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ABSTRACT
This paper investigates the problem of disaggregating solar genera-
tion from smart meter data when historical disaggregated data from
the target home is unavailable and deployment characteristics of the
PV system are unknown. The proposed method takes advantage of
solar generation data (aka proxy measurements) from a few sites lo-
cated in the same area as the target home, and solar generation data
synthesized using a physical PV model. We evaluate our method
with 4 different proxy settings on around 140 homes in Australia,
and show that the solar disaggregation accuracy is improved by
33.84% and 15.41% over two state-of-the-art methods using only
one real proxy along with three synthetic proxies. Furthermore, we
show that using the disaggregated home load instead of the net
load measured by a smart meter could improve the accuracy of two
popular non-intrusive load monitoring techniques by at least 22%.

CCS CONCEPTS
• Computer systems organization → Sensors and actuators; •
Computing methodologies→Modeling and simulation.
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1 INTRODUCTION
Solar photovoltaic (PV) generation is the fastest growing renewable
energy source today [10]. Almost half of this growth is projected
to be behind-the-meter (BTM) installations, which are typically PV
systems on the roof of homes and buildings [8]. High penetration of
PV systems introduces new challenges for planning and operation
of power distribution networks, requiring the system operators and
electric utilities to develop low-cost techniques for forecasting and
monitoring the solar power injected into their systems.
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Several methods have been proposed in the literature to estimate
the solar power generated by BTM PV systems. They can be di-
vided into three major categories: (a) methods that rely on satellite
and aerial imagery [8] to identify PV systems and estimate their
physical characteristics, (b) methods that rely on a few separately
metered solar sites in a geographical area to estimate the total solar
generation [16, 17], and (c) methods that apply source separation
techniques to disaggregate solar generation from feeder-level mea-
surement or smart meter data [5, 7]. Solar disaggregation methods
can be categorized based on the type of models they use for estimat-
ing solar power [6]. Some methods use a physics-based model to
estimate solar generation [2, 5, 11] while others use a data-driven,
black-box model [4, 12, 21].

In this paper we propose a solar disaggregation method to accu-
rately estimate the output of a BTM PV system in an offline fashion.
Our method has two key advantages over prior work on solar dis-
aggregation. First, it requires active power measurements with low
temporal resolution, which is already collected by ordinary smart
meters, and proxy measurements from only one or a few PV systems
located in the same geographical area. Second, our method has
a low computational overhead making it suitable for large scale
implementation. Our contribution is threefold:
• We propose a solar disaggregation method that merely re-
lies on net load data and just a small number of separately
metered solar PV systems. We show that real proxy mea-
surements can be replaced with synthetic ones to achieve
comparable performance as long as there is one real proxy.
• We compare our method against other state-of-the-art meth-
ods on a large dataset. We find that the proposed method
yields a higher accuracy than the baselines.
• We examine how the improved accuracy of solar disaggre-
gation affects the accuracy of two popular non-intrusive
load monitoring (NILM) methods, namely Factorial Hidden
Markov Model (FHMM) [13] and Sequence-to-Point [22].

2 PROBLEM DEFINITION & METHODOLOGY
In this section we introduce the solar disaggregation problem,
present models for home load and solar power, and propose an
iterative algorithm for estimating solar generation and home load.

2.1 Definition
Customer-level solar disaggregation concerns decomposing the
customer’s net load into home load and solar generation. Let y ∈ RT
be a vector that collects the measured net load of one customer
over T intervals. Similarly, let ℓ̂, ŝ ∈ RT denote respectively the
estimated home load and BTM solar generation in the same period.
These quantities must satisfy this equality constraint: y = ℓ̂ − ŝ.
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Let XL ∈ RT×Kl be the set of Kl features that determine the
customer’s home load, and XS ∈ RT×Ks be the set of Ks proxy
measurements that can be used to approximate the customer’s
solar generation via a mixture model. We can train a non-linear
model д to map the features to the home load, and a linear solar
mixture model to estimate the customer’s solar generation:

ℓ̂ = д(XL ;θ ), (1)

ŝ = XSw, (2)

where θ is a vector that represents parameters of the load model,
andw ∈ RKs is the weight vector of the mixture model. Hence,wk
is a scalar that represents the weight assigned to the kth proxy.

In our defined solar disaggregation problem, we assume no infor-
mation is available about the customers except their approximate
location (i.e., the city or district they are located in) and their net
load data. Thus, the deployment characteristics (e.g., panel size,
orientation, tilt) of BTM PV systems are also not known a priori.
In addition to the smart meter data, solar irradiance, wind speed,
and ambient temperature at the city scale can be downloaded via
an API. We also assume there is at least one separately metered
PV system (providing proxy measurements) in the same city or
district as our target home. The deployment characteristics of this
site could differ from the PV system installed at the target home.
We argue this is not a strong assumption as utilities usually have
access to direct solar measurements from several sites in a city.

2.2 Models
We now introduce our load estimation and solar mixture models
described in (1) and (2) respectively.

Solar mixture model: We aim to approximate the solar power
generated by the BTM PV system installed at the target home using
a mixture of proxy measurements from PV systems located in the
same city or district. The intuition behind this approximation is
that PV systems in the same geographical area have more or less
the same solar generation pattern regardless of their deployment
characteristics.

There are two specific challenges that must be addressed to
get a good approximation. First, we do not have control over the
deployment characteristics of the PV systems that provide proxy
measurements. If they had exactly the same orientation angle as the
PV system installed at the target home, estimating the target home’s
solar generation would reduce to learning a single scaling factor.
One way to address this challenge is to adopt a solar mixture model
to approximate the target home’s solar generation as a weighted
sum of a number of proxy measurements, as shown in Equation (2).
The second challenge is that proxy measurements from a large num-
ber of neighbouring PV systems might not be available in practice.
To address this challenge, we combine proxy measurements from
real PV systems with measurements synthesized by a physical PV
model that takes into account solar irradiance data of an arbitrary
location in the same city. The physical PV model that we use to ob-
tain data for synthetic proxies is based on PVWatts [9]. We develop
this model using the PV Performance Modeling Collaborative [20],
which is described in Appendix A.1.

Home load model: To estimate the home load, we adopt a
random forest regression model. We use the scikit-learn [15] library

to train this model. Four explanatory variables are used as features,
XL , for all customers. These variables include ambient temperature
c, exponentially weighted moving average of temperature over
the last 24 hours cwmv , hour of the day h, and a binary variable
d that indicates if it is a weekday or weekend. Thus, we have
XL = [c, cwmv ,h,d].

2.3 Solar Disaggregation Algorithm
Our solar disaggregation algorithm includes two main parts: a
weight initialization technique and an iterative algorithm for up-
dating the model parameters.

Weight initialization: The first step for implementing our
method is to initialize the weight vector w of the solar mixture
model using the net load data of the target home and the solar
generation data collected from the proxies. A good initialization
can enhance the performance of the disaggregation method and
reduce its convergence time. Our weight initialization method has
three main steps:

(1) Estimating the physical characteristics of PV systems in-
stalled at the target home and real solar proxies.

(2) Finding the maximum solar generation of each PV system.
(3) Solving an optimization problem to determine the initial

weight vector w.
We use an open source toolkit, SolarTK [2], to estimate the physical
characteristics of PV systems including its tilt, orientation, and
panel size. To estimate these parameters, the toolkit takes the real
solar generation data as input and finds the maximum solar gener-
ation. We can run this toolkit on proxy measurements, but we lack
the real solar generation data from the target home. To solve this
problem, we approximate the solar generation of the target home
given the net load data y from this expression ŝ ≈ max(0, ℓbase −y),
where ℓbase is the target home’s base power consumption calcu-
lated as the minimum consumption level at night time. SolarTK
is then run on the estimated solar generation of the target home
and the real solar generation of solar proxy/proxies to obtain the
estimated parameters of all PV systems. Since we use the longitude
and latitude of an arbitrary location in the city as the approximate
location for all the PV systems in that city, the estimated parameters
may not be highly accurate.

We then calculate the maximum solar generation for each proxy
and target home using the estimated deployment characteristics
obtained in Step 1. The maximum solar generation is the poten-
tial generation of a PV system under clear sky condition, that is
determined by the system’s physical characteristics, the ambient
temperature and the location of PV. We denote the maximum solar
generation of the kth proxy bymp

k ∈ R
T , and the maximum solar

generation of the target home bymc ∈ RT .
In the last step, we determine the initial weight vector, w, for

the solar mixture model following the idea of [17, 19]; the solar
generation of a target home with unknown deployment character-
istics is estimated utilizing metered solar generation of sites with
nonuniform deployment characteristics. Formally, we can write

starдett = α · sproxyt (3)

where α depends on time, site location, and other site-specific fac-
tors. In our method, we simplify α to be a constant weight factor for
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Algorithm 1: Solar disaggregation for one target customer

Input :Net load of the target customer, y ∈ RT ;
Proxy measurements from K sites, XS ∈ RT×K ;
Initial weights of the solar mixture model, w ∈ RK ;
Load related features, XL .

Output :Estimated solar generation and home load of the
target customer, ŝ, ℓ̂;

Init: w0 ← w/K ;
s0 ← XSw0;
Initialize parameters θ0 for load model д;

1 while iter < Max Iteration and |witer − witer−1 | > ϵ do
2 ℓiter ← siter + y;
3 Incrementally train the model g with input feature XL

and output ℓiter ;
4 Update load ℓiter ← д(XL ,θ iter );
5 siter = ℓiter − y;
6 witer ← argminw ∥XSw − siter ∥2;
7 siter ← XSwiter ;
8 end

each site, i.e., wk . Since we do not have the true solar generation
from the target home in Equation (3), we use the maximum solar
generations to determine the initial weight of each solar proxy.
Specifically, the weight factor wk for the kth proxy can be deter-
mined by solving the following optimization problem:

min
wk

∥wk ·m
p
k −m

c ∥2

subject to wk > 0
(4)

Disaggregation algorithm: In this step, we iteratively estimate
the home load and solar generation until the parameters of our
model converge. Algorithm 1 presents the pseudocode of the pro-
posed solar disaggregation algorithm. After obtaining the initial
weights w for the solar mixture model, we first estimate the solar
PV generation siter using a linear combination of the solar proxies.
Then, we use y = ℓ̂ − ŝ to calculate the estimated home load ℓiter

(line 2) and incrementally train the load model using ℓiter and load
related features XL (line 3). Based on the updated home load ℓiter
(line 4), we determine solar generation siter (line 5), update the
weights for solar proxies (line 6), and recalculate the solar genera-
tion using the updated weights (line 7). We repeat the above steps
until the solar proxy weightsw converge or we reach the maximum
number of iterations. In our experiments, it typically takes between
20 and 80 iterations for this algorithm to converge depending on
the number of proxies and goodness of initial weights.

3 EVALUATION
3.1 Dataset
We use the Ausgrid [1] dataset to evaluate the estimation accuracy
of different solar disaggregation methods. This dataset includes
30-minute resolution net load measurements in addition to direct
measurements of home load and solar generation from homes with
rooftop PV systems. It consists of 140 customers with rooftop PV

systems in Sydney, Australia (in the southern hemisphere) with the
latitude and longitude of -33.888575 and 151.187349 respectively.
These locations are approximate since we only have the postal code
of each customer. Since Sydney is a sprawling city, we cluster the
customers into three clusters according to their latitude and longi-
tude. Each cluster still spans a large area of the city. We consider
two periods in two seasons, one from November 1, 2012 to Novem-
ber 30, 2012 in the summer season (T=1440) and the other one from
May 1, 2013 to May 30, 2013 in the winter season (T=1440). A small
number of customers are removed due to data quality issues in
each season. For Sydney’s weather data, we pull the solar radiation,
wind speed, and outside air temperature with 30-minute temporal
resolution using the Solcast API [18].

3.2 Variants of our Disaggregation Method
We implement our method with 4 different solar proxy settings.

• 3Proxies: we directly use solar generation data for the same
periods from 3 real rooftop PV systems in the same area.
• 1P+1SP: we only use 1 real solar proxy combined with 1
synthetic proxy. In this case, the ideal orientation angle in
the southern hemisphere is 0◦.
• 1P+3SP: we use 1 real solar proxy combinedwith 3 synthetic
proxies with different orientation angles.
• 3SP: we use 3 synthetic proxies with different orientation
angles just like the previous setting.

For the above settings that include synthetic proxies, we set the tilt
angle to the absolute value of the city’s latitude and use a uniform
3kW DC rating. We set orientation angle of the three synthetic
proxies to 0◦, 90◦, and 270◦ respectively (i.e., N, E, and W facing
panels). The tilt and DC rating have a similar effect on solar gen-
eration curve, i.e., they scale the curve up or down [5], whereas
the orientation shifts the peak of the generation curve to earlier or
later. Therefore, we can set the tilt angle and DC rating similarly for
all the synthetic solar proxies because the elements of our weight
vector w will be adjusted by Algorithm 1.

3.3 Baselines
We compare the performance of our solar disaggregation method
with two methods that also use the data that is commonly available
to the utility and outperform other solar disaggregation methods
proposed in the literature. Specifically, we use the solar disaggre-
gation methods proposed in [11] and [2] as our baselines; these
methods are labelled “Baseline 1” and “Baseline 2”, respectively.
For a fair comparison, we implement the one-nearby-proxy-based
solar estimation method in [2] that was adopted in the case study
of computing the clear sky index. In each experiment, we use the
same real solar proxy for our method and Baseline 2.

4 EXPERIMENTAL RESULTS
In this section we evaluate the performance of our methods in
disaggregating BTM solar generation using root-mean-square error
(RMSE) and normalized RMSE (nRMSE) metrics. nRMSE is the
RMSE normalized by the mean value of the real solar generation.
We then investigate the impact of running solar disaggregation on
the performance of NILM methods.
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4.1 Solar Disaggregation Performance
We compare the 4 variants of our method – 3Proxies, 1P+1SP,
1P+3SP, and 3SP – with the two baselines described in Section 3.2.
For each variant, we evaluate the disaggregation performance for
all customers with PV systems in the dataset. Since our method
utilizes proxy measurements, we run the experiment 10 times for
each target home with real solar proxies that are randomly selected
from the same cluster as the target home.

Estimation accuracy: Table 1 shows the average nRMSE and
RMSE of solar generation and home load estimation across all cus-
tomers in two seasons. We observe that 3Proxies yields the lowest
error compared to the other variants of our method and the two
baselines. 1P+1SP and 1P+3SP also beat the two baselines in both
seasons. On average, 1P+1SP reduces nRMSE by 31.09% and 11.61%
and 1P+3P reduces nRMSE by 33.84% and 15.41% compared to Base-
line 1 and Baseline 2, respectively. This observation suggests that
by utilizing as few as only one directly measured solar generation
site and synthetic proxies with different orientation settings, we
can get a better estimate of solar generation and home load than
the state-of-the-art solar disaggregation methods. Interestingly, 3SP
has the worst performance among the four variants of our method,
although it still beats both baseline methods in winter. This under-
scores the importance of having at least one real proxy for solar
disaggregation to account for abrupt changes (e.g., due to a passing
cloud) in the solar generation.

Table 1: Comparison of disaggregation methods. Each cell
contains two slash-separated metrics: nRMSE and RMSE.

Summer Winter

Method Solar Load Solar Load

3Proxies 0.469/0.0621 0.232/0.0593 0.771/0.0602 0.199/0.0582
1P+1SP 0.543/0.0723 0.273/0.0686 0.841/0.0677 0.226/0.0649
1P+3SP 0.525/0.0691 0.254/0.0650 0.797/0.0638 0.212/0.0617
3SP 0.643/0.0858 0.305/0.0780 0.854/0.0702 0.231/0.0669
Baseline 1 0.612/0.0778 0.287/0.0778 1.713/0.1210 0.375/0.1210
Baseline 2 0.631/0.0857 0.337/0.0857 0.927/0.0767 0.272/0.0767

Figure 1 in A.2 illustrates the disaggregated solar generation in
two seasons by 1P+3SP and the two baseline methods. It can be seen
that our estimated solar is generally closer to true solar generation
in terms of estimating peak generation time and generation scale.
Figure 2 in A.2 shows real solar generation profiles of a target home
and the four proxy measurements used in 1P+3SP. Note that the
peak generation of the target home and real solar proxy happen
at different times as they have different orientations. In this case,
the synthetic proxy with an orientation angle close to the target
home’s orientation angle gets a much higher weight compared to
the other synthetic proxies and the real proxy. This highlights the
advantage of incorporating the synthetic proxies.

4.2 NILM Performance
We use 1-minute resolution data from Pecan Street [14] to study
the effect of BTM solar generation on the performance of NILM
techniques. We choose this dataset because it has both solar genera-
tion and individual appliance consumption data. We select 6 homes

from this dataset and apply two benchmark NILM techniques (i.e.,
FHMM [13] and Seq2Point [22]) implemented in NILMTK [3].

We evaluate the performance of these two NILM methods in
disaggregating the loads of 7 appliances, including the washing
machine, microwave, air conditioner, furnace, fridge, dryer and dish
washer, in each of the 6 homes. Since a dryer is not present in 4 of
these homes, we only report the results for the remaining 2 homes
for this appliance. We train appliance models using real home load
and individual appliance load data collected between June 1 and
June 22, 2018. We then calculate the error of disaggregating each
appliance’s load in the test data (from June 23 to June 30, 2018)
with 5 different sets of input data, including the true home load, the
net load (i.e., home load - BTM solar generation), and 3 versions of
the estimated home load obtained by applying our disaggregation
method (1P+3SP), and the two baseline methods described earlier.

Figure 3 in A.2 shows the average RMSE for each appliance and
the overall RMSE for all appliances in these homes. Two important
observations can be made. First, solar disaggregation will improve
the overall NILM accuracy but different appliances are affected
to a different extent. The overall RMSE for all appliances will be
0.446 if we directly apply Seq2Point (the best performing NILM
method) on the net load data. However, the RMSE will be 0.150 if
we apply it to the home load estimated by 1P+3SP, an impressive
66.2% improvement in disaggregation accuracy. We also observed
a 22.0% improvement for FHMM. Our second observation is that
a higher accuracy in solar disaggregation leads to a better NILM
performance, especially for appliances with more variable power
usage patterns. The overall RMSE of Seq2Point when it runs on
the home load estimated by the 1P+3SP method is 22.3% and 9.7%
lower than when it runs on the home load estimated by Baseline 1
and Baseline 2, respectively.

5 CONCLUSION
Solar disaggregation will be essential for the reliable operation of a
nimble and transparent power distribution system. In this work, we
proposed a method for disaggregating solar generation of BTM PV
systems in an offline fashion. This method relies on net load data
and proxymeasurements from a few PV systems located in the same
geographic area as the target home. We evaluated our proposed
method on a publicly available dataset from Australia. We found
that the solar estimation accuracy improves by 15.41% on average
over the best baseline (i.e., Baseline 2) when one real proxy and
three synthetic proxies are used. Finally, we investigated whether
a more accurate disaggregation technique could lead to higher
accuracy in NILM. Our results suggest that using the disaggregated
home load rather than the net load improves the overall accuracy
of NILM by 22.0% to 66.2%.

We plan to test our method in a climate where snow accumula-
tion can greatly affect the output of PV systems. Another direction
we will pursue in future work is designing a disaggregation algo-
rithm that can be used in the presence of BTM battery storage.
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A APPENDIX
A.1 Physical Solar Model
The output power of the PV system with the specified rating Pdc0
can be computed given the transmitted plane of array (POA) irradi-
ance Itr and cell temperature Tcell :

Pdc =
Itr
Er ef

Pdc0(1 + γ (Tcell −Tr ef )) (5)

Here γ represents the temperature coefficient, Er ef represents the
reference irradiance, and Tr ef represents the reference cell temper-
ature. We set them respectively to -0.47%/◦C , 1000W/m2, and 25◦C
to create synthetic proxies. Itr is determined by solar irradiance
data (direct normal irradiance, diffuse horizontal irradiance, global

horizontal irradiance), PV system characteristics (e.g., tilt, orienta-
tion), and its location. Tcell is a function of wind speed, ambient
air temperature, and solar irradiance data. We use different preset
technical parameters for different synthetic proxies.

A.2 Supplementary Figures

Figure 1: Comparison of disaggregated solar generation in
summer (top) and winter (bottom) for a customer.

Figure 2: PV generation (kW) of a sample home. Dashed
curves showproxymeasurements. The relativeweights (nor-
malized to sum to 1) of proxies are given in the legend.
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Figure 3: Average RMSE of each appliance among all selected homes. The top plot shows the disaggregation performance of
FHMM and the bottom one shows the performance of Seq2Point. Error bars show the 95% confidence interval.
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