A Domain Adaptation Technique for Fine-Grained Occupancy Estimation in Commercial Buildings

Tianyu Zhang and Omid Ardakanian

University of Alberta

ACM/IEEE IoTDI

April 2019

Montreal, Canada

Overview – Problem Definition

• How to reliably estimate the number of occupants in the many rooms of a commercial building?

Estimated Binary State: UnOccupied Estimated Occupancy Count:

Overview – Applications of Occupant Count Determination

Demand-Driven HVAC Control

Security

Space Utilization Many other applications in occupant-centred buildings

https://pixabay.com/illustrations/air-conditioning-air-conditioner-3658105/ https://pixabay.com/vectors/burglar-thief-criminal-crime-man-308858/ https://pixabay.com/vectors/notebook-pencil-blank-office-308849/

Overview – Problem Definition

- How to reliably estimate the number of occupants in the many rooms of a commercial building?
- Well-studied problem at the room level, but how about a large building?

Overview – Domain Adaptation

- How to build a general model that can be reused in multiple rooms/buildings?
- How to build a black-box model for a room/building with no/limited available labeled data

• Solution: modify a well-tuned model for one room/building to adapt it to the target room/building leveraging some information

Overview – Experiments

- Data collected from two buildings located in Canada and Denmark
- Buildings have different room sizes, types, and sensing modalities

Outline

- Challenges and previous work
- Methodology
- Results
- Takeaways and future work

https://www.wiltronics.com.au/product-category/magnetic-reed-switch-bar-magnets/

Multiple sensing modalities

Thermal Arrays Cameras Wireless Network **HVAC Sensors Door Sensors** [Erickson 13] [Zou 17] [Beltran 13] [Ardakanian 18] [Agarwal 11] **Damper Position** Sensors HOBO MX CO2 logge 2248 552 Magnetic Reed Grid-EYE Switches sensors https://www.cctvcamerapros.com/Dummy-Security-Camera-p/dum-d01.htm CO_2 , Temp & https://web.sonxplus.com/en/5-practical-tips-to-optimize-your-home-wireless-network/ https://hackaday.com/2017/06/05/diy-grid-eye-ir-camera/ Humidity Sensors http://csr200.blogspot.com/2016/03/damper-position-sensors.html https://www.tempcon.co.uk/shop/hobo-mx1102-bluetooth-co2-temp-rh-data-logger

Different sensing modalities

Different sensing modalities

Wait... Can HVAC sensors be used for occupancy estimation?

- Multiple sensing modalities, some are less correlated with occupancy (HVAC sensors)
- Several sensor data fusion algorithms
 - Physics-based model to quantify heat gain due to occupancy
 - Have to customize for each room/building. Too complex to build high-order models.
 - Black-box model
 - Easier to build, but requires large amounts of labelled data for training

- Multiple sensing modalities, some are less correlated with occupancy (HVAC sensors)
- Different sensor data fusion algorithms (black-box model)
 - Time-series models (using a sequence of data to predict)
 - RNN / NARX
 - Single snapshot prediction models (using one data point to predict)
 - SVR / SVM / Random Forest

- Multiple sensing modalities, some are less correlated with occupancy (HVAC sensors)
- Different sensor data fusion algorithms (black-box model)
- Ground truth data is often sparse or nonexistent (expensive to

collect)

Our hypothesis is...

models that are built in a controlled environment (source domain) can be reused in a new environment (target domain) after some adaptation

and that the adapted model has higher accuracy than a model built from scratch for the target domain

How is it applied to our problem?

- Train a well-suited model in a room equipped with a high-accuracy occupancy monitoring system (source domain)
- Adapt it to another room within the same building (target domain) using some information about the apparent differences between the rooms

 Main benefit: we do not need a lot of labeled data in the target domain; hence, it can be widely applied to the many rooms in a given building

Assumptions

- Occupancy influences measured quantities in both source and target domains in a similar way.
- The same types of sensors are deployed in both domains (same feature space)

Source and target domains may have different distributions

Room 1 in Building A

Room 2 in Building A

Source and target domains may have different distributions

Room 1 in Building A

Room 2 in Building A

Carbon Dioxide Concentration

Carbon Dioxide Concentration

Domain Adaptation Techniques

Domain Adaptive Recurrent Neural Networks

- Re-weighting (may be carried out for semi-supervised and unsupervised domain adaptation):
 - Adjust the weights of output layer based on the maximum occupancy
 - Adjust the weights of input layer corresponding to the CO_2 values based on the size of the room and the ventilation power of the room
- Re-training (only for semi-supervised domain adaptation):
 - Use the limited labeled data from the target domain to calibrate the weights

Methodology

Domain Adaptive NARX Network Domain Adaptive LSTM Cell

Carbon Dioxide Concentration

Carbon Dioxide Concentration

Carbon Dioxide Concentration

Re-weighting

Room 1 in Building A

Room 2 in Building A

The whole process...

 Domain-adaptation improves the accuracy

- Domain-adaptation improves the accuracy
- Semi-supervised performs better (re-training is useful)

- Domain-adaptation improves the accuracy
- Semi-supervised performs better (re-training is useful)
- Re-weighting can help reduce the RMSE, BUT requires the knowledge of the differences between the two domains

Takeaways

- Time-series black-box model can estimate the number of occupants accurately
- Domain-adaptation techniques can be applied to occupancy estimation task to improve the performance
- Domain-adaptation can significantly reduce the amount of ground truth data required in the target domain

Directions for future work

- What if the source and target domains are in two different geographies?
- What if the feature spaces are different?
- Can we apply domain adaptation to other types of models

(e.g., heat transfer models, occupant comfort models, etc.)?

Questions?

