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ABSTRACT
With the rollout of bidirectional chargers, electric vehicle (EV) bat-

tery packs can be used in lieu of utility-scale energy storage systems

to support the grid. These batteries, if aggregated and coordinated at

scale, will act as a virtual power plant (VPP) that could offer flexibil-

ity and other services to the grid. To realize this vision, EV owners

must be incentivized to let their battery be discharged before it is

charged to the desired level. In this paper, we use contract theory

to design incentive-compatible, fixed-term contracts between the

VPP and EV owners. Each contract defines the maximum amount

of energy that can be discharged from an EV battery and exported

to the grid over a certain period of time, and the compensation

paid to the EV owner upon successful execution of the contract,

for reducing the cycle life of their battery. We then propose an

algorithm for the optimal operation of this VPP that participates

in day-ahead and balancing markets. This algorithm maximizes

the expected VPP profit by taking advantage of the accepted con-

tracts that are still valid, while honoring day-ahead commitments

and fulfilling the charging demand of each EV by its deadline. We

show through simulation that by offering a menu of fixed-term

contracts to EVs that arrive at the charging station, trading energy

and scheduling EV charging according to the proposed algorithm,

the VPP profitability increases by up to 12.2%, while allowing EVs

to partially offset the cost of charging their battery.
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• Theory of computation→ Algorithmic game theory and
mechanism design; Mathematical optimization.
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1 INTRODUCTION
The number of distributed energy resources (DERs) installed in

low-voltage power distribution networks is projected to increase

steadily in the near future [7]. This is because DERs, such as solar

panels, heat pumps, and batteries installed in homes and electric

vehicles (EVs), deliver cost and energy savings with lower environ-

mental impact than their traditional counterparts. In addition to

these benefits, there is an immense potential for DERs to provide

flexibility and emergency support to the grid [37], and to prevent

outages during contingencies and extreme weather events. To tap

into this potential, DERs must be aggregated and controlled at

scale, creating the so-called virtual power plant (VPP) [27]. This is
no longer a vision of the future, there are several real-world VPP

implementations today. For example, Tesla [5] and Swell Energy [3]

provide various services to the grid by aggregating batteries and

solar systems in residential buildings. To generate revenue, the VPP

typically participates in one or multiple electricity markets, e.g.,

day-ahead, intra-day, balancing, and ancillary services markets.

There is a vast literature on VPPs that incorporate energy stor-

age [10, 12, 36], in some cases along with renewable energy systems.

A specific category is VPPs that aggregate EVs and smart chargers,

oftentimes with vehicle-to-grid (V2G) support [18, 22, 23, 33, 36, 38].

Determining the optimal operation of such a VPP is more difficult

than the VPPs that incorporate stationary energy storage due to the

uncertainty in EV mobility, spatial distribution of charging stations,

and the requirement that the energy demand of every EV must

be satisfied before its departure from the charging station, which

is necessary to mitigate discomfort and increase user acceptance.

The related work in this area can be classified into two types: (1)

assuming the VPP owns an EV fleet entirely, so it has full control

over the charging process
1
and does not have to offer incentives to

the EVs for discharging their battery [33]; (2) considering privately

owned EVs which must be incentivized to allow V2G as the addi-

tional charge/discharge cycle(s) would reduce the lifespan of their

battery. While the design of these incentives has been investigated

in the past, the related work either does not guarantee the energy

demand of each EV is fulfilled [22, 36], does not consider bidirec-

tional charging [18], or lowers the charging price for all EVs instead

of offering an incentive to encourage voluntary participation in the

VPP [38]. Moreover, there is little work on investigating whether

the VPP will remain profitable if it provides monetary incentives

to encourage participation in the VPP.

We consider a setting in which the VPP controls a network of

charging stations that are equipped with bidirectional chargers and

1
The coupling of ownership and control is restrictive in the sense that a VPP does not

own a large fraction of light-duty EVs in the real world, hence the amount of flexibility

it can offer would be limited.

https://doi.org/10.1145/3575813.3597353
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are visited by a set of privately owned EVs during the day. Studying

this VPP is particularly interesting because of the large number

of ongoing V2G pilot projects worldwide, usually in collaboration

with utility companies and automakers (see [6, 8] for example).

We assume this VPP can buy or sell energy in the day-ahead (DA)

market by placing energy bids for every hour of the next day. More

specifically, the VPP is assumed to be price taker, bidding only on

the amount of energy without specifying a price. Due to the high

uncertainty of EV mobility, there might be a mismatch between the

day-ahead commitment and real-time energy demand. In that case,

the VPP operator can provide incentives to EVs that newly arrive at

the charging stations and take advantage of bidirectional charging

to shape the overall EV charging demand, or trade energy in the

imbalance market (aka balancing market) to close the gap between

its day-ahead commitment and current energy demand. Figure 1

shows how a VPP participates in the two-stage electricity market.

Drawing on the principal–agent model in contract theory [13],

we design a set of incentive-compatible, fixed-term V2G contracts

that the VPP (principal) offers to each EV (agent) upon arriving

at the charging station to maximize its expected utility. A V2G

contract specifies the total amount of energy the VPP can discharge

from an EV battery over a time interval (determined by the contract

duration) and the compensation the EV receives in return. The EV

owner can accept one of the offered contracts based on its type,
which may depend on how it perceives the battery degradation

cost or other factors that influence its willingness to participate in

the VPP. Since the contracts are incentive-compatible, EV owners

would benefit the most from accepting the contract designed for

their type, forcing them to reveal their type truthfully [16]. Finally,

we explain how the VPP can judiciously use the flexibility offered by

EVs that accepted one of the contracts to maximize its profit, while

respecting the charging deadlines. Our contribution is threefold:

• We formulate the design of incentive-compatible contracts

that maximize the expected utility of the VPP as a convex

optimization problem, and prove that this problem is equiv-

alent to a simpler linear program with fewer constraints.

We then describe a strategy that enables the VPP to offer a

subset of these contracts that are feasible and meaningful to

an EV, given the initial energy content of its battery, and the

energy demand and deadline it declares upon arrival.

• We develop an online scheduling algorithm that determines

how to optimally charge the connected EVs or discharge the

EVs that have a valid contract, given the day-ahead commit-

ments of the VPP, accepted contracts that have not expired

yet, and price forecasts for the real-time market. This algo-

rithm honors day-ahead commitments and V2G contracts,

and ensures the energy demand of each EV is satisfied before

it departs from the charging station.

• We use real data from a network of charging stations in the

Netherlands to analyze the sensitivity of V2G contracts to

the contract duration and examine the financial viability of

this VPP under the proposed operating strategy.

While the design of V2G contracts has been studied to some extent

in the literature [19, 24, 45], to our knowledge, this paper is the first

one that studies contract design and optimal VPP operation prob-

lems jointly, and guarantees that the energy demands are satisfied

by the user-specified deadlines.
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Figure 1: A VPP that aggregates privately owned EVs, controls
a network of bidirectional chargers in a region, and partic-
ipates in day-ahead and imbalance markets. Black arrows
show information flow. The horizontal bar is the time axis.

The rest of this paper is organized as follows. Section 2 gives an

overview of the related work, with an emphasis on incentive design

for V2G. Sections 3, 4, and 5 present the utility function of the VPP

and EV owners, the design of V2G contracts that maximize the

expected utility of the VPP, and the set of fixed-term contracts ob-

tained for a case study. Section 6 explains how the VPP should take

advantage of the accepted contracts in its real-time operation to

maximize its profit. We evaluate the proposed methodology in Sec-

tion 7 using real data. We discuss practical concerns and limitation

of our work in Section 8 and conclude the paper in Section 9.

2 RELATEDWORK
Mechanism design concerns designing a system (e.g., game, market,

election) in which strategic behavior of selfish participants leads to

a desired outcome. Since it is commonly assumed that participants

have private preferences, the goal is to design specific rules (i.e., the

mechanism) such that it is in every participant’s best interest to act

according to their true preferences, revealing their private informa-

tion [31]. Contract theory is a principle from microeconomics [34]

which is closely related to mechanism design. In contract theory,

the goal is to design a set of contracts between two self-interested

parties. A contract is a commitment that one party will pay the

other party upon successful implementation of the contract terms.

Otherwise, no payment will be made. For example, a V2G contract

is a commitment that the VPP will pay EV owners for discharging

a certain amount of energy from their battery.

Mechanism Design for V2G Participation. Wu et al. [41] design

a vehicle-to-aggregator interaction game where the aggregator

is the coordinator and EVs are modeled as independent players

providing frequency regulation service to the power grid by tak-

ing (dis)charge actions. The main limitation of this work stems

from the homogeneity assumption where diverse preferences of

EV owners are not considered. In [43], a two-level reverse auction

is implemented with a group-bidding mechanism where EVs are

incentivized for V2G participation using a feedback-based pricing

scheme. In [25], EV (dis)charging decisions are coordinated via a

distributed mechanism consisting of the aggregator’s day-ahead

scheduling and distributed coordination and dispatch algorithms

for V2G. References [46] and [42] design mechanisms to incentivize

EV owners to participate in V2G. We note that designing a pricing

scheme differs from designing a fixed-term V2G contract in that



Making a Virtual Power Plant out of Privately Owned Electric Vehicles: From Contract Design to Scheduling e-Energy ’23, June 20–23, 2023, Orlando, FL, USA

the contract allows the VPP to use the available flexibility at a later

time (before the contract expires) and the payoff is not made imme-

diately. The EV owner will be paid only if the contract is executed

successfully, i.e., the EV remains connected until the deadline.

Contract Design for V2G Participation. Extensive research has

been done on designing contracts for smart charging (see [39, 44]

and references therein). Nevertheless, only a small number of stud-

ies use contract theory to incentivize EV owners to participate in a

V2G scheme [19, 24, 45]. Zhang et al. [45] use contract theory to

incentivize EVs in a cloudlet-based vehicle-to-vehicle setting, where

an external broker agent offers contracts to EVs that are willing to

discharge their battery and resells this energy to EVs that need to

be charged. However, the contracts designed in this work may be

infeasible at certain times; therefore, a separate algorithm is used to

re-design the infeasible contracts, causing more overhead. In [24], a

game theoretic approach (i.e., a non-cooperative Stackelberg game)

is used to find the optimal pricing for discharging EVs and their dis-

charge strategy, and a contract theory-based approach is proposed

to incentivize EV owners to participate in V2G. But, the authors do

not study how the aggregator participates in electricity markets and

the designed V2G contracts are not fixed-term. To encourage V2G

participation, the authors of [19] develop an algorithm to learn the

optimal unit price according to past interactions of EV owners with

the aggregator, using a modified Upper Confidence Bound (UCB)

algorithm [28]. However, they do not incorporate the EV owners’

perceived battery degradation cost in their algorithm design, which

might lead to sub-optimal performance of the algorithm. We at-

tempt to overcome these limitations by modelling how different EV

owners perceive the battery degradation cost and designing a set

of incentive-compatible V2G contracts between the VPP and EVs.

Contract Parameters. The V2G contracts designed in previous

work encompass a subset of these parameters: remuneration, dura-

tion, discharge energy amount, number of (dis)charge cycles, plug-

in time restrictions, and guaranteed minimum state-of-charge [21].

In the context of demand response and peak shaving, contracts in-

clude other parameters, such as the maximum number of requests

that can be made in a time frame [14]. Notice that the V2G contracts

we design in this paper are fixed-term and valid for the duration

of one charging session. This is because contract feasibility cannot

be easily verified across multiple charging sessions with different

lengths. Moreover, fixed-term contracts simplify decision-making

for the VPP operator and EV owners at the same time.

V2G Contracts vs. FlexOffers. FlexOffer [29, 30] provides a frame-

work for expressing and managing flexibility, e.g., aggregating the

flexibility offered by many resources prior to trading in an electric-

ity market [35]. We discuss in Section 8 that FlexOffers and V2G

contracts complement each other, as it is possible to aggregate the

flexibility offered by a vast number of EVs that accepted the V2G

contracts to reduce the complexity of the VPP scheduling problem.

3 MODELING VPP-EV INTERACTIONS
We use the principal-agent model [13] to describe the interaction

between the VPP and EV owners. In this model, the VPP (principal)

has bargaining power, meaning it defines the set of fixed-term

contracts that will be offered to EV owners (agents). EV owners

can accept one of these contracts or decline them all (opting out).

3.1 EV Owner Type
Let 𝑁𝑡 be the set of EVs that arrive at the charging station in hour

𝑡 of the day and N = ∪𝑡 ∈T {𝑁𝑡 } be the set of EVs that arrive at
the charging station on this day, i.e., in a 24 hour period (T =

{1, · · · , 24}). Each EV owner 𝑛 ∈ N has some private information

that influences the amount of energy they are willing to provide to

the VPP through V2G. We classify EV owners into different types
based on their willingness to allow V2G. Without loss of generality,

we assume the type of an EV owner belongs to an interval, [𝜃, 𝜃 ].
We quantize the type with a quantization factor 𝑀 such that the

collection of types forms a discrete set denoted Θ = {𝜃1, · · · , 𝜃𝑀 }
where 𝜃 ≤ 𝜃1 < · · · < 𝜃𝑀 ≤ 𝜃 . A greater value of𝑚 in 𝜃𝑚 indicates

that the EV owner is more willing to have their battery discharged

to take part in the VPP. The VPP operator does not know the type

of a specific EV owner since it depends on their private information.

But we assume the VPP operator knows a probability distribution

over the existing types, hence it knows an arbitrary EV would have

type 𝜃𝑚 with probability 𝜋𝑚 (where

∑𝑀
𝑚=1

𝜋𝑚 = 1).

3.2 Contract Structure
To increase V2G participation, the VPP offers monetary incentives

to EV owners according to the maximum amount of energy that

will be withdrawn from their battery over a time period of length

ℓ𝑉 2𝐺 , starting from the time the contract is accepted. Specifically,

the VPP operator will offer a bundle of fixed-term energy-reward

contracts {(𝑔𝑚,𝑤𝑚 ; ℓ𝑉 2𝐺 )}𝑚=1· · ·𝑀 to newly arrived EVs, where

each contract is designed for a specific type. As discussed earlier,

the VPP operator does not know the actual type of an EV owner ex

ante. To overcome this information asymmetry, we design incentive
compatible contracts, which are self-revealing [34], meaning that

EV owners will be better off choosing the contract designed for

their type. For example, an EV owner of type 𝜃𝑚 should accept

(𝑔𝑚,𝑤𝑚 ; ℓ𝑉 2𝐺 ), with 𝑤𝑚 being the amount of discharge energy

they will provide over a period of length ℓ𝑉 2𝐺 , and 𝑔𝑚 being the

associated payoff which is a strictly increasing function of𝑚.

3.3 Utility Functions
3.3.1 VPP’s Utility. The VPP’s utility when an EV of type 𝜃𝑚 par-

ticipates in V2G can be defined as follows:

𝑈𝑉𝑃𝑃 (𝑔𝑚,𝑤𝑚) = 𝑢 (𝑤𝑚) − 𝑔𝑚 (1)

Here 𝑢 (𝑤𝑚) represents how much the VPP values discharging𝑤𝑚

from the EV battery, and 𝑔𝑚 is the corresponding payoff to the EV

owner. Assuming the VPP is risk-averse, we let 𝑢 (·) be a concave
function of 𝑤𝑚 [32]. Thus, the VPP’s expected utility from the

participation of an arbitrary EV in V2G would be:

E[𝑈𝑉𝑃𝑃 ] =
𝑀∑︁

𝑚=1

𝜋𝑚 ·
(
𝑢 (𝑤𝑚) − 𝑔𝑚

)
. (2)

The VPP operator seeks to maximize this expected utility.

3.3.2 EV Owner’s Utility. The utility of an EV of type 𝜃𝑚 that

accepts contract (𝑔𝑚,𝑤𝑚) is defined as follows:

𝑈𝐸𝑉 (𝑔𝑚,𝑤𝑚 ;𝜃𝑚) = 𝑔𝑚 − C(𝑤𝑚 ;𝜃𝑚), (3)

where C(.) represents the cost incurred by an EV owner of type 𝜃𝑚
when they discharge𝑤𝑚 from the battery. Using the fixed per kWh
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degradation model [9], we write the cost function for type 𝜃𝑚 as:

C(𝑤𝑚 ;𝜃𝑚) =
𝛾 ·𝑤𝑚 · 𝑐

𝜃𝑚
, 𝛾 =

𝑉

𝐿
, 𝑐 =

1

2 · 𝐵 · (𝐷𝑜𝐷/100) (4)

where 𝑉 is the lifetime value of the battery, 𝐿 is its nominal cycle

life, 𝐷𝑜𝐷 is its nominal depth of discharge, and 𝐵 is its capacity

in kilowatt-hour (kWh). So 𝛾 ·𝑐 is the actual battery degradation

cost per kWh energy charged or discharged from the battery. We

call 𝛾 ·𝑐/𝜃𝑚 the perceived battery degradation cost and argue that

EV owners have different perceptions of the effective cycle life and

value of their battery, which is their private information. According

to this definition, the perceived cost of discharging the battery by a

certain amount is lower for higher EV owner types.
2
EV owners

will accept the contract that maximizes their utility. Their outside

utility, i.e., when they reject all contracts, is assumed to be zero.

4 CONTRACT DESIGN
Let 𝑉𝐸𝑉 (𝜃𝑚′, 𝜃𝑚) = 𝑈𝐸𝑉 (𝑔𝑚′,𝑤𝑚′ ;𝜃𝑚) represent the utility of an

EV owner whose true type is 𝜃𝑚 , but declares their type as 𝜃𝑚′ . The

VPP operator aims to maximize their expected utility by designing

and offering a specific contract for each type of EV owner, satisfying

incentive compatibility and individual rationality requirements. We

define these requirements below.

Individual Rationality (IR): The contract accepted by an EV owner

cannot result in negative utility. This can be written as:

𝑈𝐸𝑉 (𝑔𝑚,𝑤𝑚 ;𝜃𝑚) = 𝑉𝐸𝑉 (𝜃𝑚, 𝜃𝑚) = 𝑔𝑚 −
𝑤𝑚 · 𝛾 · 𝑐

𝜃𝑚
≥ 0 (5)

Incentive Compatibility (IC): EV owners do not gain any advantage

by lying about their true type. Consequently, they prefer a contract

that is specifically designed for their type. This can be written as:

𝑉𝐸𝑉 (𝜃𝑚, 𝜃𝑚) ≥ 𝑉𝐸𝑉 (𝜃𝑚′, 𝜃𝑚) ∀𝜃𝑚, 𝜃𝑚′ ∈ Θ (6)

We classify the IC constraints into two types [13], namely upward

and downward incentive compatibility constraints, defined below:

Downward Incentive Constraint (DIC): The IC constraints between

𝑡𝑦𝑝𝑒 𝑖 and 𝑡𝑦𝑝𝑒 𝑗 ∈ {1, ..., 𝑖 −1}, given by𝑉𝐸𝑉 (𝜃𝑖 , 𝜃𝑖 ) ≥ 𝑉𝐸𝑉 (𝜃 𝑗 , 𝜃𝑖 ),
are called Downward Incentive Constraints (DICs). A special case

is 𝑗 = 𝑖 − 1 in which the constraints are called Local Downward

Incentive Constraints (LDICs).

Upward Incentive Constraint (UIC): The IC constraints between

𝑡𝑦𝑝𝑒 𝑖 and 𝑡𝑦𝑝𝑒 𝑗 ∈ {𝑖+1, ..., 𝑀}, given by𝑉𝐸𝑉 (𝜃𝑖 , 𝜃𝑖 ) ≥ 𝑉𝐸𝑉 (𝜃 𝑗 , 𝜃𝑖 ),
are called Upward Incentive Constraints (UICs). A special case is

𝑗 = 𝑖 + 1 in which the constraints are called Local Upward Incentive

Constraints (LUICs).

4.1 Finding Optimal Contracts
The optimal contracts are the solution of a utility maximization

problem that is subject to the IR and IC constraints defined above,

and additional constraints that ensure 𝑔𝑚 and𝑤𝑚 are positive and

monotonically increasing in 𝜃 , and the maximum discharge energy

offered in a contract does not surpass the maximum amount of

energy that can be discharged from the battery within the contract

2
Extreme temperatures are known to accelerate aging of lithium-ion batteries. Thus,

people who live in extreme climates, or do not plan to sell their EV in the short term

might be reluctant to participate in a V2G scheme unless they receive a higher payoff.

duration (i.e.,𝑤𝑚 ≤ 𝛼𝑑 · ℓ𝑉 2𝐺 where 𝛼𝑑 is the maximum discharge

power supported by the charger):

maximize

{(𝑔𝑚,𝑤𝑚) }𝑚=1···𝑀

𝑀∑︁
𝑚=1

𝜋𝑚 · (𝑢 (𝑤𝑚) − 𝑔𝑚) (7)

subject to (OC1) 𝑔𝑚 −
𝑤𝑚 · 𝛾 · 𝑐

𝜃𝑚
≥ 0, ∀𝜃𝑚 ∈ Θ

(OC2) 𝑔𝑚 −
𝑤𝑚 · 𝛾 · 𝑐

𝜃𝑚
≥ 𝑔𝑙 −

𝑤𝑙 · 𝛾 · 𝑐
𝜃𝑚

;

∀𝑚, 𝑙 ∈ Θ,𝑚 ≠ 𝑙

(OC3) 0 ≤ 𝑤1 ≤ · · · ≤ 𝑤𝑀 ≤ 𝛼𝑑 · ℓ𝑉 2𝐺

(OC4) 0 ≤ 𝑔1 ≤ · · · ≤ 𝑔𝑀

The solution of this convex optimization problem is a list of 𝑀

contracts that satisfy the constraints and maximize the expected

utility of the VPP. As we will discuss in Section 6.3, a subset of these

contracts are added to a menu and this menu is offered to EVs upon

arriving at the charging station. Notice that there is a total of𝑀 (𝑀−
1) constraints in the form of (OC2) in this optimization problem,

so the total number of constraints is quadratic in𝑀 . To speed up

finding the optimal contracts, we formulate another convex problem

which has fewer constraints (linear in𝑀) and is more tractable:

maximize

{(𝑔𝑚,𝑤𝑚) }𝑚=1···𝑀

𝑀∑︁
𝑚=1

𝜋𝑚 · (𝑢 (𝑤𝑚) − 𝑔𝑚) (8)

subject to (C1) 𝑔1 −
𝑤1 · 𝛾 · 𝑐

𝜃1

= 0

(C2) 𝑔𝑚 −
𝑤𝑚 · 𝛾 · 𝑐

𝜃𝑚
= 𝑔𝑚−1 −

𝑤𝑚−1 · 𝛾 · 𝑐
𝜃𝑚

∀𝑚 ∈ Θ \ {1}
(OC3) 0 ≤ 𝑤1 ≤ · · · ≤ 𝑤𝑀 ≤ 𝛼𝑑 · ℓ𝑉 2𝐺

Note that this problem has𝑀 equality constraints and 2𝑀 decision

variables. Thus, the equality constraints cannot be solved recur-

sively because there are more than one set of feasible contracts.

Below we prove that these two problems are equivalent, i.e., they

have the same solution. The following lemmas are proved in the

appendix (Appendix A).

Lemma 1. The IR constraint for the lowest type, 𝜃1, is active at the
solution of the optimization problem, and the IR constraints for higher
types can be derived from the IC constraints.

Lemma 2. Given the IC constraints,𝑤𝑖≤𝑤 𝑗 if and only if 𝑔𝑖≤𝑔 𝑗 .
Thus, monotonicity of 𝑤 follows from monotonicity of 𝑔 and vice
versa, as long as the IC constraints are satisfied.

Lemma 3. DICs can be derived from LDICs and UICs can be derived
from LUICs.

Lemma 4. LDICs are active at the solution.

Lemma 5. LUICs can be relaxed if LDICs are active.

Theorem. Problem (7) and Problem (8) are equivalent.

Proof. We start from Problem (7) and modify its constraints in

such a way that the resulting optimization problem has the same so-

lution as the original problem. Specifically, it follows from Lemma 1

that Constraint (OC1) can be replacedwith Constraint (C1). Lemma 2
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allows us to omit Constraint (OC4) as it can be derived from (OC2-
OC3). Since each IC constraint is either a UIC or DIC, it follows

from Lemma 3 that Constraint (OC2) can be replaced with the set

of LDICs and LUICs, and the LDICs themselves can be replaced by

Constraint (C2) according to Lemma 4. Finally, Lemma 5 allows us

to omit LUICs since they can be derived from Constraint (C2). This
completes the proof as we get Problem (8) in the last step. □

5 ANALYZING V2G CONTRACTS
We model Problem (8) in cvxpy and solve it using MOSEK [11] for

three kinds of fixed-term V2G contracts with ℓ𝑉 2𝐺∈{1, 2, 3}hours
in two scenarios: a) the battery degradation cost (i.e., 𝛾 ·𝑐) is 5 euro
cents per kWh, which is approximately what we have for EV battery

cells today
3
; b) the battery degradation cost is 1 euro cent per

kWh, a scenario that could play out by 2030 according to some

forecasts [20].

Recall that 𝑢 (.) in (1) represents the VPP’s valuation of the

amount of energy withdrawn from an EV battery through V2G. We

define it as 𝑢 (𝑤𝑚) = 𝜅 · 𝑙𝑜𝑔(1 +𝑤𝑚) where 𝜅 is a hyper-parameter

reflecting the importance of V2G for the VPP. This function is con-

cave and increasing in its domain for positive values of 𝜅 , which is a

reasonable choice for a risk-averse VPP. A large value of 𝜅 indicates

that the VPP highly values the flexibility offered by EVs through

V2G. Notice that 𝑢 (𝑤𝑚) is not the actual profit made through the

use of this flexibility, because its ex-post value is indeterminate as it

depends on the actual market prices and EV mobility pattern. Thus,

to find a good approximation, we fit 𝑢 (𝑤𝑚) to the product of𝑤𝑚

and the 25th percentile, median, and 75th percentile of imbalance

market prices (obtained from the dataset described in Section 7),

and tune𝜅 accordingly. As shown in Figure 5 in Appendix B,𝜅 = 0.2

yields an upper bound on the 25th percentile curve for the majority

of feasible 𝑤 values when ℓ𝑉 2𝐺 ≤ 3 (assuming 𝛼𝑑 = 11 kW as

in Level 2 charging), which implies that the VPP values the en-

ergy discharged from EVs marginally more than the 25th percentile

of imbalance market prices. This is a good utility function for a

conservative VPP, so we set 𝜅 to 0.2 in this study.

Once 𝜅 is fixed, the next step is to decide on the number of

types and 𝜃 values for different contract duration values. While it is

possible to obtain V2G contracts for an arbitrary number of types, in

this study, we analyze the V2G contracts obtained for 5 distinct EV

owner types: 𝜃1=0.5, 𝜃2=0.75, 𝜃3=1, 𝜃4=1.25, 𝜃5=1.5. Notice that 𝜃 =

1 pertains to EV owners for whom the perceived battery degradation

cost is exactly the same as the actual battery degradation cost so

theywill participate in V2G if they are remunerated according to the

actual battery degradation cost. When 𝜃 < 1, the perceived battery

degradation cost is greater than the actual battery degradation

cost so EV owners of these types should receive a higher payoff to

participate in V2G. Conversely, 𝜃 > 1 indicates that the perceived

battery degradation cost is less than the actual battery degradation,

hence EV owners of these types participate in V2G with a lower

payoff per kWh. To design the contracts, we assume EV owners

are uniformly distributed across the five types, hence 𝜋𝑚=0.2 for

𝑚 ∈ {1, 2, 3, 4, 5}.

3
A back-of-the-envelope calculation shows that the actual degradation cost of Tesla

battery cells is around 0.05e/kWh as the value of 80 kWh battery is around e12,000
with a nominal life of 1,500 cycles.

Contract (Incentive in €, Energy in kWh)

ℓ𝑉 2𝐺

(hrs)

𝜃1 = 0.5 𝜃2 = 0.75 𝜃3 = 1 𝜃4 = 1.25 𝜃5 = 1.50

1 0.07, 3.3 0.12, 7.6 0.16, 11.0 0.16, 11.0 0.16, 11.0

2 0.07, 3.3 0.12, 7.6 0.18, 13.3 0.24, 20.4 0.25, 22.0

3 0.07, 3.3 0.12, 7.6 0.18, 13.3 0.24, 20.4 0.29, 29.0

Table 1: Optimal contracts for ℓ𝑉 2𝐺 ∈ {1, 2, 3} in the future
scenario when 𝛾 · 𝑐 = 0.01, 𝜅 = 0.2

Figure 2 shows the energy-payoff bundles that are obtained in

the two scenarios (current and future) for three different kinds of

fixed-term V2G contracts (ℓ𝑉 2𝐺∈{1, 2, 3}). It is evident from the

plots in the top row (a1-a3) that discharge energy (𝑤𝑚) and payoff

(𝑔𝑚) increase monotonically with 𝜃𝑚 , i.e., an EV owner can provide

more energy and receive a higher payoff if their perceived battery

degradation cost is lower. Observe that the contracts designed for

the future scenario (blue dots) have a higher top energy𝑤𝑀 and top

payoff 𝑔𝑀 than the current scenario (red triangles). This highlights

that the availability of cheaper and longer lasting batteries could

substantially increase the willingness of EV owners to participate

in V2G despite the existing type disparity. Moreover, we conclude

based on the bottom row plots that EV owners of a higher type 𝜃

expect a lower payoff per kWh (𝑔𝑚/𝑤𝑚).

Note how for ℓ𝑉 2𝐺 = 1 (Subfigure (a3)) in the future scenario, the

optimal contracts saturate at the maximum energy that can be pos-

sibly discharged from EV batteries (𝛼𝑑 ×1 = 11), causing EV owners

of types 𝜃3, 𝜃4, and 𝜃5 to get the same V2G contract. However, it is

important to keep these types separate, as the proportion of users

that belong to these types relative to the total population affects

the solution of Problem (8). In Subfigures (b1-b3), the horizontal

line, which signifies the actual battery degradation cost, lies just

below 𝜃3 = 1. This suggests that the payoff that EV owners of this

type get is indeed greater than their perceived battery degradation

cost. Overall, the EV owners receive a reasonable payoff for their

V2G contribution, and at the same time, the VPP operator could

benefit from the energy provided by EVs that participate in V2G

by reducing the amount of electricity it buys from the imbalance

market (compare payoffs with the imbalance price distribution in

(b4), especially in the future scenario
4
). For the remainder of this

paper, we use the five contracts designed for the future scenario.

The offered monetary incentive and the respective discharge energy

can be found for each EV owner type in Table 1 for the different

values of ℓ𝑉 2𝐺 that we considered in our case study.

6 OPTIMIZING VPP OPERATION
The VPP solves a decision making problem under uncertainty to

maximize its profit. This entails placing bids in the DA market,

offering a subset of the designed fixed-term V2G contracts to EVs

upon arrival, and scheduling EV charging on the operation day

given the DA commitments, and the V2G contracts that are accepted

and valid. The latter is a key contribution of this paper. We describe

each of these steps below.

4
This is an important observation given that electricity prices may further increase in

the future.
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Figure 2: Plots (a1-a3) show optimal contracts (energy-payoff bundles) for two scenarios. Red triangles correspond to the current
scenario (𝛾 · 𝑐 = 0.05 e/ kWh) and blue circles correspond to the future scenario (𝛾 · 𝑐 = 0.01 e/ kWh). Vertical lines are drawn
at 𝛼𝑑 × ℓ𝑉 2𝐺 to show the maximum amount of energy that can be discharged from an EV for a given contract duration (ℓ𝑉 2𝐺 ).
Plots (b1-b3) indicate the payoff per kWh that the VPP gives to each EV owner type. Horizontal lines show the actual battery
degradation cost in each scenario. Plot (b4) is a box and whisker plot of the imbalance market prices used in our experiments.

6.1 Preliminaries
6.1.1 Participation in a Two-Stage Market. The VPP is assumed

to participate in a two-stage electricity market. The first stage

is the wholesale day-ahead (DA) market in which players place

energy-price bids for every hour of the next day (operation day),

with each hour having a separate auction. The second stage is the

imbalance (IM) market which is assumed to have an hourly time

unit, hence trading takes place before every hour on the operation

day. Deviations from day-ahead commitments, which might be due

to unexpected energy deficit or surplus, are settled in this market.

The DA market we consider in this paper is a pool-based electric-

ity market where there is a central pool and no bilateral contracts

between buyers and sellers. Once the bids are placed, the market

clears at each timestep via the uniform pricing mechanism, i.e., all

accepted bids receive the same (clearing) price. We simplify the

VPP’s energy-price bids to energy bids (or quantity bids) and treat

DA prices as exogenous random variables. This is reasonable be-

cause just like battery aggregators [15, 26], the marginal cost of

supplying power is much lower for the VPP than conventional gen-

erators who determine the clearing price. Moreover, the energy bids

placed by the VPP do not affect the prices it receives (i.e., it is price

taker) since it trades in small amounts compared to the entirety of

the market volume. The DA prices are expressed in vector form as

P𝐷𝐴 = [𝑃𝐷𝐴
0

, · · · , 𝑃𝐷𝐴
23
]. To participate in the DA market, the VPP

submits a vector of energy bids X = [𝑥0, · · · , 𝑥23] at once, where
𝑥𝑡 is positive when the VPP commits to selling energy at time 𝑡 of

the next day, and negative when it commits to buying energy at

that time. The net profit in the DA market is X⊤P𝐷𝐴
. Note that at

the time of submitting bids to the DA market, the VPP operator

cannot accurately predict future market prices, nor does it know

deterministically the next day EV mobility and demand patterns.

In the IM market, hourly energy imbalances are settled in real-

time. We assume the same price is used for buying and selling

at each hour 𝑡 .5 This price reflects the cost incurred to serve the

unexpected demand or absorb the unexpected supply. The IM prices

are modeled as exogenous random variables and expressed in vector

form as P𝐼𝑀 = [𝑃 𝐼𝑀
0

, · · · , 𝑃 𝐼𝑀
23
]. Note that unlike DA bids which

are submitted all at the same time, the VPP can trade energy in the

IM market every hour. We denote the amount of energy it trades at

hour 𝑡 by 𝑧𝑡 , where a positive/negative sign implies selling/buying.

If we use vector Z = [𝑧0, · · · , 𝑧23] to collect the amount of energy

the VPP will trade in the IM market during the operation day, its

net profit in the IM market will be given by Z⊤P𝐼𝑀 .

6.1.2 EV Charging Dynamics. The VPP must come up with a sched-

ule to charge EVs that visit the charging stations, while taking

advantage of V2G contracts. Recall from Section 3.1 that T is the

set of 1-hour time slots within the operation day. We denote the

set of all time slots in which the 𝑛th EV is at a charging station

as T𝑛
. To match the time scale of the IM market, EV arrival and

departure events are assumed to happen at the beginning of 1-hour

time slots.
6
Let N𝑡 denote the set of EVs that are connected to a

charger at time 𝑡 . We partition this set into two subsets: those who

have accepted a V2G contract, denoted N𝐷
𝑡 , and those who have

opted out, denoted N𝑡 \ N𝐷
𝑡 .

The schedule for the operation day is Y = [𝑦0, · · · , 𝑦23] where
each 𝑦𝑡 is the sum of (dis)charge actions at time 𝑡 for all EVs in N𝑡 :

𝑦𝑡 =
∑︁
𝑛∈N𝑡

𝑦𝑛𝑡 . ∀𝑡 ∈ T (9)

5
The single price model is a common pricing scheme in the IM market today [17].

6
This comes without loss of generality, since the VPP can round the arrival or departure

time to the nearest hour in practice.



Making a Virtual Power Plant out of Privately Owned Electric Vehicles: From Contract Design to Scheduling e-Energy ’23, June 20–23, 2023, Orlando, FL, USA

According to this definition, 𝑦𝑛𝑡 is made up of two parts: energy

charged into the battery of EV 𝑛, denoted 𝐴𝐶𝑛
𝑡 , and energy dis-

charged from it, denoted𝐴𝐷𝑛
𝑡 . The discharge energy (𝐴𝐷

𝑡
𝑛) is set to

0 for the EVs that have not accepted a V2G contract (𝑛 ∈ N𝑡 \ N𝐷
𝑡 ).

Note that𝐴𝐶𝑛
𝑡 and𝐴𝐷𝑛

𝑡 are restricted by the physical constraints of

the bidirectional charger. We assume all charging stations are of the

same kind, with 𝛼𝑐>0 being the maximum charge power and 𝛼𝑑>0

being the maximum discharge power they support. With abuse

of notation and since the length of each time slot is one hour, we

also use 𝛼𝑐 and 𝛼𝑑 to respectively represent the maximum amount

of energy (in kWh) that can be delivered to and withdrawn from

an EV in one time slot by a bidirectional charger. These following

expressions constitute charge and discharge constraints:

𝑦𝑛𝑡 = 𝐴𝐶𝑛
𝑡 +𝐴𝐷𝑛

𝑡 , ∀𝑛 ∈ N𝑡 ,∀𝑡 ∈ T𝑛
(10a)

𝐴𝐷𝑛
𝑡 = 0, ∀𝑛 ∈ N𝑡 \ N𝐷

𝑡 ,∀𝑡 ∈ T𝑛
(10b)

0 ≤ 𝐴𝐶𝑛
𝑡 ≤ 𝛼𝑐 , ∀𝑛 ∈ N𝑡 ,∀𝑡 ∈ T𝑛

(10c)

−𝛼𝑑 ≤ 𝐴𝐷𝑛
𝑡 ≤ 0, ∀𝑛 ∈ N𝐷

𝑡 ,∀𝑡 ∈ T𝑛
(10d)

The EV indexed by 𝑛 has a battery with the energy capacity of

𝐵𝑛 . Its arrival time is denoted 𝑡𝑛𝑠 and the duration of its stay is

denoted 𝑡𝑛𝑠𝑡𝑎𝑦 , hence its departure time is 𝑡𝑛𝑒 = 𝑡𝑛𝑠 + 𝑡𝑛𝑠𝑡𝑎𝑦 . The
state-of-charge (SoC) of its battery at 𝑡 ∈ T𝑛

, which represents the

amount of energy stored in the battery as a fraction of its capacity, is

denoted 𝑆𝑜𝐶𝑛
𝑡 . The SoC must remain between 𝛿𝑚𝑖𝑛 and 𝛿𝑚𝑎𝑥 at all

times. We use 𝑆𝑜𝐶𝑛
to denote its initial SoC, i.e., the SoC at 𝑡𝑛𝑠 , and

𝑆𝑜𝐶
𝑛
to denote its target SoC, i.e., the desired SoC at 𝑡𝑛𝑒 . The SoC

evolves based on the amount of energy charged or discharged from

the battery in this time slot, and charge and discharge inefficiencies,

denoted 𝜂𝑐 and 𝜂𝑑 (𝜂𝑐 , 𝜂𝑑<1), respectively. We ignore battery self-

discharge. The following expressions constitute SoC constraints:

𝛿𝑚𝑖𝑛 ≤ 𝑆𝑜𝐶𝑛
𝑡 ≤ 𝛿𝑚𝑎𝑥 , ∀𝑛 ∈ N𝑡 ,∀𝑡 ∈ T𝑛

(11a)

𝑆𝑜𝐶𝑛
𝑡𝑛𝑠

= 𝑆𝑜𝐶𝑛, ∀𝑛 ∈ N𝑡 (11b)

𝑆𝑜𝐶𝑛
𝑡𝑛𝑒

= 𝑆𝑜𝐶
𝑛
, ∀𝑛 ∈ N𝑡 (11c)

𝑆𝑜𝐶𝑛
𝑡+1 = 𝑆𝑜𝐶𝑛

𝑡 +
𝐴𝐶𝑛

𝑡 𝜂𝑐

𝐵𝑛
+
𝐴𝐷𝑛

𝑡

𝜂𝑑𝐵
𝑛
, ∀𝑛 ∈ N𝑡 ,∀𝑡 ∈ T𝑛

(11d)

Lastly, the VPP’s demand and supply must be in balance at all

times. Thus, the total amount of energy purchased from DA and

IM markets (−𝑥𝑡 − 𝑧𝑡 ) must be equal to the total amount of energy

delivered to the connected EVs (𝑦𝑡 ). This can be written as:

𝑥𝑡 + 𝑧𝑡 + 𝑦𝑡 = 0, ∀𝑡 ∈ T (12)

The objective of the VPP is to buy enough energy from the

electricity markets so that it can fulfill the charging demand of all

EVs by their specified deadlines, while simultaneously maximizing

its profit by utilizing the energy provided by the EVs that accepted a

V2G contract to close the gap between day-ahead commitments and

real-time energy demands. Since DA bids are submitted all at once

and one day in advance, bid placement is an offline decision making

problem under uncertainty, which is described in Section 6.2. On

the other hand, finding the hourly charging schedule and making

trading decisions for every hour in the IM market are parts of an

online decision making problem, which is outlined in Section 6.4.

6.2 Day-Ahead Decision Making
The VPP solves an optimization problem to find DA energy bids

that maximize its expected profit
7
in the two-stage market, while

ensuring that EV charging demands are satisfied by deadlines:

maximize

X, Y, Z,𝐴𝐶,𝐴𝐷
EΩ [X⊤P𝐷𝐴+Z⊤P𝐼𝑀 ] (13a)

subject to − |N𝑡 | · 𝛼𝑐 ≤ 𝑥𝑡 ≤ |N𝐷
𝑡 | · 𝛼𝑑 , ∀𝑡 ∈ T (13b)

Constraints in (9) to (12) (13c)

This is a stochastic program because DA and IM market prices, the

number of EVs that arrive on the next day, the number of EVs that

accept a V2G contract, EV arrival and departure times, and initial

and target SoC levels are random variables, i.e., their values are

not deterministically known when bids are submitted to the DA

market. In the above problem, expectation is taken with respect

to the joint distribution of all random variables, i.e., P𝐷𝐴
, P𝐼𝑀 , N,

N𝐷
, t𝑠 , t𝑒 , SoC, and SoC (boldface symbols represent vectors that

collect variables). This joint probability distribution is denoted Ω.
For this we assume to have knowledge of the first two moments

of these random variables, and use them to create sample paths.

We note that Constraint (13b) is incorporated to minimize the risk.

Specifically, due to price volatility in the IM market, a conservative

VPP should not buy more energy from the DA market than the

maximum amount needed to charge EVs that are expected to be con-

nected. Similarly, it should not sell more energy than the maximum

amount that can be taken from EVs that are expected to participate

in V2G. Additionally, this problem takes into account the charging

dynamics outlined in Section 6.1.2 (because of Constraint (13c)).

While a stochastic optimization problem can be solved using

sample average approximation and stochastic approximation meth-

ods, the large number of constraints in this problem renders them

inefficient, especially when a large number of samples is used.

Thus, we resort to the tractable ‘Wait-and-See’ method [40] that

was adopted in [33] to obtain a bound on the solution of a simi-

lar optimization problem that determines hourly bids submitted

to the DA market. Specifically, we randomly draw 100 samples

from Ω and for every one of these samples, we solve the resulting

constrained optimization problem (deterministic linear program)

which is identical to Problem (13) but without expectation in the

objective function. Once the 100 solutions are found, we compute

the average of these solutions to approximate the solution of the

original stochastic optimization problem. This solution is denoted

by X∗, Z∗, 𝐴𝐶∗, 𝐴𝐷∗ and Y∗. The VPP submits X∗ as hourly DA

bids and discards the other parts of the solution. This is because

charging schedules and IM trading decisions will be recalculated

for every hour in real-time as more information becomes available

during the operation day. The energy bids are submitted to the DA

market at a specific time on the day before operation, and clearing

prices are announced to the VPP shortly after that so it can calculate

the money that should be transferred in the DA stage, X∗⊤P∗𝐷𝐴
.

Remark. To generate the random samples, we assume each ran-

dom variable has a Gaussian distribution with mean equal to its

realized value in the next day and standard deviation equal to 10%

of the mean.

7
We do not include payoff to the EVs that accept a contract and EV charging revenue

in the objective function as they are independent of decision variables in this problem.
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6.3 VPP Operation with V2G Contracts
The VPP keeps track of the laxity of every EV that connects to

one of its charging stations, where laxity at time 𝑡 is defined as

the difference between the remaining stay time of an EV and the

shortest amount of time required to charge its battery to the desired

SoC level. Concretely, the laxity of EV 𝑛 at time 𝑡 , denoted 𝑙𝑎𝑥𝑛𝑡 ,

can be calculated as follows:

𝑙𝑎𝑥𝑛𝑡 = 𝑡𝑛𝑒 − 𝑡 −
(𝑆𝑜𝐶𝑛 − 𝑆𝑜𝐶𝑛

𝑡 ) · 𝐵𝑛

𝛼𝑐𝜂𝑐
∀𝑡 ∈ T𝑛

(14)

This is useful for two reasons. First, an EV that arrives at a VPP-

controlled charging station should not be offered a contract that

causes its laxity to become negative even if this contract was specifi-

cally designed for their type. This is because negative laxity implies

the remaining energy demand of the EV cannot be satisfied in the

remaining time. Second, any charging schedule produced for the

current hour (using the online algorithm outlined in Section 6.4)

must ensure the laxity of every EV remains non-negative in the next

hour. This is a necessary condition for having a charging schedule

that satisfies the charging deadlines. We assume that EVs arrive

at charging stations with non-negative laxity, i.e., 𝑙𝑎𝑥𝑛
𝑡𝑛𝑠
≥ 0, so a

feasible schedule exists at arrival time.

Offering a menu of feasible contracts to each EV. When a new EV,

indexed by 𝑛, arrives at a charging station controlled by the VPP, it

declares its initial SoC (𝑆𝑜𝐶𝑛
), target SoC (𝑆𝑜𝐶

𝑛
), and departure time

(𝑡𝑛𝑒 ), as shown in Figure 6 in Appendix C. Then the VPP calculates

its laxity from Equation (14) and presents a menu of contracts to

this EV. This menu includes a subset of the V2G contracts designed

for all types 𝜃 ∈ Θ. To create this menu, three entry checks are

applied to the designed V2G contracts to weed out the contracts that

cannot be possibly executed or would make charging scheduling

problem infeasible. In particular, we ignore the contracts that are not

meaningful to this EV, either because of its: a) short stay time (i.e.,

𝑡𝑛𝑒 − 𝑡𝑛𝑠 < ℓ𝑉 2𝐺 ), or b) low battery energy content (i.e., 𝑆𝑜𝐶𝑛 · 𝐵𝑛 <

𝑤𝑚). We also ignore c) the contracts that if executed, it would

become impossible to satisfy the energy demand of this EV by its

deadline. Concretely, let us define 𝜉𝑛𝑚𝑎𝑥 as the maximum amount

of energy that can be discharged from EV 𝑛 so that its SoC can still

reach 𝑆𝑜𝐶
𝑛
by 𝑡𝑛𝑒 . This quantity can be calculated as follows:

𝜉𝑛𝑚𝑎𝑥 = 𝑙𝑎𝑥𝑛𝑡𝑠 ·𝜓 · 𝛼𝑑 , 𝜓 =
𝛼𝑐 · 𝜂𝑐 · 𝜂𝑑

𝛼𝑑 + 𝛼𝑐 · 𝜂𝑐 · 𝜂𝑑
Consider V2G contracts (𝑔1,𝑤1) through (𝑔𝑀 ,𝑤𝑀 ). If 𝜉𝑛𝑚𝑎𝑥 falls

somewhere between𝑤1 and𝑤𝑀 , for example:

𝑤1 ≤ · · · ≤ 𝑤𝑚 ≤ 𝜉𝑛𝑚𝑎𝑥 < 𝑤𝑚+1 ≤ · · · ≤ 𝑤𝑀 (15)

Then only contracts (𝑔1,𝑤1) to (𝑔𝑚,𝑤𝑚) will be added to the menu,

and the VPP discards the other contracts as they make it impossible

to meet the energy demand of this EV by the deadline.

Accepting a V2G contract. Due to incentive compatibility of the

designed contracts, which we proved in Section 4, EV owners will

choose the specific contract designed for their type if this contract

is present in the contract menu offered by the VPP. In the event

that this contract has been pruned by one of the three entry checks,

EV owners will choose a contract from the menu with largest 𝑤

as long as a non-negative utility is attained. If no viable contract

remains, then the EV does not participate in V2G.

Algorithm 1: EV Charging Scheduling for Hour 𝑡∅

1 S𝑛𝐿𝑎𝑥 ← FindEVsWithNegativeLaxity(N𝑡∅ \ N𝐷
𝑡∅
);

2 𝑒𝑡∅ ← ChargeEVs(S𝑛𝐿𝑎𝑥 );
3 𝑥𝑡∅ ← 𝑥𝑡∅ + 𝑒𝑡∅ ;

4 ¯P𝐼𝑀 ← GetPriceForecasts(𝑡∅ , 𝑡∅ + ℓ𝑉 2𝐺 );

5 𝑑𝑡∅ ← GetEVChargingSchedule(N𝐷
𝑡∅
,

¯P𝐼𝑀 );

6 UpdateContractParameters(N𝐷
𝑡∅
);

7 if 𝑥𝑡∅ > −𝑑𝑡∅ then
8 BuyFromImbalanceMarket(𝑥𝑡∅ + 𝑑𝑡∅ );
9 end

10 else if 𝑥𝑡∅ < −𝑑𝑡∅ then
11 SellToImbalanceMarket(𝑥𝑡∅ + 𝑑𝑡∅ );
12 end

6.4 Real-Time Decision Making
On the operation day, the VPP must decide at the beginning of

each hour how to charge the EVs that are presently connected to

its charging stations given their laxity, its day-ahead commitments,

and accepted V2G contracts that have not yet expired. This process

is composed of three main parts. First, it decides when to charge the

vehicles that do not participate in V2G given their laxity. Second, it

finds an optimal schedule for the EVs with a valid V2G contract. For

this, the VPP has the option to discharge some of the EVs that have

a valid V2G contract in order to charge the other EVs or trade this

energy in the IMmarket.We use �̄�𝑛
𝑖
and ℓ̄𝑛

𝑉 2𝐺
to denote respectively

the remaining discharge energy (as specified in the contract) and

the remaining contract duration for the𝑛𝑡ℎ EV inN𝐷
𝑡 who accepted

the V2G contract (𝑔𝑖 ,𝑤𝑖 ; ℓ𝑉 2𝐺 ). It follows from this definition that

0 ≤ �̄�𝑛
𝑖
≤ 𝑤𝑖 and 0 ≤ ℓ̄𝑛

𝑉 2𝐺
≤ ℓ𝑉 2𝐺 . We say that a V2G contract

is valid as long as ℓ̄𝑛
𝑉 2𝐺

> 0 and �̄�𝑛
𝑖
> 0. Third, once the charging

schedule is fixed, the VPP will trade in the IM market to make sure

the total energy purchased from DA and IM markets is equal to its

hourly demand. We design an online algorithm (Algorithm 1) to

schedule the charge/discharge of EVs to maximize the VPP profit

given the V2G contracts.

Lines 1 through 3 of the Algorithm 1 deal with charging the EVs

that do not participate in V2G. FindEVsWithNegativeLaxity()

takes as input the set of EVs that are present but do not participate

in V2G. It calculates the laxity of these EVs in the next hour from

Equation (14) under the assumption that they are not charged dur-

ing this hour 𝑡∅ (i.e., by setting 𝑆𝑜𝐶𝑛
𝑡∅+1=𝑆𝑜𝐶

𝑛
𝑡∅
), and returns the

set of EVs that will have a negative laxity if they are not charged

during this hour. This set is denoted S𝑛𝐿𝑎𝑥 . In Line 2, S𝑛𝐿𝑎𝑥 is

passed to ChargeEVs() that charges the EVs in this set at 𝛼𝑐 so

the scheduling problem remains feasible for them. In Line 3, the

total energy delivered to these EVs, denoted 𝑒𝑡∅ , is added to the

day-ahead commitment for this hour 𝑡∅ (i.e., 𝑥𝑡∅ ).
Next, Lines 4 through 6 deal with vehicles that have an active

V2G contract. Firstly, GetPriceForecasts() returns a vector of IM

market price forecasts
¯P𝐼𝑀 , starting from the current hour 𝑡∅ until

𝑡∅+ℓ𝑉 2𝐺 . In this paper, we use the expected values of the IMmarket

prices for the next ℓ𝑉 2𝐺 time slots as the forecast values.

Subsequently, GetEVChargingSchedule() in Line 5 receives

the set of EVs with an active contract N𝐷
𝑡∅

as well as the price
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forecasts
¯P𝐼𝑀 , and solves the finite-horizon optimization problem

described in the next section (Section 6.5) to decide on how to

use the amount of energy that is available from the accepted V2G

contracts. The solution is the charging schedule for each of these

EVs until the end of their stay time or until 𝑡∅ + ℓ𝑉 2𝐺 , whichever

happens first. However, we only use the charge or discharge action

for the current hour as this function is called every hour to update

the EV schedules using more accurate information about the ran-

dom variables, namely EV mobility patterns and IM market prices.

The GetEVChargingSchedule() function returns 𝑑𝑡∅ , which is the

total amount of energy that must be delivered to the EVs in N𝐷
𝑡∅

in

this hour according to the optimal schedules (negative sign implies

that we withdraw some energy overall).

Then, UpdateContractParameters() in Line 6 updates the

remaining contract duration for V2G-participating EVs according

to this rule: ℓ̄𝑛
𝑉 2𝐺
← ℓ̄𝑛

𝑉 2𝐺
−1, and their remaining discharge energy

(as per the contract) according to this rule: �̄�𝑛
𝑖
← �̄�𝑛

𝑖
−𝐴𝐷∗𝑛 , where

𝐴𝐷∗𝑛 is the solution of Problem (16) that will be discussed next.

This function also updates the set of V2G-participating EVs (i.e.,

N𝐷
𝑡∅
) by adding the newly arrived V2G participating EVs to N𝐷

𝑡∅
and removing the EVs whose contracts have expired. Finally, if

𝑥𝑡∅ > −𝑑𝑡∅ (Line 7), the VPP purchases 𝑥𝑡∅ +𝑑𝑡∅ from the IM market

(Line 8). Otherwise, there is some surplus energy available to the

VPP after charging the EVs that is sold in the IM market (Line 11).

6.5 Scheduling the Use of V2G Contracts
The GetEVChargingSchedule() function invoked in Line 5 of

Algorithm 1 will solve the following optimization problem to find

the schedule for all vehicles that participate in V2G. In every hour

𝑡∅ of the operation day, the VPP solves the following optimiza-

tion problem over a finite time horizon (ℓ𝑉 2𝐺 ) to find how to

charge/discharge EVs that have a valid V2G contract in the current

time slot to maximize its total profit:

maximize

𝐴𝐶,𝐴𝐷

𝑡∅+ℓ𝑉 2𝐺∑︁
𝑡=𝑡∅

(−𝑥𝑡 − 𝑑𝑡 ) · 𝑝𝐼𝑀𝑡 (16a)

subject to 𝐴𝐷𝑛
𝑡 = 0, ∀𝑛 ∈ N𝐷

𝑡 , 𝑡 ∈ [𝑡𝑛𝑠 +ℓ̄𝑛𝑉 2𝐺 , 𝑡∅+ℓ𝑉 2𝐺 ] (16b)

−min(�̄�𝑛
𝑖 , 𝛼𝑑 )≤𝐴𝐷

𝑛
𝑡 ≤ 0, ∀𝑛 ∈ N𝐷

𝑡 ,∀𝑡 ∈ T𝑛
(16c)

𝑡∅+ℓ̄𝑛𝑉 2𝐺∑︁
𝑡=𝑡∅

𝐴𝐷𝑛
𝑡 ≤ �̄�𝑛

𝑖 , ∀𝑛 ∈ N
𝐷
𝑡 ,∀𝑡 ∈ T𝑛

(16d)

0 ≤ 𝐴𝐶𝑛
𝑡 ≤ 𝛼𝑐 , ∀𝑛 ∈ N𝐷

𝑡 ,∀𝑡 ∈ T𝑛
(16e)

𝑑𝑛𝑡 = 𝐴𝐶𝑛
𝑡 +𝐴𝐷𝑛

𝑡 , ∀𝑛 ∈ N𝐷
𝑡 ,∀𝑡 ∈ T𝑛

(16f)

𝑙𝑎𝑥𝑛𝑡+1 ≥ 0, ∀𝑛 ∈ N𝐷
𝑡 ,∀𝑡 ∈ T𝑛

(16g)

Constraints in (11), ∀𝑛 ∈ N𝐷
𝑡 ,∀𝑡 ∈ T𝑛

(16h)

The length of this optimization horizon is chosen prudently to

ensure that all V2G contracts that are currently active will expire

by the end of this time horizon so it is possible to check that our

decisions will not violate their terms (Constraint 16e). The solution

of this linear problem, i.e., 𝐴𝐶∗ and 𝐴𝐷∗, constitute the charging
schedule of V2G-participating EVs. In this problem, 𝑝𝐼𝑀𝑡 that ap-

pears in the objective function represents the predicted imbalance

market price at time 𝑡 . The set T𝑛
contains time slots starting from

the current time 𝑡∅ until 𝑡𝑛𝑒 (i.e., the stay time of EV 𝑛).

Constraint (16b) ensures that V2G-participating EVs are not

discharged after their contract expires, which is 𝑡𝑛𝑠 + ℓ̄𝑛𝑉 2𝐺
.

The EV discharging amount for EV𝑛 at time 𝑡 , (i.e.,𝐴𝐷𝑛
𝑡 ) must be

less than the maximum discharge power supported by the charger

and the remaining discharge energy in the contract. This is en-

forced in Constraint (16c). Constraint (16d) ensures that the total

energy discharged from EV 𝑛 over this horizon does not exceed

its remaining discharge energy amount, �̄�𝑛
𝑖
. Constraint (16e) puts

an upper bound on the charging energy based on the maximum

charger power supported by the charger. Constraint (16f) defines

the EV schedule for EV 𝑛 in time slot 𝑡 as the sum of the energy

that is used to the EV battery 𝐴𝐶𝑛
𝑡 , and energy discharged from its

battery, 𝐴𝐷𝑛
𝑡 . Note that AC and AD cannot be non-zero simulta-

neously because due to the battery charge/discharge inefficiency,

opposing actions in AC and AD would provide a suboptimal result.

Therefore, we do not need to introduce a binary variable to prevent

a simultaneous charge and discharge event for a particular EV in

one time slot. Constraint (16g) forces the laxity of this EV in the

next time slot due to the current charge/discharge decision to be

non-negative, which is necessary to ensure the feasibility of charg-

ing schedule as discussed in Section 6.3. Finally, Constraint (16h) is

the set of SoC constraints given in Eqn. (11). Note that in Problem

(16), the objective function is linear and all constraints are affine.

Thus, it is a linear program that can be solved using interior point

or simplex-based methods.

7 RESULTS
7.1 Datasets and Baseline
To investigate the profitability of this VPP under the proposed oper-

ating strategy and designed V2G contracts, we use two real datasets

for EV charging and electricity market from the Rotterdam region

in the Netherlands. In both cases, we use one year of data, from

January 1 to December 31, 2019. The DA market prices are from

the European Network of Transmission System Operators [2], and

the IM market prices are from the regional Transmission System

Operator, called TENNET [4]. Figure 7 in the appendix shows a

boxplot of hourly prices in DA and IM markets. The EV charging

dataset is released by ElaadNL [1] and includes 10,000 charging

sessions that were completed in a network of public charging sta-

tions in the Netherlands. Each charging session is characterized

by its start time, end time, charger ID, and the amount of energy

delivered to the connected EV; however, the initial and target SoC

levels are not reported. We assume that all EVs have the same target

SoC: 𝑆𝑜𝐶
𝑛
= 1. We calculate their initial SoC based on the total

energy delivered to them in the charging session. Additionally, we

discard all charging sessions in which the EV has a negative laxity

at arrival time. This leaves us with 9,249 charging sessions over

the one-year period, 25 charging sessions per day on average. Note

that this dataset lists stay time and charge time separately, with

stay time being greater than or equal to charge time. We use this

information to calculate the laxity of each vehicle. EVs will not

stay longer than they did originally as we ensure laxity remains

non-negative. As discussed in Section 6.3, we assume the departure

time of every EV is known upon arriving at the charging station.

In our experiments, all chargers are assumed to be bidirectional,

𝛼𝑐 , 𝛼𝑑 > 0 are both taken to be 11 kW, 𝛿𝑚𝑖𝑛 and 𝛿𝑚𝑎𝑥 are set to
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0.03 and 0.97 respectively, 𝜂𝑐 and 𝜂𝑑 are both set to 0.98, all EVs are

assumed to have the same battery, and 𝐵𝑛 is taken to be 80 kWh,

which is close to the capacity of the Tesla Model 3 battery.

At the start of each charging session, we sample the EV owner

type from a discrete uniform distribution between 1 and 5. We call

this sampling Unbiased as the VPP used the same uniform distri-

bution to design the contracts.
8
We then create the contract menu

by adding a subset of the 5 fixed-term V2G contracts presented in

Table 1.

Baselines. To understand the importance of V2G, we use the

current EV charging practice, referred to as No-Control, as our first
baseline. In this baseline, EVs are charged at the maximum power

supported by the charger as soon as they connect to a charger. This

charging schedule minimizes the length of the charging session

without providing V2G support. The second baseline we consider is

No-V2G where the charging schedule is the solution of Problem (16),

assuming no energy can be discharged from the batteries. This can

be accomplished by giving incoming EVs a fictitious contract with

no discharge energy (𝑤 = 0) and no payoff (𝑔 = 0). In this case,

every time Problem (16) is solved, the optimization horizon is until

the latest departure time (𝑡𝑒 ) of the EVs present at time 𝑡 .

The VPP uses the operating strategy proposed in Eqn. (13) to

place bids in the DA market, under the assumption that N𝐷
𝑡 =

∅, ∀𝑡∈T . Deviations from the hourly DA commitments are settled

in the hourly IM markets.

7.2 Contract Selection by EV Owners
Figure 3 shows the number of times each V2G contract was accepted

by EV owners and the number of times all V2G contracts were

rejected in our simulation. For ease of presentation, the tick label

shows the EV owner type for which the contract was originally

designed rather than the contract itself. Refer to Table 1 to find

the corresponding contract parameters. As discussed in Section 6.3,

V2G contracts must go through three entry checks for each new

arrival to ensure they are meaningful and can be safely executed.

The contracts that pass these entry checks are added to the menu

and presented to the EV. If the contract menu remains empty, the

EV is moved to the “Opt out” bin automatically. We call entry check

a) “stay time entry check”, and combine entry checks b) and c)
into “energy entry checks”. Recall that if the contract designed

specifically for an EV owner is omitted from the menu, the EV

owner will select an alternative contract from the menu that gives

them the highest utility as long as this utility is not negative. It can

be easily shown that the contract selected in that case would have a

lower energy amount (𝑤 ) than the contract designed the EV owner

type, so it must have been designed for a lower EV owner type.

Consequently, more EVs end up choosing low-type contracts than

the number of EVs who were sampled from these types, creating

a skewed distribution regardless of the contract duration. If the

highest utility is negative, the EV owner does not participate in

V2G, moving to the “Opt out” bin.

It is evident from Figure 3a that ℓ𝑉 2𝐺 = 1 is when most EVs

that visit a charging station are able to find a feasible contract,

resulting in the highest V2G participation rate. This is because all

contracts will pass the “stay time entry check” because EVs will

8
In Appendix E, we examine two biased sampling cases where the VPP’s estimate of

the type distribution differs from the true type distribution which is used in simulation.
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Figure 4: Breakdown of the annual VPP profit for various
ℓ𝑉 2𝐺 values and the two baselines.

stay connected for at least 1 time slot. As ℓ𝑉 2𝐺 increases, contracts

will pass the “stay time entry check” for fewer arrivals. As shown in

Figure 3b and 3c, higher ℓ𝑉 2𝐺 values lead to lower V2G participation.

The number of arrivals that select a V2G contract for ℓ𝑉 2𝐺=1, 2, 3

are respectively 7,120, 6,115 and 4,962, out of 9,249 arrivals.

Notice that the number of EVs that fail the “energy entry checks”

decreases as ℓ𝑉 2𝐺 increases. We attribute this to the increase in the

number of EVs that have a short stay and do not pass the “stay time

entry check” as ℓ𝑉 2𝐺 increases. Since “stay time entry check” is

performed before “energy entry checks”, all contracts are deemed

infeasible for these EVs and are pruned in the first entry check.

7.3 Annual Profit Comparison
Next, we analyze the total annual VPP profit for different ℓ𝑉 2𝐺 val-

ues using the proposed operating strategy. We break down the total

VPP profit into the EV charging revenue, the total funds transferred

for trades in DA and IM markets, and the payoff made to EVs that

accept a V2G contract. These components are shown separately,

next to the total profit in Figure 4 (and in Table 2 in the appen-

dix). We assume the VPP uses a flat rate pricing structure to bill

EV owners for charging their vehicle. We set the flat rate to 0.13

e/kWh, which is the 95
𝑡ℎ

percentile of the buying price in the IM

market. Note that the EV charging revenue stays constant across all

scenarios, including the two baselines, because the proposed online

scheduling algorithm guarantees that all energy demands will be

met by the specified deadlines. Moreover, when EVs participate in

V2G, they are only billed for their own energy demand, not the

extra amount of energy that needs to be delivered to them after

their battery is discharged.

Figure 4 shows the profit earned by the VPP in the simulation

year under various scenarios in the Unbiased case. The three sce-

narios considered correspond to ℓ𝑉 2𝐺 = 1, 2 and 3. Observe that
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there is a slight upward trend in total profit for longer-term con-

tracts; precisely, the profit increases by 11.4%, 11.6%, and 12.2% for

ℓ𝑉 2𝐺 = 1, 2, 3 compared to the No-Control baseline. This increase
comes from having more energy available from V2G contracts

(higher 𝑤 ) to trade in the markets and more leeway to use that

energy in the future (for ℓ𝑉 2𝐺 > 1) rather than right away. When

compared to the baseline, the funds used for trading in the two

markets decrease significantly by 74.65%, 76.81% and 78.11% for

ℓ𝑉 2𝐺 = 1, 2 and 3, respectively. Additionally, the payoff to EVs for

contracts shows a small decrease in magnitude across the three

scenarios. In particular, the payoff to V2G participating EVs is re-

spectively e669.0, e665.2 and e592.2 for ℓ𝑉 2𝐺 = 1, 2 and 3. In

contrast, the No-V2G baseline only achieves 2.2% improvement

over No-Control since it does not sell energy in DA or IM market.

Although ℓ𝑉 2𝐺 = 3 slightly increases the VPP profit compared

to ℓ𝑉 2𝐺 = 1, we advocate for the use of fixed-term contracts with

ℓ𝑉 2𝐺 = 1 for two reasons. First, using ℓ𝑉 2𝐺 = 1 minimizes the need

for acquiring IM market price forecasts to plug into Problem (16),

making it easier to optimize the VPP operating strategy. Second,

ℓ𝑉 2𝐺 = 1 lowers the barrier for V2G participation and helps the

VPP scale by integrating chargers in a variety of locations such as

shopping malls where the average stay time is typically shorter.

8 DISCUSSION
Limitations.We have made a key assumption about the behavior

of EV owners: they disclose their actual departure time and do not

leave the charging station before the specified departure time. This

assumption is necessary to ensure the battery can be charged to the

desired level before departure and only feasible V2G contracts are

included in the contract menu. To prevent gaming the system, we

presently transfer the payoff only upon successful execution of the

contract. However, this all-or-nothing approach could discourage

EV owners from participation as they will not be remunerated if

they have to leave early for some reason. Designing a incentive

mechanism that supports offering partial payoffs in return for par-

tial execution of the contract is an interesting future work direction.

The other assumption we have made is that the VPP trades in

an imbalance market that uses the uniform pricing scheme. While

this pricing scheme has been adopted in the real world [17], we ac-

knowledge that there are imbalance markets that use two different

prices for buy and sell in every hour. Solving the two optimization

problems outlined in Section 6 would become more complex in

these markets as we need to introduce binary decision variables,

which makes the optimization problem non-convex.

Heterogeneity. The VPP studied in this paper will orchestrate a het-
erogeneous population of privately owned EVs that have batteries

with different capacities, (dis)charge rates, and values. We wish

to emphasize that the proposed contract design and scheduling

framework can handle this heterogeneity. Recall that the lifetime

value of the battery and its capacity are two of the factors that

determine the EV owner’s utility. Although we used a fixed value

for 𝑉 and 𝐵 in Eqn. (4), 𝜃 can be treated as a scale or correction

factor that allows us to tweak the utility for EVs that have a more

expensive battery, smaller battery, or are reluctant to participate

in V2G. We have considered 5 types in our experiment, yet many

more types can be handled thanks to the tractable version of the

contract design problem. Moreover, during the real-time operation,

the battery size (𝐵) and (dis)charge rates (𝛼𝑐 , 𝛼𝑑 ) that appear in the

constraints of Problems (13) and (16) are defined for each EV in-

dependently. Hence, they can take different values for different EVs.

FlexOffer Compatibility. Since EVs are offering flexibility, one can
generate FlexOffers and aggregate them. This is especially useful if

the number of V2G contracts the VPP has to manage becomes very

large as aggregation would reduce the number of decision variables

in Problems (13) and (16). As the EV adoption increases, the demand

for chargers will follow, making this an interesting future direction.

Precisely, a FlexOffer is a tuple of three elements: earliest start

time (EST), latest start time (LST) and 𝜌 , where 𝜌 is a sequence of

slice constraints that define the minimum and maximum amount

of energy that can be consumed in each time slot the FlexOffer is

active. To adapt FlexOffers to our setting, we can assign the EV

arrival time to EST and add the EV’s laxity to that to get LST. Each

element of 𝑝 is either [−𝛼𝑑 , 𝛼𝑐 ] or [0, 𝛼𝑐 ] depending on whether a

V2G contract is accepted or not. We can then define a total energy
constraint [29] to guarantee the energy demand of each EV will be

fulfilled. Similarly, we can define additional constraints for a) the

total amount of energy that can be discharged from the EV battery

to enforce the discharge energy specified in the contract, and b)

the time slots in which the battery can be discharged according

to the contract duration. Our work complements the FlexOffer

literature by designing an incentive mechanism to encourage the

participation of privately owned EVs in the VPP. We plan to explore

the aggregation of the flexibility offered by possibly many EVs with

V2G contracts to reduce the scheduling overhead in future work.

9 CONCLUSION
This paper studies how a VPP that controls a network of bidirec-

tional chargers should incentivize privately-owned EVs, who visit

a charging station and might stay for longer than it takes to finish

charging their battery, to let their battery be discharged if their

energy demand is guaranteed to be satisfied before their departure.

We tackle the design of fixed-term, incentive-compatible V2G con-

tracts and develop an online scheduling algorithm that allows the

VPP to use the available energy from the accepted V2G contracts at

the time that is most beneficial to it. Our evaluation based on real

data from a charging infrastructure in the Netherlands indicates

that the VPP remains profitable, despite offering V2G incentives,

and its profit increases only slightly for longer contract durations.

With the growing adoption of EVs and other variable loads, the

need for flexibility and emergency support will be more acute, mak-

ing it even more important to design V2G contracts and leveraging

these contracts in demand response and energy trading schemes.

Since some EVs strongly prefer longer V2G contracts while others

cannot even consider these contracts because they fail the “stay

time entry check”, we plan to design incentive-compatible, variable-

term contracts in future work. We speculate that this will increase

the VPP profit and allow more EVs to participate. That said, in-

corporating variable-term V2G contracts in the online scheduling

algorithm creates new challenges for ensuring charging feasibil-

ity. Thus, the design of sophisticated scheduling algorithms that

could rely on machine learning models, and benchmarking these

algorithms are other future work directions.
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A PROOFS OF EQUIVALENCE
Proof of Lemma 1. Let {(𝑔𝑚,𝑤𝑚)}𝑚=1· · ·𝑀 denote a feasible point

of Problem (7) and {(𝑔∗𝑚,𝑤∗𝑚)}𝑚=1· · ·𝑀 denote its solution. Notice

that every feasible point of Problem (7) satisfies all the IC con-

straints, including the following constraint written for some 𝜃𝑚∈Θ:

𝑉𝐸𝑉 (𝜃𝑚, 𝜃𝑚) ≥ 𝑉𝐸𝑉 (𝜃1, 𝜃𝑚) (17)

We argue that if contract (𝑔1,𝑤1) is offered to both type 𝜃1 and

type 𝜃𝑚 EV owners, the EV owners of type 𝜃𝑚 will attain a higher

utility. This is because 𝜃𝑚 > 𝜃1 and𝑤1 is positive, so we can write:

𝑔1 −
𝑤1 · 𝛾 · 𝑐

𝜃𝑚
≥ 𝑔1 −

𝑤1 · 𝛾 · 𝑐
𝜃1

→ 𝑉𝐸𝑉 (𝜃1, 𝜃𝑚) ≥ 𝑉𝐸𝑉 (𝜃1, 𝜃1) .

Combining it with (17) and the IR constraint for 𝜃1, we have:

𝑉𝐸𝑉 (𝜃𝑚, 𝜃𝑚) ≥ 𝑉𝐸𝑉 (𝜃1, 𝜃𝑚) ≥ 𝑉𝐸𝑉 (𝜃1, 𝜃1) ≥ 0

which suggests that the IR constraints for higher types are satisfied

naturally for every feasible point of Problem (7).

Next, we prove by contradiction that at the solution, the IR

constraint for the lowest type (i.e. type 𝜃1) is binding. Suppose the
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IR constraint for 𝜃1 is not binding at the solution. Thus

𝑉𝐸𝑉 (𝜃1, 𝜃1) > 0→ 𝑔∗
1
−
𝑤∗

1
· 𝛾 · 𝑐
𝜃1

> 0.

Consider a new contract (𝑔′
1
,𝑤∗

1
) with 𝑔′

1
= 𝑔∗

1
− 𝜖 , where 0 < 𝜖 ≤

𝑔∗
1
− 𝑤∗

1
.𝛾 .𝑐

𝜃1

. The utility of the EV owner of type 𝜃1 when they are

offered this new contract would be:

𝑔′
1
−
𝑤∗

1
· 𝛾 · 𝑐
𝜃1

= −𝜖 + 𝑔∗
1
−
𝑤∗

1
· 𝛾 · 𝑐
𝜃1

> 0

→ −𝜖 +𝑉𝐸𝑉 (𝜃1, 𝜃1) > 0

Since the IR constraint is satisfied with the new contract (𝑔′
1
,𝑤∗

1
)

and this contract increases the VPP profit by giving a lower payoff

to EVs of a certain type, it is a better contract than the solution of

Problem (7). This contradiction suggests that the IR constraint for

type 𝜃1 must be binding so that no such contract can be formed. □

Proof of Lemma 2. We write the IC constraint for some 𝜃𝑖∈Θ:

𝑉𝐸𝑉 (𝜃𝑖 , 𝜃𝑖 ) ≥ 𝑉𝐸𝑉 (𝜃 𝑗 , 𝜃𝑖 ) → 𝑔𝑖 −
𝑤𝑖 · 𝛾 · 𝑐

𝜃𝑖
≥ 𝑔 𝑗 −

𝑤 𝑗 · 𝛾 · 𝑐
𝜃𝑖

→ 𝑔𝑖 − 𝑔 𝑗 ≥
(𝑤𝑖 −𝑤 𝑗 ) · 𝛾 · 𝑐

𝜃𝑖

If𝑤𝑖≥𝑤 𝑗 holds, the right side of the above inequality will be positive.

This means that the left side must be positive too, hence𝑔𝑖≥𝑔 𝑗 holds.
Similarly, if 𝑔 𝑗≥𝑔𝑖 holds, the left side of the above inequality will

be negative. This means that the right side must be negative too,

hence𝑤 𝑗≥𝑤𝑖 holds. □

Proof of Lemma 3. Let us consider 3 types of EV owners: 𝜃 𝑗−1,

𝜃 𝑗 and 𝜃 𝑗+1 (𝜃 𝑗−1 < 𝜃 𝑗 < 𝜃 𝑗+1). In Step 1, we prove that DICs can

be derived from LDICs.

Step 1. Consider the LDIC for an EV owner of type 𝜃 𝑗 :

𝑉𝐸𝑉 (𝜃 𝑗 , 𝜃 𝑗 ) ≥ 𝑉𝐸𝑉 (𝜃 𝑗−1, 𝜃 𝑗 ) → 𝑔 𝑗 −
𝑤 𝑗 · 𝛾 · 𝑐

𝜃 𝑗
≥ 𝑔 𝑗−1 −

𝑤 𝑗−1 · 𝛾 · 𝑐
𝜃 𝑗

→ 𝑔 𝑗 − 𝑔 𝑗−1 ≥
(𝑤 𝑗 −𝑤 𝑗−1) · 𝛾 · 𝑐

𝜃 𝑗

Since 𝜃 𝑗+1 > 𝜃 𝑗 and𝑤 𝑗 ≥ 𝑤 𝑗−1, the following inequality holds:

𝑔 𝑗 − 𝑔 𝑗−1 ≥
(𝑤 𝑗 −𝑤 𝑗−1) · 𝛾 · 𝑐

𝜃 𝑗+1

Lastly, we reorganize the above inequality to obtain:

𝑔 𝑗 −
𝑤 𝑗 · 𝛾 · 𝑐
𝜃 𝑗+1

≥ 𝑔 𝑗−1 −
𝑤 𝑗−1 · 𝛾 · 𝑐

𝜃 𝑗+1
→ 𝑉𝐸𝑉 (𝜃 𝑗 , 𝜃 𝑗+1) ≥ 𝑉𝐸𝑉 (𝜃 𝑗−1, 𝜃 𝑗+1)

Now let us write the LDIC constraint for EV owner of type 𝜃 𝑗+1:

𝑉𝐸𝑉 (𝜃 𝑗+1, 𝜃 𝑗+1) ≥ 𝑉𝐸𝑉 (𝜃 𝑗 , 𝜃 𝑗+1)

By combining the last two inequalities we get a non-local downward

incentive constraint:

𝑉𝐸𝑉 (𝜃 𝑗+1, 𝜃 𝑗+1) ≥ 𝑉𝐸𝑉 (𝜃 𝑗−1, 𝜃 𝑗+1) (18)

Using the same approach, it is possible to show that for each type

𝜃 𝑗 , if the respective LDIC is satisfied, then all other downward

incentive constraints will be satisfied too. In the next step, we prove

that UICs can be derived from LUICs too.

Step 2. Consider the LUIC for an EV owner of type 𝜃 𝑗 :

𝑉 (𝜃 𝑗 , 𝜃 𝑗 ) ≥ 𝑉 (𝜃 𝑗+1, 𝜃 𝑗 ) → 𝑔 𝑗 −
𝑤 𝑗 · 𝛾 · 𝑐

𝜃 𝑗
≥ 𝑔 𝑗+1 −

𝑤 𝑗+1 · 𝛾 · 𝑐
𝜃 𝑗

→ 𝑔 𝑗+1 − 𝑔 𝑗 ≤
(𝑤 𝑗+1 −𝑤 𝑗 ) · 𝛾 · 𝑐

𝜃 𝑗

Since 𝜃 𝑗 > 𝜃 𝑗−1 and𝑤 𝑗+1 ≥ 𝑤 𝑗 , the following inequality holds:

𝑔 𝑗+1 − 𝑔 𝑗 ≤
(𝑤 𝑗+1 −𝑤 𝑗 ) · 𝛾 · 𝑐

𝜃 𝑗−1

Lastly, we reorganize this inequality:

𝑔 𝑗+1 −
𝑤 𝑗+1 · 𝛾 · 𝑐

𝜃 𝑗−1

≤ 𝑔 𝑗 −
𝑤 𝑗 · 𝛾 · 𝑐
𝜃 𝑗−1

𝑉𝐸𝑉 (𝜃 𝑗 , 𝜃 𝑗−1) ≥ 𝑉𝐸𝑉 (𝜃 𝑗+1, 𝜃 𝑗−1)

Now let us write the LUIC constraint for EV owner of type 𝜃 𝑗−1:

𝑉𝐸𝑉 (𝜃 𝑗−1, 𝜃 𝑗−1) ≥ 𝑉𝐸𝑉 (𝜃 𝑗 , 𝜃 𝑗−1)

By combining the last two inequalities we get a non-local upward

incentive constraint:

𝑉𝐸𝑉 (𝜃 𝑗−1, 𝜃 𝑗−1) ≥ 𝑉𝐸𝑉 (𝜃 𝑗+1, 𝜃 𝑗−1)

Using the same approach, it is possible to show that for each type 𝜃 𝑗 ,

if the respective LUIC is satisfied, then all other upward incentive

constraints will be satisfied too. □

Proof of Lemma 4. Let {(𝑔∗𝑚,𝑤∗𝑚)}𝑚=1· · ·𝑀 denote the solution

of this optimization problem.We prove this lemma by contradiction.

Suppose the LDIC for type 𝜃𝑘 is not binding, so it can be written at

the solution as follows:

𝑉 (𝜃𝑘 , 𝜃𝑘 ) > 𝑉 (𝜃𝑘−1
, 𝜃𝑘 ) → 𝑔∗

𝑘
−
𝑤∗
𝑘
· 𝛾 · 𝑐
𝜃𝑘

>𝑔∗
𝑘−1
−
𝑤∗
𝑘−1
· 𝛾 · 𝑐

𝜃𝑘
(19)

Let (𝑔′
𝑘
,𝑤∗

𝑘
) be a new contract with 𝑔′

𝑘
= 𝑔∗

𝑘
− 𝜖 that replaces

(𝑔∗
𝑘
,𝑤∗

𝑘
). The VPP operator can fix the value of 𝜖 such that it is

positive and less than the gap between the two sides of (19). This

will ensure that (19) is still satisfied, yet increases the VPP profit

by transferring a lower payoff to one type of EV owners. This

is a contradiction as {(𝑔∗𝑚,𝑤∗𝑚)}𝑚=1· · ·𝑀 was supposed to be the

optimal point. Therefore, LDICs must be active at the solution. □

Proof of Lemma 5. Consider the binding LDIC for type 𝜃𝑘∈Θ

𝑉 (𝜃𝑘 , 𝜃𝑘 ) = 𝑉 (𝜃𝑘−1
, 𝜃𝑘 ) → 𝑔𝑘 −

𝑤𝑘 · 𝛾 · 𝑐
𝜃𝑘

= 𝑔𝑘−1
− 𝑤𝑘−1

· 𝛾 · 𝑐
𝜃𝑘

→ 𝑔𝑘 − 𝑔𝑘−1
=
(𝑤𝑘 −𝑤𝑘−1

) · 𝛾 · 𝑐
𝜃𝑘

→ 𝑔𝑘 − 𝑔𝑘−1
≤ (𝑤𝑘 −𝑤𝑘−1

) · 𝛾 · 𝑐
𝜃𝑘−1

The last step follows from the fact that 𝜃𝑘>𝜃𝑘−1
. Rearranging this

inequality gives:

𝑔𝑘 −
𝑤𝑘 · 𝛾 · 𝑐
𝜃𝑘−1

≤ 𝑔𝑘−1
− 𝑤𝑘−1

· 𝛾 · 𝑐
𝜃𝑘−1

→ 𝑉 (𝜃𝑘 , 𝜃𝑘−1
) ≤ 𝑉 (𝜃𝑘−1

, 𝜃𝑘−1
)

which is an LUIC. Using the same approach, it is possible to show

that other LUICs can be derived from LDICs when they are binding.

□
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B DEFINING THE VPP UTILITY FUNCTION
This figure justifies our choice of 𝜅 for the three contract durations

we considered in this paper.
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Figure 5: The VPP’s value function for different 𝜅 values.
Vertical lines are drawn at 𝛼𝑑×ℓ𝑉 2𝐺 , with ℓ𝑉 2𝐺∈{1, 2, 3} and
𝛼𝑑=11𝑘𝑊 , showing the maximum amount of energy that can
be discharged in ℓ𝑉 2𝐺 hours, i.e., the last constraint in (OC3).

C CREATING THE CONTRACT MENU
Three entry checks are applied to the V2G contracts to remove the

contracts that cannot be executed or would make the scheduling

problem infeasible if accepted. This process is visualized below.
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Figure 6: A simple demonstration of how the V2G contract
menu is put together for each EV.

D DISTRIBUTION OF HOURLY PRICES
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Figure 7: Distribution of hourly prices in the DA and IM
markets. The size of the whiskers is 1.5×IQR.

E UNKNOWN TYPE DISTRIBUTION
To investigate how the VPP’s profit changes if its estimate of

the type distribution differs from the true type distribution, we

consider Biased Low and Biased High cases. In the former case,

the empirical type distribution of arriving EVs is biased towards

lower types. Specifically, we sample the type of each EV that ar-

rives at the charging station from �̃� = [0.36, 0.28, 0.2, 0.12, 0.04]
in our simulation. In the latter case, we sample the type from

�̃� = [0.04, 0.12, 0.2, 0.28, 0.36]. In both cases, the contracts offered to
EVs are the same as the ones offered in the Unbiased case. We note

that for a given ℓ𝑉 2𝐺 value, the total number of EVs that participate

in V2G by accepting a contract would be the same across the three

cases as the laxity and other variables remain unchanged.

The simulation results for the Biased Low and Biased High cases

are summarized in Table 2. Notice that for a fixed ℓ𝑉 2𝐺 value, the

total profit results are nearly the same in the three cases. The Biased
Low case (i.e., more lower-energy contracts accepted) is slightly

more profitable than the Biased High one (i.e., more higher-energy

contracts accepted). This might seem counter-intuitive at first since

higher-energy contracts offer more potential for trading flexibility

in the imbalance market. However, a higher payoff must be trans-

ferred to the EV owner for these contracts. Our analysis shows that

these two factors almost cancel out each other, which is evident

from comparing the Transfer to markets and Payoff to EVs from con-
tracts columns in Table 2. Thus, we conclude that using a slightly

different type distribution at the contract design stage would not

have significant impact on the VPP’s profit.

ℓ𝑉 2𝐺 Case Total
profit

EV
charging
revenue

Transfer
to

markets

Payoff to
EVs for
contracts

Gain over
No-Control

- No-Control € 21,545 € 28,864 € -7,319 € 0 -

- No-V2G € 22,014 € 28,864 € -6,850 € 0 2.2%

1 Unbiased € 24,004 € 28,864 € -4,191 € -669 11.4%

2 Unbiased € 24,059 € 28,864 € -4,140 € -665 11.6%

3 Unbiased € 24,162 € 28,864 € -4,109 € -592 12.2%

1 Biased Low € 24,044 € 28,864 € -4,202 € -617 11.6%

2 Biased Low € 24,110 € 28,864 € -4,173 € -580 11.9%

3 Biased Low € 24,224 € 28,864 € -4,140 € -500 12.4%

1 Biased High € 23,952 € 28,864 € -4,189 € -723 11.2%

2 Biased High € 23,985 € 28,864 € -4,136 € -744 11.3%

3 Biased High € 24,102 € 28,864 € -4,084 € -678 11.9%

Table 2: Experimental results for the two baselines, and three
different empirical type distributions for ℓ𝑉 2𝐺 = 1, 2, 3
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