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Steadily Falling Prices of Solar  Power 
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source: Lawrence Berkeley National Laboratory, “Tracking the Sun VII: An Historical Summary of the 
Installed Price of Photovoltaics in the United States from 1998-2013”, 2014 



Corporate Solar Projects in USA 
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source: http://www.seia.org/map/corporate-solar-projects.php 

1,110 systems totaling 569 megawatts (MW) 



Corporate Solar Projects in USA 
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source: http://www.seia.org/map/corporate-solar-projects.php 

1,110 systems totaling 569 megawatts (MW) 

Solar energy makes financial sense! 



High Penetration of Residential Solar 
Power has Wide Ramifications 

• System-wide impacts 

– Higher uncertainty in generation capacity 

– Increased need for ramping flexibility 
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High Penetration of Residential Solar 
Power has Wide Ramifications 
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source: http://www.caiso.com/Documents/FlexibleResourcesHelpRenewables_FastFacts.pdf  



High Penetration of Residential Solar 
Power has Wide Ramifications 

• Distribution network issues 

– Voltage variability on distribution feeders 

– Reverse power flow and protection problems 
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Mitigating Solutions for Utilities 

• Upgrading the network (e.g., install dynamic VAR 
control) 

– is a costly long-term solution 

 

• Curtailing inexpensive solar power  

– is a forfeiture of inexpensive green energy that utilities 
have paid for 

 

• Balancing supply and demand where and to the 
extent that is possible using new technologies 

– requires optimal operation of storage systems and elastic 
loads within balancing zones 8 



What is a Balancing Zone? 
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Storage and elastic loads are enabling technologies  
for balancing the grid in sub-seconds 



Today’s Grid Controls are Insufficient! 
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We Need… 
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• Coordinated, real-time control of solar 
inverters, storage systems, and EV chargers 

– calls for the design of a legacy-compatible, 
scalable, decentralized overlay architecture for 
real power control 

 

• Optimal control mechanisms to achieve 
multiple system-wide and local objectives 



Our Approach 
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• Utility-centric 

• Myopic 

– Due to the lack of accurate predictive models for 
PV energy, EV mobility, and load 

• Based on real-time measurements 

• Decentralized 

– For scalability and robustness 



Context: Small Businesses 
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Constraints 
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• Demand and supply must be in balance in every time slot 
 S

Grid
 (t) + S

Solar
 (t) ± S

Storage
 (t) = D

inelasticLoads
 (t) + D

EVs
 (t) + D

SolarCurtailment
 (t) 

 
• No network congestion in every time slot 

  line loading (t) ≤ line setpoint 
  transformer loading (t) ≤ transformer setpoint 

 
• Unidirectional power flow outside balancing zones in every 

time slot 
  S

Grid
 (t) ≥ 0   for each balancing zone 

 

• All storage systems within a balancing zone must be charging 
or discharging in a given time slot 
– to avoid energy transfer between storage systems 



Objectives (in descending order of importance) 
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• Revenue-Maximizing Fair Power Allocation 

– max logD
EV_e

 (t)𝑒  

 

• Minimizing Solar Curtailment 

– min D
SolarCurtailment_i

 (t)𝑖  

 

• Minimizing the Use of Conventional Power 
– min S

Grid
 (t)  



Revenue-Maximizing Fair Allocation 
with Minimum Solar Curtailment  
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• The first two objectives are not conflicting 
– can be optimized at the same time 

 

• Cast as a nonlinear convex optimization 
– gives us the fair power allocation to EVs and an 

optimal curtailment strategy 

 

• Solved at the substation 



Minimizing the Use of Conventional Power  
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• The last objective, min S
Grid

 (t) , is separable  

– can be decomposed to several optimization 
problems, one for each balancing zone 

 

• The linear program can be solved at the edge 
of every balancing zone  



Benchmark Scenarios 

• Local control with no energy exchange within 
balancing zones 

1. local use of solar power without storage 

2. local use of solar power with storage 

 

• Control at the level of balancing zones, 
assuming no storage 
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Test Distribution Network 
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Evaluation 

200 PV panels, 100 storage systems  
each 20kWh with initial SOC 20% 

1000 PV panels, 500 storage systems 
each 20kWh with initial SOC 20% 
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200 Level1 EV chargers, 2300 homes, 1000 small businesses, and the demand of EVs is 12kWh 



Evaluation - cont’d 
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Evaluation - cont’d 
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200 Level1 EV chargers , 600 PV panels, 
300 storage systems with initial SOC 20% 



Evaluation - cont’d 
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Conclusion 

• Large-scale integration of solar photovoltaic 
systems, EVs, and storage systems will impair the 
reliability of the network 
 

• Today’s best practices reduce the cost-effectiveness 
of solar installations 
 

• Scalable myopic control algorithms developed on a 
decentralized control architecture enable the utility 
to simultaneously achieve different objectives 

24 


