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Steadily Falling Prices of Solar Power
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source: Lawrence Berkeley National Laboratory, “Tracking the Sun VII: An Historical Summary of the
Installed Price of Photovoltaics in the United States from 1998-2013”, 2014



Corporate Solar Projects in USA
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1,110 systems totaling 569 megawatts (MW)

source: http://www.seia.org/map/corporate-solar-projects.php




Corporate Solar Projects in USA
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High Penetration of Residential Solar
Power has Wide Ramifications

e System-wide impacts
— Higher uncertainty in generation capacity
— Increased need for ramping flexibility



High Penetration of Residential Solar
Power has Wide Ramifications
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High Penetration of Residential Solar
Power has Wide Ramifications

e Distribution network issues
— Voltage variability on distribution feeders
— Reverse power flow and protection problems
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Mitigating Solutions for Utilities

e Upgrading the network (e.g., install dynamic VAR
control)
— is a costly long-term solution

e Curtailing inexpensive solar power

— is a forfeiture of inexpensive green energy that utilities
have paid for

* Balancing supply and demand where and to the
extent that is possible using new technologies

— requires optimal operation of storage systems and elastic
loads within balancing zones



What is a Balancing Zone?
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Storage and elastic loads are enabling technologies
for balancing the grid in sub-seconds



Today’s Grid Controls are Insufficient!
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We Need...

 Coordinated, real-time control of
, ,and EV chargers

— calls for the design of a legacy-compatible,
scalable, decentralized overlay architecture for
real power control

* Optimal control mechanisms to achieve
multiple system-wide and local objectives



Our Approach

Utility-centric
Myopic

— Due to the lack of accurate predictive models for
PV energy, EV mobility, and load

Based on real-time measurements

Decentralized
— For scalability and robustness



Context: Small Businesses
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Constraints

Demand and supply must be in balance in every time slot
S ()+S_ (xS (t)=D (t)+D,, (t)+D

— ~ Storage

(t)

inelasticLoads SolarCurtailment

No network congestion in every time slot
line loading (t) < line setpoint
transformer loading (t) < transformer setpoint

Unidirectional power flow outside balancing zones in every
time slot

S (t)=>0 for each balancing zone

All storage systems within a balancing zone must be charging
or discharging in a given time slot

— to avoid energy transfer between storage systems



Objectives (in descending order of importance)

* Revenue-Maximizing Fair Power Allocation
— max ),, log D_, .(t)

* Minimizing Solar Curtailment
—min ),; D (t)

SolarCurtailment i

* Minimizing the Use of Conventional Power
—minZSGﬂd (t)



Revenue-Maximizing Fair Allocation
with Minimum Solar Curtailment

* The first two objectives are not conflicting
— can be optimized at the same time

e Cast as a nonlinear convex optimization

— gives us the fair power allocation to EVs and an
optimal curtailment strategy

 Solved at the substation



Minimizing the Use of Conventional Power

* The last objective, min ), S (t), is separable

Grid
— can be decomposed to several optimization
problems, one for each balancing zone

* The linear program can be solved at the edge
of every balancing zone



Benchmark Scenarios

* Local control with no energy exchange within
balancing zones

1. local use of solar power without storage
2. local use of solar power with storage

* Control at the level of balancing zones,
assuming no storage



Test Distribution Network
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1000 small businesses
646 645 633 ~y¢ 634 200 EV chargers
//' S , ~\\\ , _\\\
14 \\ 14 \\ I, \\
foBz [ Bz ’ Bz
\ I' \ I‘ \ /‘
\\\ i \\\ 7/ \\\ i
H92 75
' -
y \
ll BZ 1
\ I‘
\\ //
\
\
|
1
1
/
680 634 675 645 646 684 652 | 611
a b C a b C a b C b C b c a c C
Num of homes 350 350 350 0 0 0 250 | 250 | 250 0 0 150 | 150 0 0 100 | 100
Num of small businesses 100 100 100 | 50 | 50 | 50 50 50 50 | 50 | 50 50 50 | 50 | 350 50 50
Num of EV chargers 20 20 20 10 10 10 10 10 10 10 10 10 10 10 10 10 10
Storage systems (% of total) | 10% | 10% | 10% | 5% | 5% | 5% | 5% | 5% | 5% | 5% | 5% | 5% | 5% | 5% | 5% | 5% 5%
PV installations (% of total) | 10% | 10% | 10% | 5% | 5% | 5% | 5% | 5% 59 | 5% | S% | 5% | 5% | 5% | 5% | 5% 5% 19




Evaluation

200 PV panels, 100 storage systems 1000 PV panels, 500 storage systems
each 20kWh with initial SOC 20% each 20kWh with initial SOC 20%
0.9 5
----Available solar power (upper bound) ----Available solar power (upper bound)|
0.8k | A —Our scheme 4.5F —Our scheme
. grm i |—BM1: Local use w/ storage —BM1: Local use w/ storage

s BM2: Local use w/o storage S 4 ---BM2: Local use w/o storage
S 07 =
< <
S S 3.5
206 2
2 2
) o I
£ 05 s
<) Lo
° g &
€ £ 2r
€03 g
§ 0.2- § 1k

01F 0.5

1gam 4z;m g Ba‘m ) 121pm 4p;m 8r;m 12;1m 18am 4a;m Sa;m 12£>m 4pm 8p|m 121'am

Time of day Time of day

200 Levell EV chargers, 2300 homes, 1000 small businesses, and the demand of EVs is 12kWh
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Evaluation - cont’d
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Evaluation - cont’d

200 Levell EV chargers , 600 PV panels,
300 storage systems with initial SOC 20%
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Conclusion

* Large-scale integration of solar photovoltaic
systems, EVs, and storage systems will impair the
reliability of the network

* Today’s best practices reduce the cost-effectiveness
of solar installations

e Scalable myopic control algorithms developed on a
decentralized control architecture enable the utility
to simultaneously achieve different objectives



