
Poster Abstract: COBS: COmprehensive Building Simulator
Tianyu Zhang

University of Alberta
Edmonton, AB, Canada
tzhang6@ualberta.ca

Omid Ardakanian
University of Alberta
Edmonton, AB, Canada
ardakanian@ualberta.ca

ABSTRACT
This poster abstract describes the design and implementation of an
open-source building co-simulation platform which integrates vari-
ous models, simulators, and controllers (e.g., HVAC, lighting, and
window blinds), enabling comprehensive evaluation of occupant-
centric building controls. Using proper locking, it interacts with
EnergyPlus in each time step to access and modify the simulation
model object before running simulation in the next time step. The
interface is designed similar to OpenAI Gym so that environments
that are already written for Gym can be used with this platform. The
proposed platform utilizes a queueing network simulator to gener-
ate realistic movement traces for occupants and simulate actions in
a probabilistic fashion.

CCS CONCEPTS
• Software and its engineering→Designing software; •Com-
puter systems organization→ Embedded and cyber-physical sys-
tems.
ACM Reference Format:
Tianyu Zhang and Omid Ardakanian. 2020. Poster Abstract: COBS: COm-
prehensive Building Simulator. In The 7th ACM International Conference on
Systems for Energy-Efficient Buildings, Cities, and Transportation (BuildSys
’20), November 18–20, 2020, Virtual Event, Japan. ACM, New York, NY, USA,
2 pages. https://doi.org/10.1145/3408308.3431119

1 INTRODUCTION
Buildings account for 39% of the total energy consumption in the
U.S. [1]. A large fraction of this energy is consumed to maintain
thermal and visual comfort of the occupants. This together with
the fact that people in North America spend 87% of their time
indoors [6] emphasizes the importance of designing energy-efficient
building controls that incorporate information about occupants’
presence and actions to maximize their comfort. However, with the
large number of control knobs that exist in a typical commercial
building and stringent comfort requirements, evaluating different
control policies on top of buildings with real occupants is onerous
and costly. Consequently, most control policies today are evaluated
for a short period of time on a few test buildings.

Executing control policies in a simulated environment can help
overcome the barriers to real-world deployment of a new con-
trol policy by enabling comprehensive evaluation of this policy in

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
BuildSys ’20, November 18–20, 2020, Virtual Event, Japan
© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8061-4/20/11.
https://doi.org/10.1145/3408308.3431119

buildings with various sizes and occupancy schedules, located in
different climates. Furthermore, policy evaluation in a simulated
environment is useful for the design of reinforcement-learning (RL)
controllers that improve a policy in an iterative fashion and benefit
from offline training. Existing building energy simulators, such
as EnergyPlus, can provide an accurate building energy analysis
over multiple days within seconds, but they suffer from two funda-
mental problems. First, they require the full control policy before
running a simulation. This prevents users from writing code that
interfaces with other simulators and incorporating external models
in their control algorithm. Second, they only focus on the number
of people present in each zone, neglecting effects of their actions on
the environment. To simulate occupants’ actions, it is necessary to
track each occupant inside the building and simulate actions (e.g.,
turning lights on, opening blinds, adjusting temperature setpoints)
conditioned on their location. This is crucial as in most cases occu-
pants must be in the proximity of an actuator or a control panel in
order to operate it. Due to these shortcomings, recent studies [4]
build standalone simulators using BCVTB [7] to generate data for
offline learning.

In this paper, we introduce COBS1, an open-source and modular
co-simulation platform in Python which is designed to support
fine-grained control over the states of multiple building subsystems
(which can be modelled separately) in each step of simulation. It
provides the ability to include and exchange data between multi-
ple models, allows benchmarking control algorithms across many
buildings, and facilitates online learning. Additionally, COBS uti-
lizes an occupancy simulator which generates realistic individual
trajectories and samples interactions between occupants and build-
ing subsystems from conditional probability distributions. These
probabilities can be learned from datasets that capture how occu-
pants interact with building interfaces. We briefly describe COBS’s
architecture in the next section.

2 ARCHITECTURE
COBS is developed with three design goals. First, it needs to re-
turn the observed building state at each time step, and execute
user-specified actions to update this state for the next time slot.
This is imperative for implementing learning-based control algo-
rithms. Second, it must provide a simple interface for the inclusion
of state estimators and predictive models (for room temperature,
occupancy, solar radiation). Adding predictions to the state is essen-
tial for proactive control of building subsystems. Third, it needs to
interface with data synthesizers to obtain traces, e.g., for occupant
movements and actions. This is in contrast to existing simulation
packages, such as EnergyPlus, which take as input pre-defined
schedules for occupants, windows, lights, etc.
1COBS can be downloaded from https://github.com/sustainable-computing/COBS/.
The documentation is available at https://cobs-platform.github.io.

https://doi.org/10.1145/3408308.3431119
https://doi.org/10.1145/3408308.3431119
https://github.com/sustainable-computing/COBS/
https://cobs-platform.github.io


BuildSys ’20, November 18–20, 2020, Virtual Event, Japan Tianyu Zhang and Omid Ardakanian

Figure 1 shows the overall architecture of COBS. It takes the
building IDF file created by modelling software, such as SketchUp,
OpenStudio, and EnergyPlus, and combines it with the output of
an occupancy simulator which determines the location of each
occupant and any actions they may perform in that location. The
resulting model is used to implement actions in the event queue and
simulate the building state using EnergyPlus. The platform takes
advantage of a priority scheduling algorithm to schedule various
time-stamped events. The simulated building state is then modified
and augmented by several estimation and prediction models. This
updated state is then used for reward calculation (given a user-
defined function) and sent to the control agent. All actions, rewards,
and modified state variables for each time slot are stored in a replay
buffer for ease of access in the future.

Our framework enables the agent to learn an optimal control
policy through direct interaction with the simulated building envi-
ronment. This is particularly useful for implementing RL algorithms
to optimally control HVAC and lighting systems or window blinds,
an area that has received increasing attention in recent years [5].
Unlike the environment used in RL, our model provides the agent
with not only historical and real-time data but also future predic-
tions. This improvement makes the design of RL algorithms easier
and opens the door to the integration of several models with the
building control agent. The platform consists of three main compo-
nents described below.
• Model Class consists of a replay buffer, a building model in IDF

format, and several models for estimating, predicting, and mod-
ifying the state returned by EnergyPlus. The platform provides
methods like reset and step following the same structure as
the OpenAI Gym [3]. Thus, RL agents written using Gym can be
ported to our platform with small changes. The platform uses
multiprocessing and locking mechanisms to support real-time
interaction between agents and EnergyPlus, thereby ensuring
the action is implemented before simulating the next state.

• EventQueue Class uses a priority queue to store and schedule
all actions at specified times. The queue determines the order of
execution of different actions in each time slot according to their
priority and insertion time. Agents and predictive models can
access the queue to retrieve future events and make decisions
based on them if needed.

• OccupancyGenerator Class exploits a queueing network sim-
ulator to produce realistic occupancy schedules. The queueing
network is constructed according to the floorplan of the build-
ing, probabiilties of visiting different spaces upon leaving a
space, and the average time spent in each space (terminal zone).
We elaborate on this process in Section 3.

3 OCCUPANTS’ MOVEMENTS AND ACTIONS
Several studies suggest that occupants behaviour can greatly affect
the energy use and number of comfort violations [2]. For instance,
occupants may open/close windows and doors, resulting in a con-
siderable change in the carbon-dioxide concentration, air flow, and
room temperature. Control systems respond to this change in differ-
ent ways to maintain the temperature around the setpoint and meet
comfort requirements. This implies that using a fixed occupancy
schedule and neglecting actions to evaluate control policies may
lead to different conclusions.

architecture.png

Figure 1: Overall Architecture
To address the challenge of collecting occupancy data, including

occupant presence and actions, we propose an occupancy generator
that draws on queueing theory to generate trajectories for occu-
pants. Furthermore, we use the synthesized occupant trajectory to
simulate the occupant actions based on control knobs that exist
in the room where the occupant is and the conditional probability
provided to the generator in the form of a JSON file.

We treat each occupant as a job in the queueing network and
each zone as a FCFS queueing system with infinite servers and
exponentially distributed service times. Therefore, each zone is an
M/M/∞ queue, and the whole building can be modelled as an open
queueing network comprised of N queues which are connected
based on the floorplan of the building. Occupants arrive to the
building following a Poisson process with a rate that depends on
time of the day. Concretely, the arrival rate is relatively higher in
the morning when people are expected to go to work.

The stay time in each zone depends on its function for each
occupant. Occupants stay longer in their designated office space
and shorter in other spaces in the building. Movements inside the
building are governed by a probability which is higher for returning
to their office and lower for visiting other spaces upon leaving a
space. The time spent moving between spaces is also considered.We
assume the service in this queueing network can be interrupted by
a number of events, including the lunchtime and start of a meeting.

After simulating the locations of each occupant for a given sim-
ulation period, we calculate the total number of occupants in each
zone and store it in the model. The occupancy location is then used
to simulate occupants’ actions; they must be simulated for each
time slot because their occurrence may depend on the current state
of the building. Hence, in each time step, we filter out infeasible
actions in all occupied zones and decide whether to simulate an
action by sampling from a conditional probability distribution.

REFERENCES
[1] U.S. Energy Information Administration. 2019. Annual Energy Review 2019. U.S.

Government Printing Office, Chapter Energy consumption estimates by sector.
[2] Rune Andersen et al. 2009. Survey of occupant behaviour and control of indoor

environment in Danish dwellings. Energy and Buildings 41, 1 (2009), 11–16.
[3] Greg Brockman et al. 2016. OpenAI Gym. arXiv:1606.01540
[4] Bingqing Chen et al. 2019. Gnu-rl: A precocial reinforcement learning solution for

building HVAC control using a differentiable MPC policy. In Proc. ACM BuildSys.
ACM, 316–325.

[5] Konstantinos Dalamagkidis et al. 2007. Reinforcement learning for energy conser-
vation and comfort in buildings. Building and environment 42, 7 (2007), 2686–2698.

[6] Neil Klepeis et al. 2001. The National Human Activity Pattern Survey (NHAPS).
Journal of Exposure Science & Environmental Epidemiology 11, 3 (2001), 231–252.

[7] Michael Wetter. 2011. Co-simulation of building energy and control systems with
the Building Controls Virtual Test Bed. Journal of Building Performance Simulation
4, 3 (2011), 185–203.

https://arxiv.org/abs/1606.01540

	Abstract
	1 Introduction
	2 Architecture
	3 Occupants' Movements and Actions
	References

