is also denoted by |S|. Function diag(·) arranges
the elements in a vector into a diagonal block matrix, cond(·)
returns the condition number of a matrix, and � denotes the
Hadamard product.

Let nb and ne respectively denote the number of buses and
branches in the distribution network, Trd and Trm denote
the reporting period of the DPMU and the smart meter,
respectively, and Tsm denote the sampling period of the
smart meter. Let {tTrd|t = 1, · · · , k} be the times at which
DPMUs report voltage and current phasor measurements, and
{tTsm|t = 1, · · · , k} and {tTrm|t = 1, · · · , k} be the times at
which smart meters sample and report voltage magnitude and
real power consumption of customers, respectively. Let L(i)
be the index of the load bus or distribution line monitored
by the ith DPMU, and N(i) be the index of the end node
monitored by the ith smart meter.

A. Preliminaries

A distribution network can be described by an undirected
graph G(V, E), where V = {1, · · · , nb} is the set of buses and
E ⊆ V × V (|E| = ne) is the set of lines, each connecting
two distinct buses. Let Pi ⊆ {a, b, c} be the set of phase
indices of a bus i, P(i,j) ⊆ {a, b, c} be the phase indices
of a line (i, j), and yij(h) ∈ S|Pij |×|Pij | be the admittance
matrix of this line at harmonic order h. The line admittance
matrix Y line(h) ∈ S

∑
(i,j)∈E |P(i,j)|×

∑
(i,j)∈E |P(i,j)| consists of

the admittance matrices of all lines at harmonic order h:

Y line(h) = diag
(
{yij(h)}(i,j)∈E

)
.

We define two other matrices: the incidence matrix denoted
by A ∈ R

∑
(i,j)∈E |P(i,j)|×

∑
i∈V |Pi| and the branch admittance

matrix denoted by Y B(h) ∈ C
∑

(i,j)∈E |P(i,j)|×
∑

i∈V |Pi|. The
branch admittance matrix relates line currents to nodal volt-
ages and satisfies the following equation Y B(h) = Y line(h)A.
Let the harmonic admittance matrix of the network at order
h be denoted by Y H(h) ∈ S

∑
i∈V |Pi|×

∑
i∈V |Pi|. It can be

written as

Y H
ij (h) =

{−yij(h), (i, j) ∈ E ,∑
(i,k)∈E yik(h) + yshi (h) + y`i(h), i = j,

0, otherwise,

where yshi and y`i are the admittance matrices of the shunt
branch and the load connected to bus i, respectively.

B. Modelling Network Components

We now describe how network components are represented
for harmonic analysis. A typical distribution network can be
divided into a substation, and primary and secondary distri-
bution circuits which are comprised of multiple distribution
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transformers, voltage regulators, lines, capacitor banks, loads,
and DERs. We focus on HSE in the primary network and
model the secondary networks as equivalent Norton circuits
connected to primary nodes as in [35]. We use time-invariant
harmonic models to represent all distribution components
except for the loads. Specifically, lines are represented us-
ing multiphase coupled equivalent π circuits [36], [37], and
transformers are represented using the constant short-circuit
impedance model [37]. We adopt the short-circuit impedance
model for voltage regulators, and the Thevenin model of
supply sources (e.g., the substation).

Since residential PV systems that are connected to low-
voltage networks have negligible harmonic impacts on a
medium- or high-voltage system [38], we only investigate the
impact of harmonics generated by large PV systems which
are directly connected to nodes in the primary distribution
network. The PV systems are represented using the Norton
model with a specified spectrum for harmonic analysis.

Loads are equivalent to secondary distribution circuits, spec-
ified by the consumption of active and reactive powers. It is
suggested in [39] that a parallel branch of inductive reactance
and resistance can be used to model the aggregate load with-
out accurate measurements and detailed load compositions.
Predominantly passive loads are represented by a series R-L
impedance, and predominantly motive loads are represented
using their resistive-inductive equivalents. Capacitive effects
are often neglected in utility distribution systems and industrial
power grids [40]. Hence, the time-varying load model in
OPENDSS [41] (shown in Fig. 1) which only includes induc-
tive reactance and resistance, is used for harmonic analysis1.
In this model, the current source with a specified spectrum
represents harmonics produced by its nonlinear part. The c
parameter represents the ratio of the consumed power of the
series R-L branch to the total power demand. It is determined
based on the actual load composition. The admittance of a
load, denoted by y`(h), can be computed as described below:

y`(h) = yp` (h) + ys` (h), (1)

yp` (h) =
(1− c)P
V 2
n

− j (1− c)Q
hV 2

n

, (2)

ys` (h) =

[
V 2
nP

c(P 2 +Q2)
+ j

hV 2
nQ

c(P 2 +Q2)

]−1

, (3)

where Vn is the nominal voltage, and yp(h) and ys(h) denote,
respectively, the admittance of parallel and series branches at
harmonic order h. These two parameters depend on c and the
real and reactive power consumption denoted by P,Q (refer
to [42], [43] for more details).

C. Available Measurements

Measurements in distribution networks are mainly from
smart meters installed at customer premises along with a small
number of DPMUs sampling voltage and current phasors at
high frequency in several locations across the network [44].
We assume DPMUs are installed on specific lines in the

1We note that this model cannot satisfactorily describe feeders that are
primarily capacitive.

Current 

Source

Terminal

Parallel R-L Series R-L

Fig. 1. The load model for harmonic analysis.

primary distribution network. These sensors report harmonic
voltage and current phasors every Trd seconds2. We denote
the harmonic phasors measured by the ith DPMU located at
L(i) at time t by:

Dti = {V tL(i),p(h), ItL(i),p(h)}p∈PL(i),h∈{1,··· ,hm},

where hm is the highest harmonic order that can be practically
measured, and V tL(i),p(h) and ItL(i),p(h) are the harmonic
measurements of voltage and current phasors, respectively.

We assume that smart meters are installed throughout the
secondary distribution network, measuring the magnitude of
service voltage and the average active power consumption of
Ω customers at Tsm-minute intervals. At time t, the smart
meter installed at the premise of customer i measures the
voltage magnitude V tN(i) = {V tN(i),p}p∈Pi , and active power
consumption P tN(i) = {P tN(i),p}p∈Pi

. The smart metering data
is buffered locally and sent to the utility’s data center every
Trm minutes.

Suppose Tsm = βTrd. To simplify the notation, we use
the timescale of DPMUs as time reference in the following.
Hence, the time series data collected by all smart meters at
the end nodes would be

M1→tm = {P βtN , V βtN }t∈{1,··· ,tm},

where P βtN = [P βtN(1), · · · , P
βt
N(Ω)], V

βt
N = [V βtN(1), · · · , V

βt
N(Ω)].

D. HSE Formulation

We formulate the static HSE problem for each harmonic
order based on the harmonic load flow equations [6], [46]
to estimate state variables, x, from DPMU measurements, z,
given the measurement noise, ξ:

z(h) = Φ(h)x(h) + ξ, (4)

with

z(h) =

[
V (h)
I(h)

]
, Φ(h) =

[
S1[Y H(h)]−1

S2Y
B(h)[Y H(h)]−1

]
. (5)

Here x(h) ∈ Cn×1 is the vector of state variables expressing
the injected currents of order h by harmonic sources, and
z(h) ∈ C2m×1 (m =

∑d
i=1 |PL(i)|) is a vector that collects

line-to-neutral nodal voltages, denoted by V (h) ∈ Cm×1, and

2The sampling frequency of DPMUs is typically 512 samples per cycle [45].
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line currents, denoted by I(h) ∈ Cm×1 which are measured
by d distinct DPMUs. We define S1 ∈ Rm×

∑
i∈V |Pi| and

S2 ∈ Rm×
∑

(i,j)∈E |P(i,j)| matrices to encode the locations of
DPMUs:

S1ij =
{

1, j = L(i) ∈ V,
0, otherwise, S2ij =

{
1, j = L(i) ∈ E ,
0, otherwise.

Note that Eq. (4) is underdetermined for distribution networks
that are not fully observable.

Assume that measurements, z(h), are cleaned through
bad data identification and correction techniques. The x(h)
uniquely determines the state of the distribution system, and
the harmonic voltage distribution can be simply computed
based on the harmonic load flow given the estimated states,
x̂. The measurement matrix, denoted by Φ(h), depends on
the inverse of the harmonic admittance matrix, [Y H(h)]−1,
and the branch admittance matrix, Y B(h). The harmonic
admittance matrix Y H(h) changes over time similar to the
loads and the operational structure of the distribution network
(see Section II-B)3. Hence, the real-time measurement matrix
is unknown to the distribution system operator and must be
estimated using the available data.

III. METHODOLOGY

Our approach involves several steps which are described
here. It starts with a preprocessing step in which we reduce the
number of state variables by merging the nodes that appear on
two sides of short lines and closed switches. This is because
their voltages are almost identical and highly correlated. This
is done using the two-port network theorem (refer to Chapter
8 of [48]). The subsequent steps are explained below.

A. Regression Analysis for Power Flow Calculation

The next step is to compute real and reactive power flow at
primary nodes given measurements of smart meters installed at
the end nodes. It would be simply done through power flow
analysis if the model of the secondary distribution network
was known. However, this model is often unavailable [49].
Thus, we use regression analysis to identify the relationship
between the power flow at primary nodes and the demands
of downstream customers measured by smart meters. This
requires measuring the real and reactive power at each primary
node for a relatively short period of time. We assume that this
data is available4. The aggregate demand data at node i in the
primary network, available for βtm time slots, is:

L1→tm = {P βti,p, Q
βt
i,p}t∈{1,··· ,tm},p∈Pi

.

Motivated by the success of linearized power flow formula-
tions in radial distribution networks, we restrict ourselves to a
linear model for secondary distribution networks. The features
we use are the real power, the voltage magnitude, and the

3A topology identification algorithm must be implemented to detect how
the operational structure has changed before addressing the HSE problem,
e.g., the online detection approach in [47].

4The distribution system operator may obtain this data from Distribution
SCADA (D-SCADA) system or other advanced monitoring systems.

squared voltage magnitude measured by smart meters at the
end nodes. We develop the following model:

Υ = ΨΘ, (6)

where

Υ =

 P β Qβ

...
...

P βtm Qβtm

 ,Ψ =

 P βN V βN (V βN )2

...
...

...
P βtmN V βtmN (V βtmN )2

 ,
and Θ is the coefficient matrix.

We utilize the LS method based on QR decomposition to
learn Θ given L1→ks and M1→ks :

Ψ = UR, (7)

Θ = R−1U>Υ, (8)

where U is a unitary matrix and R is an upper triangular
matrix. We denote the estimated real and reactive powers in
the primary network by {P̃ t, Q̃t}. To evaluate this model, we
perform three-fold cross validation.

B. Demand Prediction

Another challenge is that the reporting period of smart
meters, Trm, is longer than their sampling period, Tsm, e.g.,
60 min versus 1 min. This causes the harmonic admittance ma-
trix to update every Trm time slots instead of every Tsm time
slots. To address this problem, we predict the aggregate power
consumption at each node in the primary network between two
successive reporting intervals using the historical smart meter
data of downstream nodes. Suppose the relationship among
power consumption follows Eqs. (9) and (10),

P̂ βti = f1

(
P̃ βt−α1

i , Q̃βt−α1

i , · · · , P̃ βt−αs

i , Q̃βt−αs

i

)
, (9)

Q̂βti = f2

(
P̃ βt−α1

i , Q̃βt−α1

i , · · · , P̃ βt−αs

i , Q̃βt−αs

i

)
, (10)

where α ∈ Zs is the time-lag vector.
We learn these models using a recurrent neural network

model, namely the long short-term memory (LSTM) net-
work [50] which has superior performance for time series
prediction. We build an LSTM network with four layers (an
input layer, an LSTM layer, a hidden fully connected layer, and
an output layer) to predict the power consumption. The time-
lag term α is determined by the auto-correlation coefficients
of the time series {P̃ t, Q̃t} obtained from regression analysis.
The input of the LSTM network is

It := [P̃ βt−α1

i , Q̃βt−α1

i , · · · , P̃ βt−αs

i , Q̃βt−αs

i ]>,

and its output is, Ot = [P̂ ti , Q̂
t
i], which is updated as follows:

it = σ(WiIt +DiOt−1 + bi), (11)
ft = σ(WfIt +DfOt−1 + bf ), (12)
ot = σ(WoIt +DoOt−1 + bo), (13)
gt = tanh(WgIt +DgOt−1 + bg), (14)
Ct = ft � Ct−1 + it � gt, (15)
Ot = ot � tanh(Ct), (16)
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where σ(·) is the sigmoid function, and W , D and b re-
spectively represent input weights, recurrent weights, and bias
terms. We denote the layer input vector by gt and the cell
states by Ct. Also, it, ft, ot denote the activation vectors of
input, forget, and output gates, respectively.

We adopt the ADAM method [51] to train the LSTM
network, obtaining the weight matrices W , D and the bias
vector b. The neural units of the hidden layer are set to
nh = 0.8 × |I|, and the mean-squared-error of predicted
values is considered as the cost function. The training data set
contains many fixed length observations which are randomly
sampled from the original time series.

C. Estimating the Measurement Matrix

Since the time interval between successive DPMU measure-
ments is shorter than that of smart meter data, we use a simple
interpolation [52] to obtain the missing values:

P̂ tβ+i = P̂ tβ , ∀i = 1, · · · , β − 1, (17)

Q̂tβ+i = Q̂tβ , ∀i = 1, · · · , β − 1. (18)

When the load compositions are determined, we can compute
the admittance matrix in real-time as follows:

Ŷ Ht

(h) = Y H0

(h) + ∆Y 0→t(h), (19)

∆Y 0→t(h) = f(P̂ t, Q̂t, P̃ 0, Q̃0),

P̂ t = [P̂ t1 , · · · , P̂ tnb
]>,

Q̂t = [Q̂t1, · · · , Q̂tnb
]>,

where ∆Y 0→t(h) ∈ C
∑

i∈V |Pi|×
∑

i∈V |Pi| and f(·) is a
function that returns the changes in the load admittance values
according to Eqs. (1) (2) (3). The initial values of power P̃ 0

and Q̃0 are obtained from the regression model, and Y H0

(h)
is the initial admittance matrix.

Once the admittance matrix is updated, we utilize the kron
reduction [49] to remove the nodes that are not harmonic
sources. Then, the estimated measurement matrix Φ̂(h) can
be established according to Eq. (5).

D. SBL-Based Harmonic State Estimation

Given the sparsity of x(h) for a given order h, we develop
an iterative algorithm for HSE drawing upon the SBL frame-
work. The SBL algorithm treats unknown states as stochastic
variables with certain probability distributions, and solves the
HSE problem by maximizing their posterior probabilities. The
solution is sparse since the derived posterior probability mass
of state variables is distributed over solutions with a small
number of non-zero elements (refer to [26], [53] for more
details). Following [6], we run the iterative algorithm below
for each harmonic order independently:

x̂(j) = arg min
x

1

2
‖z − Φ̂x‖22 + λ‖u(j) � x‖1, (20)

γ
(j)
i = x̂

(j)
i /u

(j)
i , (21)

u
(j+1)
i = [Φ̂>·i (λI + Φ̂Γ(j)Φ̂>)−1Φ̂·i]

1
2 . (22)

The re-weighting parameter ui promotes the sparsity of x, and
the weight parameter λ trades off sparsity and estimation error.

Note that for brevity the harmonic order h and time instant t
are omitted in the above equations. Algorithm 1 summarizes
different steps of the proposed approach.

Algorithm 1 Proposed framework for solving HSE
1: Learn the power flow model using LS (Section III-A);
2: Employ the LSTM network to predict the aggregate power

at every node in the primary distribution network (Section
III-B);

3: Compute the real-time harmonic admittance matrix based
on Eq. (19) given predicted power and load compositions
(Section III-C);

4: Receiving the DPMU measurements, run SBL-based har-
monic state estimator to obtain x̂ (Section III-D).

E. Meter Placement

We define the mutual coherence [54] of a matrix µ(Φ),
which measures the extent to which columns of this matrix
are orthogonal, as follows:

Definition 1: Mutual coherence of a matrix Φ =
[φ1, · · · , φn] is the largest absolute normalized inner product
between any two of its columns:

µ(Φ) = max
1≤i6=j≤n

|φ>i φj |
‖φi‖2 · ‖φj‖2

. (23)

It is shown in [6] that an SBL-based state estimator can
achieve satisfactory performance when the mutual coherence
of the measurement matrix is smaller than a threshold. Given
the estimation error z − Φ̂x caused by the uncertainty of
the measurement matrix, DPMUs should be placed such that
the corresponding measurement matrix is robust to error. The
condition number is typically used to quantify how sensitive
the solution of the equation is to the error and how effective
it acts as a diagnostic for multicollinearity in regression
analysis [55]. Given d DPMUs, the optimal meter placement
strategy of these sensors is the one that has a small coherence
and minimizes the condition number of the corresponding
measurement matrix:

min
Mi⊂V

cond(ΦMi(h)), ∀h (24)

s.t. µ(Φ(h)) < τ

where τ ∈ (0, 1) is a positive threshold, Mi(i = 1, · · · ,
(
nb

d

)
)

and ΦMi(h) denote a possible meter placement strategy and
the corresponding measurement matrix, respectively.

For a distribution network, the optimal meter placement can
be obtained by solving Eq. (24) using a brute force search.
Specifically, we search the possible meter placements starting
from 2 DPMUs, and increase the number of meters until the
constraint of (24) is satisfied. We subsequently compute the
condition number in each case and select the smallest one
among them. Note that it is computationally expensive to find
the optimal placement strategy for large distribution systems
in this way. We defer the full investigation of the optimal
meter placement problem to future work.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TSG.2019.2938733

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



6

IV. CASE STUDIES

A. Test System
Since field data and real system models are scarce and not

readily available, we evaluate the proposed approach on an
IEEE test system using real data. Specifically, we modify the
standard IEEE 13-bus test feeder [56] as shown in Fig. 2. This
three-phase system contains a voltage regulator, two capacitor
banks and 15 buses (a total of 36 nodes). Assume that a certain
number of customers are connected via secondary networks
to 12 load buses (out of the 15 buses). We treat Bus 634
as an aggregate load which is directly connected to Bus 633
and add a new bus, named Bus 635, with a single phase
load connected to it. The switch 671-692 and line 692-675
in original test system are merged into a new line 671-675 in
the preprocessing step using the two-port network theorem.

The ADRES data set [57] is used to generate load profiles
of 180 customers over three days with one-minute resolution.
The European low voltage test feeder [58] is connected to
each load bus in the primary node to generate the aggregate
power. Table I shows the number of customers connected
to these buses. We consider four types of loads: phase-to-
phase and line-to-ground single phase loads, and balanced and
unbalanced three-phase loads. They are modelled as constant
power factor loads.

We note that it is possible to obtain different placement
strategies for different harmonic orders. In practice, the oper-
ator can place meters based on harmonic orders that are more
important or concerning. We consider the optimal placement
of meters for the 7th order harmonics and set τ to 0.9999.
Fig. 2 depicts the optimal placement of 6 DPMUs according
to Eq. (24). The weight parameter λ is determined empirically.
We set the reporting period of DPMUs to Trd = 1 sec,
and the sampling and reporting intervals of smart meters to
Tsm = 1 min, Trm = 60 min. We perform state estimation
every one minute over the course of the day.

TABLE I
CONNECTION TYPES AND LOAD CONFIGURATIONS.

Bus Name No. Phases Connection Type Customers c (%)
645 1 wye 80 60
635 1 wye 90 50
652 1 wye 90 0
611 1 wye 100 100
646 1 delta 110 60
684 1 delta 120 50
633 3 wye 180 60
670 3 wye 220 60
675 3 wye 240 70
680 3 delta 180 50
632 3 delta 200 60
671 3 delta 260 60

B. Performance Metrics and Baselines
We use three metrics, i.e., the identification error, the

localization failure rate (LFR), and the normalized root-mean-
square error (nRMSE), to evaluate HSE. The identification
error of the hth harmonic order at node i is defined as:

εx(h, i) :=
|xesi (h)− xtri (h)|
‖xtr(h)‖2

,

Substation 

650

632 633 635

675671

645646

611 684

652 680

Rg60

670

Secondary 

Network

PV System

Inverter

DPMU

three-phase line

two-phase line

one-phase line

Fig. 2. A one-line diagram of the modified IEEE 13-node test feeder.

where xtri (h) and xesi (h) are the true and estimated values of
a state variable, respectively.

The localization failure rate is defined as the ratio of the
number of experiments in which harmonic sources are not
identified correctly to the total number of experiments. We
say that a state estimator cannot identify harmonic sources at
a given order, if the maximum identification error among all
buses is larger than a threshold δ, i.e.,

max
i∈V

εx(h, i) ≥ δ .

We set δ to 0.05 in our simulations. The normalized root-mean-
square error of the estimated current and voltage phasors are
defined as follows:

nRMSEIP := ‖xtr − xes‖2/‖xtr‖2, (25)
nRMSEVP := ‖V tr − V es‖2/‖V tr‖2. (26)

Table II shows six baseline strategies that are used to
benchmark the proposed harmonic state estimator, referred to
as B1. Specifically, B2 is the case that the operating center
collects smart meter data but does not perform prediction. It
runs HSE with an outdated measurement matrix denoted by
Φ̃. B3 is the case that uses the typical load profiles5 instead of
predictions to update the measurement matrix. It is the state-
of-the-art approach since the typical load profiles are usually
the only available information for updating the measurement
matrix, denoted by Φ̄. B4 is the case that the model of
each secondary network is known. In this case, the aggregate

5Load profiles describe the electricity consumption of small residential
consumers on a daily basis under different operating conditions. We treat
the average demand of 20 randomly selected customers over one day as the
typical load profiles under light and heavy loading conditions, respectively.
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TABLE II
THE PROPOSED HARMONIC STATE ESTIMATOR AND SIX BASELINES.

Cases B1 B2 B3 B4 B5 B6 SVD

Observed Data z(h)

Measurement Matrix Φ̂ Φ̃ Φ̄ Φ̌ Φ Φ̂ Φ̂

Regression Yes Yes No No No Yes Yes

Prediction Yes No No Yes No Yes Yes

Estimator SBL `1 SVD

powers at all primary nodes are calculated based on the model.
The corresponding measurement matrix is denoted by Φ̌. B5
assumes the knowledge of the true measurement matrix. It is
hypothetical baseline which is used to study the importance
of updating measurement matrix. Since we study the HSE
problem for unobservable power networks, traditional LS-
based approaches are not suitable. Two classical approaches,
namely SVD [16] and the `1 norm minimization [5] denoted
by B6, are thus selected as the baselines. They can cope with
a small number of measurement devices. For fair comparison,
baselines B1, B6, and SVD utilize the proposed methods
for regression analysis and demand prediction as shown in
Table II.

C. Implementation

Suppose a PV system comprised of 40 solar arrays is
connected to three inverters. Each array has 20 solar modules
in series and 3 modules in a string. We employ the PV
Powered inverter (Advanced Energy: PVP250kW-480) with
250kW maximum three-phase AC power output using the
PV-LIB toolbox [59]. The PV system is modelled using the
PVSystem object in OPENDSS.

We solve the harmonic load flow [6] in MATLAB and
OPENDSS to obtain the voltages, currents, and the harmonic
admittance matrix of the network denoted by V tr, Itr and Y H,
respectively. Our MATLAB script interacts with OPENDSS via
the COM interface. We perform the following operations:
Step 1) Connect a certain number of customers with real load

profiles to the European low voltage test feeder;
Step 2) Compute the aggregate power consumption in the

primary network;
Step 3) Use the PV-LIB toolbox to compute the output power

(AC) of the PV system using the temperature and
solar irradiance data from NREL [60];

Step 4) Solve harmonic load flow in OPENDSS to obtain the
true values of states xtr(h);

Step 5) Estimate the real-time measurement matrix as de-
scribed in Section III-C with smart meter data;

Step 6) Run the proposed state estimator using the CVX
toolbox in MATLAB.

V. MAIN TECHNICAL RESULTS

To corroborate the efficacy of the proposed state estimator,
we run it under two operating conditions, namely, light and
heavy loading conditions. The experiments are performed on

The nRMSE of Power Flow Regression
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Fig. 3. The semi-logarithmic nRMSE of power flow regression between
upstream nodes and the increasing numbers of customers along buses. This
figure (light load (top) and heavy load (down)) presents the nRMSEs for four
types of loads. The first six are the single loads of wye (1, 2, 3, 4) and delta
(5, 6) connections, and the last six are three-phase imbalanced (7, 8, 9) and
balanced (10, 11, 12) loads.

a computer with Intel core i7-6700 CPU at 3.4 GHz, NVIDIA
GTX 960 GPU and 16 GB RAM. Fig. 3 shows that the
maximum nRMSE of the power flow regression is less than
1% for all loads in both operating conditions.

We select the points of the maximum 60 to 90 auto-
correlation coefficients as the input units of the LSTM network
for different types of loads, and randomly pick 150 obser-
vations with length of 1200 time slots from historical data
to train the model that pertains to the secondary distribution
network. It can be seen in Figs. 4 and 5 that the prediction
error decreases as the number of customers increases (since the
aggregate demand becomes smoother), and that the prediction
accuracy is almost the same for loads of the same type. The
maximum nRMSE values are respectively 15.28% and 14.24%
under two conditions, and both are attained for Bus 645 which
has the smallest number of connected customers. Observe that
the average nRMSEs are 11.90% and 10.16% for the two
conditions, respectively. Figs. 4 and 5 indicate that it is more
difficult to predict the power drawn by unbalanced three-phase
loads compared to the other three types. It took an average of
12 min and 54 sec to implement the overall offline learning
for every secondary network using MATLAB’s deep learning
toolbox. The maximum training time of the LSTM model is
21 min and 43 sec. To predict the power consumption for the
following hour, it is required to retrain (offline) the LSTM
model every hour.

A. Considering Loads Only

We first study the performance of the proposed estimator
with DPMUs that report data accurately. Suppose the loads
connected to 645b, 670a and 670c are the significant harmonic
sources with the real spectrum obtained from [61]. The weight
parameter λ is 5× 10−8 and 1× 10−7 for the two operating
conditions, respectively. Note that we solve HSE for different
orders in parallel because the models for different orders
are independent. Overall, it took an average of 0.85 sec to
implement the SBL-based estimator. Since the harmonics are
present at least for several seconds [40], the proposed estimator
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The nRMSE for Demand Prediction under Light Load
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Fig. 4. The training and prediction nRMSE of an hour ahead along buses
under light load condition. The first 6 loads are the single of wye (1, 2, 3, 4)
and delta (5, 6) connections, and the last six are three-phase imbalanced
(7, 8, 9) and balanced (10, 11, 12) loads.

The nRMSE for Demand Prediction under Heavy Load
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Fig. 5. The training and prediction nRMSE of an hour ahead along buses
under heavy operating condition. The first 6 loads are the single of wye
(1, 2, 3, 4) and delta (5, 6) connections, and the last six are three-phase
imbalanced (7, 8, 9) and balanced (10, 11, 12) loads.

is capable of locating the harmonic sources in an online
fashion. Fig. 6 shows the hourly maximum identification error
among all orders is 2.36% which is attained for the peak hour,
12:00pm. Fig. 7 shows that the estimation error of total har-
monic distortion (THD) of the voltage waveform is less than
0.0025 at three typical peak times. Table III shows that the
performance of the proposed SBL-based estimator is superior
to both the `1 norm minimization and SVD approaches. In
particular, our estimator can locate harmonic sources with high
accuracy for both loading conditions, whereas the LFR of B6
is high even under light loading condition. The SVD method
cannot pinpoint the locations of the harmonic sources. For the
seventh harmonic, the LFR of B3 increases by 24.64%, and
the LFR of B6 increases to 99.79%. It is also evident from
Fig. 8 that the nRMSEIP of our approach improves by 71.27%
and 73.31% compared to B3 under light and heavy operating

conditions, respectively. Figs. 8 and 9 show that the proposed
method has smaller nRMSEIP and nRMSEVP than B2, B3, B6
and SVD baselines. It is observed that the SVD method has
large estimation errors for all harmonics, and B6 has large
nRMSEIP for the 3rd, 5th, 7th, 13th orders. This suggests that
the proposed SBL-based estimator can accurately estimate the
voltage distribution and reliably locate the harmonic sources.
Moreover, it can be concluded from Figs. 8 and 9 that the
nRMSE values of B1 and B4 are almost the same, implying
that the proposed regression method works well for HSE. Also
observe that the nRMSE values of B5 are less than 0.0001
under both operating conditions, highlighting the importance
of updating the measurement matrix. The average nRMSEIP
of the proposed approach is 0.0065 and 0.0133 under the
two conditions. This is acceptable for an advanced distribution
network monitoring system.

TABLE III
COMPARING THE LFR% OF THE PROPOSED APPROACH WITH SIX

BASELINES UNDER LIGHT AND HEAVY LOADING CONDITIONS.

Loading
Condition B1 B2 B3 B4 B5 B6 SVD

Light 0.07 0.80 3.53 0.25 0.00 77.32 100.00
Heavy 1.09 2.06 14.82 1.87 0.00 84.09 100.00
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Fig. 6. The maximum identification error among all harmonic orders at
different nodes for each hour of the day under the light loading condition.

We now investigate the impact of a simple interpolation
method on the estimation performance. Assume that there are
four kinds of smart meters with different sampling intervals,
i.e., 1, 5, 10, 15 min. The measurement matrix is updated
by the proposed method using these four kinds of data,
respectively. The weight parameter λ is set to 6 × 10−8.
With the same DPMU data, the HSE is conducted for the
light loading condition. Table IV shows that the SBL-based
estimator still locates the harmonic sources accurately even
with smart meter data sampled at 15-minute intervals. The
estimation errors at the same level indicate that the simple
interpolation method is effective for the proposed estimator.
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The Estimated Error for THD of Voltage
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Fig. 7. Estimated error for THD of voltage waveform at three peak hours
under the light loading condition.
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Fig. 8. Comparing the nRMSEIP of the proposed approach with six baselines
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the standard deviations of nRMSEIP for 1440 experiments.
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We found that the prediction accuracy of consumed power is
improved using smart meter data of large sampling interval,
which is helpful for enhancing the performance of the state
estimator. This is because the load profile is smoother for
larger sampling intervals.

TABLE IV
PERFORMANCE COMPARISON OF THE ESTIMATOR EMPLOYING SMART

METER DATA OF DIFFERENT SAMPLING INTERVALS UNDER LIGHT
LOADING CONDITION.

Tsm(min) 1 5 10 15
LFR(%) 0.00 0.00 0.01 0.01

nRMSEIP 0.0065 0.0062 0.0065 0.0068
nRMSEVP 0.0122 0.0122 0.0124 0.0132

We next analyze the performance of the proposed harmonic
state estimator with noisy measurements. Suppose DPMUs
have 0.2% ratio error and 10′ phase displacement of Class
0.2 as recommended in IEC 61869-2 [62] and 61869-3 [63].
It is observed from Table V that the average LFR of our
method is 1.55%, which is still smaller than that of B2,
B3, B6 and SVD. B6 locates the harmonic sources with
a low accuracy of 18.33%, whereas SVD cannot pinpoint
the positions of harmonics at all. Thus, even considering
the measurement noise, the proposed estimator achieves a
relatively high accuracy. The measurement error is neglected
in the following simulations.

TABLE V
COMPARISON OF NRMSE AND LFR% WITH NOISY MEASUREMENTS.

Cases B1 B2 B3 B4 B5 B6 SVD
LFR(%) 1.55 3.82 12.91 1.72 0.27 81.67 100
nRMSEIP 0.012 0.020 0.039 0.012 0.003 0.460 0.821
nRMSEVP 0.012 0.020 0.052 0.012 0.001 0.062 0.107

B. Considering PV Systems

To investigate the impact of DERs on HSE, we connect a
PV system with 800kVA capacity to Bus 633. We assume that
the loads at 684.a.c and 670.a.c are the significant harmonic
sources with real spectra. The weight parameter λ is set to
1× 10−7 for both operating conditions.

Table VI shows that the LFR of B1 is much smaller that that
of B6 and SVD. The LFR of B6 is high and SVD approach
fails to locate the harmonic sources. It is observed that the
average nRMSEIP values of our method are 0.0053 and 0.0095
under the two loading conditions, respectively. Figs. 10 and 11
show that the proposed method is capable of pinpointing
the harmonic sources with a smaller error compared to B2,
B3, B6 and SVD when DERs are connected to the primary
network. The results of B5 with the smallest estimation error
highlight the importance of updating the measurement matrix.
Observe that nRMSE values of B1 and B4 are almost the
same, indicating the efficacy of the power flow regression
approach. Next, we run the proposed state estimator on four
groups of harmonic sources shown in Table VII to study the
impact of PV systems. It can be readily seen from Figs. 12
and 13 that both nRMSEIP and nRMSEVP remain unchanged
for all harmonic orders when PV systems are installed in
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the distribution system. According to Table VIII, the LFR
values are almost the same with PV systems. This implies
that the proposed estimator is not negatively affected by grid-
connected DERs that do not produce significant harmonics.

TABLE VI
COMPARING THE LFR% OF THE PROPOSED APPROACH WITH SIX

BASELINES CONSIDERING PV UNDER LIGHT AND HEAVY LOADING
CONDITIONS.

Loading
Condition B1 B2 B3 B4 B5 B6 SVD

Light 0.00 0.00 1.26 0.00 0.00 37.97 100.0
Heavy 0.00 0.04 10.02 0.00 0.00 49.32 100.0
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Fig. 10. Comparing the nRMSEIP of the proposed estimator with other six
baselines with a grid-connected PV system under light and heavy loading
conditions, respectively. The error bars represent the standard deviations of
nRMSEIP for 1440 experiments.

C. PV Harmonic Sources

To explore the impact of PV systems that produce significant
harmonics on HSE, PV systems are connected to different
buses that are not equipped with DPMUs. We consider the
real harmonic spectrum in [64] and the default spectrum
in OPENDSS as the spectra of PV harmonic sources. The
weight parameter λ is set to 2× 10−8 and 1× 10−8 for loads
and PV harmonic sources, respectively. Fig. 14 implies that the
proposed method can locate the PV harmonic sources with a
small nRMSEIP regardless of the type of the harmonic sources.
It can be seen from Figs. 15 that the average nRMSEVP
values are respectively 0.0113 and 0.0118 under PV and load
harmonic sources. We note that the estimation error for PV
harmonic sources is almost the same as the error for load
harmonic sources, which is evident from Figs. 14 and 15. The

TABLE VII
LOCATION OF LOAD HARMONIC SOURCES.

Group 1 2 3 4

Locations 684.a.c,
670.a.c

645.b,
670.a.c

645b,
684.a.c 633.a.b.c
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Fig. 11. Comparing the nRMSEVP of the proposed estimator with other six
baselines with a grid-connected PV system under light and heavy loading
conditions, respectively. The error bars represent the standard deviations of
nRMSEVP for 1440 experiments.
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TABLE VIII
THE LFR METRIC (%) FOR EACH HARMONIC ORDER WITH

GRID-CONNECTED PV SYSTEMS.

Condition Group 3 5 7 9 11 13

No PV

1 0.00 0.00 0.49 0.00 0.00 0.00
2 0.00 0.00 0.42 0.00 0.00 0.00
3 0.00 0.00 0.00 0.00 0.00 0.00
4 0.07 0.35 0.07 0.00 6.59 3.12

With PV

1 0.00 0.00 0.49 0.00 0.00 0.00
2 0.00 0.07 0.14 0.00 0.00 0.00
3 0.00 0.00 0.00 0.00 0.00 0.00
4 0.07 0.14 0.07 0.00 6.66 2.98

TABLE IX
COMPARISON OF THE LFR METRIC (%) OBTAINED FOR SEVEN CASES
WITH PV AND LOAD HARMONIC SOURCES UNDER LIGHT AND HEAVY

LOADING CONDITIONS.

Loading
Condition B1 B2 B3 B4 B5 B6 SVD

Light 0.02 0.19 4.67 0.00 0.00 30.71 100.00
Heavy 0.64 1.30 17.73 0.54 0.00 25.24 100.00

results indicate that the proposed state estimator can pinpoint
both the load harmonic sources and the PV harmonic sources.

Next, we assume that the PV system installed at Bus 670
and the load connected to 645.b are the significant harmonic
sources with specified spectra. We set λ = 5 × 10−8 for
both conditions. Table IX shows that, compared to B2, B3,
B6 and SVD, the proposed approach is capable of locating
harmonic sources with higher accuracy under both conditions
in the presence of PV and load harmonic sources. As shown
in Section V-A and V-B, the SVD method cannot find the
harmonic sources correctly, and the LFR of B6 is much
larger than that of B1. Considering the updated measurement
matrix, the average LFR is almost zero under the light loading
condition, and it can be reduced to 0.64% from 17.73%
compared to B3 in the heavy loading situation. Fig. 16 shows
that our average nRMSEIP of 0.0068 is about 72% of B2
and 30% of B3 under the light loading condition. It can
be seen from Fig. 17 that the nRMSE of voltage phasors is
also less than that of B2, B3, B6 and SVD. These results
suggest that the proposed SBL-based estimator outperforms
both B6 and SVD approaches in terms of estimation error
and localization accuracy. It is observed in Figs. 16 and 17
that the nRMSEs of B4 and B1 are almost the same, which
shows the effectiveness of the proposed power flow regression
method. As with Section V-A and V-B, the error of B5 is the
smallest among all baselines. Note that nRMSE and LFR of
the 7th order are the largest among all orders, since it is near
the resonance frequency of the system. These results indicate
that the proposed approach can pinpoint harmonic sources and
reliably estimate the voltage distribution in the presence of PV
and load harmonic sources.

D. Sensitivity Analysis

We study how many harmonic sources can be identified
reliably with 6 DPMUs using the proposed HSE. Table X
shows that our approach can pinpoint 6 harmonic sources
with an average nRMSEIP of 0.0579 and an average LFR of
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Fig. 14. Comparing the nRMSEIP for harmonic orders 5, 7, 11, 13 when
harmonic sources are located at buses that are not equipped with a DPMU.
The blue and red bars denote PV and load harmonic sources, respectively.

87.46%. When the number of harmonic sources increases
from 6 to 7, the nRMSEIP of all orders rises sharply for all
baselines as shown in Fig. 18. This means that the proposed
HSE cannot locate harmonic sources in a hypothetical situation
where 7 sources produce significant harmonics simultaneously
in a distribution network. Fig. 18 indicates that our HSE
can estimate the currents with much smaller error than B3
baseline for all orders. The estimation error of B5 is much
smaller than other four baselines as shown in Figs. 18 and 19.
This is because B5 is performed with accurate measurement
matrix and the measurement noise is ignored. It can be seen in
Fig. 19 that the maximum nRMSEVP is 0.0617 for 6 harmonic
sources and it changes slightly for the 3rd, 5th, 7th orders as
we increase the number of harmonic sources. In contrast to
B2 and B3 baselines, our method which attempts to update the
measurement matrix reduces the estimation error and improves
the location accuracy.

Finally, we analyze the performance of the proposed HSE
scheme for a different number of DPMUs. Fig. 20 shows that
both nRMSEIP and nRMSEVP decrease as we deploy more
DPMUs. This curve can be used by the utility company to
decide on the number of DPMUs that are necessary for a
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desired level of accuracy, given the number of sources that
produce significant harmonics in the distribution networks.

VI. CONCLUSION

The availability of time-synchronized phasor measurements
from multiple locations in the distribution network enables a
wide range of analytics applications, including state estima-
tion, model validation, and fault detection, diagnostics, and
prognostics. This paper proposed a novel approach to HSE,

TABLE X
THE NRMSE AND LFR% ALONG

THE NUMBER OF HARMONIC SOURCES (HSES)

No. HSes 2 3 4 5 6 7
LFR(%) 0.00 0.00 0.00 5.14 12.54 98.85

nRMSEIP 0.0087 0.0065 0.0177 0.0068 0.0579 0.9234
nRMSEVP 0.0126 0.0123 0.0123 0.0120 0.0217 0.0614
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which involves regression analysis for power flow calculation,
recurrent neural network models for demand prediction, and
sparse Bayesian learning. Leveraging the sparsity of harmonic
sources and the availability of coarse-grained smart meter data
along with fine-grained DPMU data, the proposed approach
accurately identifies harmonics sources using only a small
number of DPMUs compared to the number of nodes in
the primary network. Extensive simulations performed on the
modified IEEE 13-node test feeder with real data corroborated
the efficacy of the proposed HSE. Our results showed that the
proposed harmonic state estimator achieves satisfactory per-
formance even in the presence of grid-connected PV systems.
Finally, we provided a guideline to electric utilities to help
them determine the number of DPMUs that must be deployed
to achieve a desired level of accuracy.

In future work, we intend to investigate how other types
of distributed generations, e.g., wind turbines, small hydro
power units, and distributed energy storage could affect the
performance of the proposed approach. We also plan to inves-
tigate accurate harmonic load models considering capacitive
reactances with field measurements.
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