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ABSTRACT
State estimation techniques that utilize machine learning are gain-
ing popularity in power distribution networks with high penetra-
tion of distributed energy resources due to their higher accuracy,
faster convergence, and computational efficiency. However, little at-
tention has been paid to their security and robustness, especially to
targeted false data injection and evasion attacks. This note aims to
investigate if the direction andmagnitude of change in the state esti-
mation result can be simultaneously controlled by the attacker, and
the kind of access required to perform successful targeted attacks
on data-driven state estimation approaches.
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1 INTRODUCTION
Data-driven approaches are considered better alternatives to con-
ventional power system state estimation techniques in terms of
accuracy, convergence rate, and computational complexity [6, 31, 33,
34]. However, the incorporation of neural networks into the power
system operation necessitates a comprehensive evaluation beyond
mere performance metrics. In particular, ensuring overall system
security is a key concern in safety-critical applications, such as real-
time monitoring and control of power systems. In previous work,
electrical model-based state estimation approaches, such as the
weighted least squares (WLS) method, have been found vulnerable
to various kinds of false data injection attack (FDIA) [8, 17, 22, 37].
In seminal work by Liu et al. [17], it was shown that the attacker
with knowledge of the power system structure and configuration
can determine the amount of false data that must be introduced
to move the state estimates produced by electrical model-based
state estimation approaches by a desired amount in a specific di-
rection. With the growing popularity of data-driven distribution
system state estimation (DSSE) approaches, it is imperative to un-
derstand if the known vulnerabilities of electrical model-based DSSE
approaches extend to the data-driven DSSE approaches, and whether
new vulnerabilities may arise that are specific to the data-driven
approaches?
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Some efforts have been made in recent years to answer these
questions. For example, state estimators that incorporate a neural
network were found vulnerable to various FDIAs [15, 16]. Recent
work shows that the inherent vulnerability of neural networks to
the evasion attack – a type of adversarial attack where the neural
network input is manipulated once the trained model is deployed
– would pose a threat to the power system operation should data-
driven DSSE approaches be adopted [2]. Nevertheless, there is no
known work that studies how precisely the attacker can control
the direction and/or amount of error introduced in the estimated
state under different threat models.

In this work, we investigate the following research questions:
• RQ1 (Vulnerability to FDIA): What is the impact of the tradi-
tional FDIA [17] on data-driven DSSE?
• RQ2 (Vulnerability to Targeted Adversarial Perturbations):
Is it possible to generate a targeted adversarial attack against
data-driven DSSE where the attacker can control either the
direction or the amount of error being injected?
• RQ3 (Privileges Required for Successful Targeted Attack):
What kind of access to distribution network structure and
parameters, neural network parameters, and sensor data
would be required for the attacker to successfully launch
powerful and targeted attacks against data-driven DSSE?

Investigating RQ2 leads us to design a novel targeted evasion attack
based on the Fast Gradient Sign Method (FGSM) [10] because, to
our knowledge, no targeted evasion attack on data-driven DSSE
has been proposed in the literature. This is another contribution of
this work besides analyzing vulnerabilities of data-driven DSSE.

2 BACKGROUND AND RELATEDWORK
Stealthy FDIAs on WLS-based state estimation were originally in-
troduced in [17]. More recently, the vulnerability of data-driven
and electrical model-based distribution system state estimators to
various FDIAs has been studied [8, 16, 24, 25, 37]. Among these
attack strategies, the FDIA proposed in [17] and some of its exten-
sions [8, 26, 37] are considered targeted attacks as they can control
the amount and direction of change in the state estimation result.
Yet, none of these attack strategies has been tested against data-
driven DSSE. This motivates us to evaluate the efficacy of targeted
FDIA on data-driven DSSE approaches.

In another line of work, machine learning has been employed
to generate untargeted adversarial attacks against state estimation
techniques [2, 5]. Specifically, deep adversarial networks have been
used for the first time in [5] to craft a stealthy black-box1 adversarial

1In black-box attacks, the attacker trains an arbitrary surrogate model on the input
and output of the victim model that performs state estimation using its query access to
that model (i.e. the ability to run the model to record its output for specific input), and
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Table 1: Our contribution with respect to previous work.

DSSE
Approach

Reference Attack Strategy Attack Nature
FDIA Adversarial Untargeted Targeted

Electrical
Model
Based

[8, 17, 37] • • •
[25] • •
[26] • •
[27] • • •
[5] • •

Data
Driven

[15, 16] • •
[2, 24] • •

Ourwork • • •

attack. The authors used FGSM to construct attack vectors against a
WLS-based state estimation technique. The vulnerability of a data-
driven DSSE approach has been analyzed in [2] and a stealthier
version of the conventional FGSM-based attack has been proposed
and shown to be capable of bypassing the residual-based bad data
detection (BDD) mechanism more often than the conventional
FGSM. Nevertheless, all these attacks are untargeted, meaning that
they move the estimated state in an arbitrary direction.

Targeted evasion attacks have been designed to fool classification
models by exploiting the geometry of the decision boundary [7, 13].
However, limited exploration has been conducted to date to extend
these attacks to a regression model [12, 19]. Specifically, there is no
known work that focuses on generating targeted evasion attacks
against data-driven DSSE, which is a multivariate regression task. In
this work, we propose a targeted evasion attack capable of moving
the estimated state of the distribution system in a specific direction.
Table 1 shows our contribution with respect to the previous work,
especially the studies that focus on data-driven DSSE approaches.

3 TARGETED ATTACK STRATEGIES
To explore RQ1, we launch the targeted FDIA proposed in [17] on a
data-driven DSSE technique that takes the vector of real-time mea-
surements at a given time 𝑡 , denoted as zt, and estimates the system
state at that time, denoted as xt. Suppose the state variables are the
bus voltage phasors denoted as x = [v1, v2, · · · , vb, 𝜽 1, 𝜽 2, · · · , 𝜽𝑏 ],
with 𝑏 being the number of buses not equipped with a sensor, and vi
and 𝜽 𝑖 representing the vectors that contain the three-phase voltage
magnitudes and phase angles of bus 𝑖 , respectively. As discussed
in [17], to produce an erroneous state, x′t = xt + c, the attacker
needs to specify the error vector, c, and then compute the attack
vector as: a = Hc. Here, H is the measurement matrix, used in
electrical model-based state estimation approaches as well as the
conventional residual-based BDD mechanism [3]. This strategy
ensures that the attack vector will bypass the residual-based BDD
mechanism [17] and allows the attacker to judiciously choose the
attack vector to achieve the desired goal. Since this attack forms
the basis for other targeted FDIAs (e.g. [8, 26, 37]), we consider it
to assess the vulnerability of data-driven DSSE to targeted FDIA.

To address RQ2, we design a targeted evasion attack based on
FGSM. The attacker’s goal is to construct an adversarial data sam-
ple, z′t , from a clean data sample, (zt). For a surrogate model used at

uses the surrogate model to craft adversarial data. However, in white-box attacks, the
attacker uses the same model as the victim model to craft adversarial data.

Algorithm 1 Targeted-FGSM Attack
1: Inputs:

Surrogate model, 𝑔(·;𝜃 ′)
Original data sample at timestamp 𝑡 , zt
Predefined voltage range, (𝑣𝑚𝑖𝑛, 𝑣𝑚𝑎𝑥 )

2: Output:
Adversarial data sample at timestamp 𝑡 , z′t

⊲ Initialize the target state vector
3: xt ← 𝑓 (zt;𝜃 )
4: x′t ← xt

⊲ Let 𝐼 be the vector denoting indices of voltage magnitudes in 𝑥
5: for 𝑖 in 𝐼 do
6: x′t [𝑖] ← random(𝑣𝑚𝑖𝑛, 𝑣𝑚𝑎𝑥 )
7: end for
8: 𝜹zt ← ∇zt

[
𝐿
(
𝑔(zt;𝜃 ′), x′t

) ]
9: z′t ← zt − 𝜖 · sign

(
𝜹zt

)
⊲ 𝜖 is a scalar hyperparameter

the attacker’s end, 𝑔(zt;𝜃 ′), we define the adversarial loss function
as 𝐿

(
𝑔(zt;𝜃 ′), x′t

)
which is the mean squared error (MSE) between

the model output, 𝑔(zt;𝜃 ′), and the target state vector x′t . Here, x
′
t

is a vector of size 𝑛 that has the same phase angle values as the
predicted state vector of the surrogate model but the voltage val-
ues are replaced by some randomly chosen values from the range
(𝑣𝑚𝑖𝑛, 𝑣𝑚𝑎𝑥 ), which must be defined by the attacker according
to their objective. For example, an attacker aiming to cause over-
estimation should use a higher target range, e.g. around 1.05pu.
Conversely, an attacker aiming to cause under-estimation should
use a lower target range, e.g. 0.95pu. It is important to note that
instead of choosing a fixed target value, we pick a value from the
predefined range uniformly at random to introduce some nonde-
terministic behavior into the algorithm.

We construct the adversarial sample, z′t , by moving the original
data sample in the opposite direction of the gradient of the adver-
sarial loss function, 𝐿

(
𝑔(zt;𝜃 ′), x′t

)
, taken with respect to the input

data. Moving the data sample in that direction, which is found
using the sign of the gradient, will minimize the loss and even-
tually move the DSSE result closer to the target state, x′t . Notice
the difference between training the model for data-driven state
estimation and crafting adversarial data given the fully trained
state estimation model. In the former, we calculate the gradient of
the loss with respect to the model parameters, 𝜃 , whereas in the
latter, we calculate the gradient with respect to the input data, zt.
Algorithm 1 describes the proposed Targeted-FGSM attack. This
algorithm can be used in white-box and black-box settings where
the difference lies in whether the surrogate model 𝑔 is identical
to the victim DSSE model 𝑓 , or it is an arbitrary neural network
that has sufficient learning capacity. In the black-box setting, the
attacker collects a set of measurement-state pairs, i.e. (zt, xt), to
train a surrogate model 𝑔 that mimics the victim DSSE model 𝑓 .
Moreover, the query access to the victim model can be utilized to
get the estimated state, xt, in line 3 of Algorithm 1.

We note that, with some effort, directed perturbations can be
calculated using other adversarial attack strategies such as basic
iterative method (BIM) and projected gradient descent (PGD) [21].
Yet, we build our targeted evasion attack on FGSM which is easier



On Brittleness of Data-Driven Distribution System State Estimation to Targeted Attacks E-Energy ’24, June 4–7, 2024, Singapore, Singapore

to implement and serves as the foundation of PGD and BIM [36].
This is sufficient to address RQ2 as discussed later.

4 EXPERIMENTAL SETUP
Data-Driven DSSEApproaches. Weuse the Stacked ResNetDmodel

described in [2] as our data-driven DSSE approach (i.e. the victim
model). This ensemble of deep residual neural networks has been
shown to achieve better performance in DSSE than several other
deep learning models [6]. The choice is also inspired by the finding
of [23, 28] that ensemble models generally have better adversarial
robustness. In our implementation of the white-box attacks, we
use the Stacked ResNetD model as the surrogate model trained
on data-state pairs by the attacker. For black-box attacks, we uti-
lize the 8-layer convolutional neural network (CNN), consisting of
three convolution, two pooling, and three dense layers with ReLU
activation function, proposed in [6] as the surrogate.

Test Distribution System. Following [2], we use the 33-bus sys-
tem [4] and the IEEE European low voltage test feeder [1] as the
primary and secondary distribution networks respectively. To repre-
sent the system loads, we use the Multifamily Residential Electricity
Dataset (MFRED) [18], which contains daily load profiles of 390 US
apartments with 15 minutes resolution over 12 months. Once the
system is built, we run power flow analysis in OpenDSS [9] to gen-
erate training and test datasets for the data-driven DSSE approach.
Note that the training dataset can be generated in a similar fashion
in the real world, i.e., by solving the power flow equations to obtain
the system states using historical load and generation data [32].

Data Preparation & Simulation. We assume that all load buses
within the secondary distribution network are equipped with smart
meters that have 15-minute resolution. Aggregating these data from
all load buses yields the real and reactive power consumption at
the primary bus, which will be treated as pseudo-measurements.
Moreover, six primary buses are considered to be equipped with
distribution level phasor measurement units (D-PMUs).2 Thus, the
measurement vector, zt, contains three-phase real and reactive
power consumption at each of the primary load buses, and three-
phase voltage magnitudes of the six buses. We have 27 buses that
are not monitored by D-PMUs. The three-phase voltage magnitudes
and phase angles of these buses comprise the system state.

We use the OpenDSS simulation results for the first half of ev-
ery month to train the victim model. With a dataset resolution of
15 minutes, we amass a total of 17, 280 training samples. For the
test dataset, we randomly select load data from three consecutive
days of each month and obtain corresponding OpenDSS simulation
results. Consequently, we generate 3, 456 instances of test samples,
organized into 12 groups of 288 consecutive measurements. These
groups are evenly distributed throughout the year, covering three
consecutive days from each month, with 96 samples per day. The
remaining samples, comprising 12 days in the latter half of every
month, are employed to train the CNN surrogate model for the
black-box version of the proposed Targeted-FGSM attack.

2We install six D-PMUs since this level of observability led to reasonable state estima-
tion performance in [11]. Note that determining the optimal placement of measurement
devices, such as D-PMUs, is not within the scope of our study, so we just adopted a
reasonable sensor placement strategy.
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Figure 1: Distribution of bus voltage magnitude ratio over all
unobserved buses under targeted FDIA attack on two DSSE
models. Note the y-axis is in logarithmic scale.
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Figure 2: Distribution of bus voltage magnitude ratio over
all unobserved buses under FGSM and Targeted-FGSM attack
(both white-box and black-box versions). An ideal estimation
should reside near the vertical line drawn at 1.0.

5 VULNERABILITY TO TARGETED ATTACKS
Without loss of generality, we consider an adversary who intends to
push the voltage levels in the state estimation vector in an upward
direction. Unless otherwise stated, we set the hyper-parameters of
the Targeted-FGSM attack as follows: 𝑣𝑚𝑖𝑛=1.03, 𝑣𝑚𝑎𝑥=1.04, 𝜖=0.08.

Figure 1 shows the experimental results for RQ1 in terms of the
distribution of the ratio of the estimated bus voltage magnitude
(either under normal conditions or in the presence of an attacker)
to its true voltage magnitude, for all the unobserved buses.

As found in [17], targeted FDIA pushes the estimation of the
WLS-based DSSE model in the desired direction and by the specific
amount defined in the error vector, c. However, it does not work
like a targeted attack on the Stacked ResNetD model. It can be
seen that it moves the state estimate in both directions and the
resulting state x′ has arbitrary errors injected instead of the speci-
fied error vector, c. This is expected because the Stacked ResNetD
model has no information regarding the H matrix and transforms
the input measurement into a state vector using some non-linear
transformation that takes place inside the complex neural network
architecture. Thus, the traditional targeted FDIA that works against
electrical model-based DSSE approaches does not retain its targeted
property when used against the Stacked ResNetD model.

Next we evaluate the performance of the proposed Targeted-
FGSM attack (Algorithm 1) on the Stacked ResNetD model. Figure 2
compares the white-box FGSM from [2] and the targeted evasion
attack (both white-box and black-box versions) that we proposed
in this work. As we observe, FGSM, due to its untargeted nature,
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Figure 3: Distribution of bus voltage magnitude ratio over
all unobserved buses under Targeted-FGSM attack crafted
with different 𝜖 values (𝑣𝑚𝑖𝑛 and 𝑣𝑚𝑎𝑥 are kept fixed at 1.03
and 1.04, respectively).

moves the estimates in both directions while white-box Targeted-
FGSM attack maintains a majority of cases with a ratio greater
than 1, pushing the estimations in an upward direction. However,
similar to FGSM and targeted FDIA, the black-box Targeted-FGSM
attack moves the estimated states in both directions, indicating its
failure in fulfilling the adversarial objective. It is important to note
that by adjusting the perturbation factor hyperparameter (𝜖) of the
Targeted-FGSM attack one could further skew the distribution to
the right at the cost of increasing the chance of the attack being
detected. We discuss more about this in the following section.

6 DISCUSSION
6.1 Required Resources and Privileges
We now address RQ3. As shown in Section 5, the proposed Targeted-
FGSM attack is effective only in white-box setting, where the at-
tacker has (a) complete knowledge of the data-driven DSSE model,
𝑓 (·;𝜃 ), referred to as the victim model, and (b) read and write ac-
cess to the sensor measurements, z. Due to the first assumption,
the surrogate model used by the attacker can be identical to the
victim model, making it a white-box attack. It is worth noting that,
in the machine learning domain, the lack of transferability is a
well-known shortcoming of the targeted evasion attacks [14].

The primary attack point is the utility data center where field
measurements are stored, and the data-driven DSSE model is stored
and executed eventually. The attacker can be a malicious system
operator, or an outsider gaining unauthorized access to the server
using compromised software or via a compromised user account.
PMU networks and utility data centers have been found vulnerable
to such attacks in recent studies [29, 30], lending credence to this
threat model. That said, one could argue that the requirement for
white-box access is too strict, reducing the chances of this targeted
evasion attack taking place in real life.

6.2 Hyperparameter Sensitivity of the Targeted
Evasion Attack

Algorithm 1 contains three hyperparameters, namely 𝑣𝑚𝑖𝑛 , 𝑣𝑚𝑎𝑥 ,
and 𝜖 . We tested the proposed Targeted-FGSM attack with various
combinations of these hyperparameters to understand their im-
portance for generating a successful targeted attack. Our analysis
reveals an interesting observation. While testing different hyperpa-
rameter combinations, we found that the impact of 𝜖 supersedes

that of the other two hyperparameters, 𝑣𝑚𝑖𝑛 and 𝑣𝑚𝑎𝑥 , which define
the target range. Typically, distribution systems are operated in a
way that bus voltages are maintained in a specific range (for exam-
ple, between 0.95 and 1.05 p.u). From the standpoint of the attacker,
opting for a target range close to the upper (lower) pre-defined
value is sufficient to trigger targeted behavior of the algorithm,
resulting in overestimation (underestimation). However, the effec-
tiveness of the attack, which is measured as how much it can push
the estimated states in a certain direction, depends on 𝜖 primarily.
Figure 3 shows the sensitivity to 𝜖 . Observe that 𝑣𝑚𝑖𝑛 and 𝑣𝑚𝑎𝑥

are kept fixed at 1.03 and 1.04 – yielding quite a small range! In
spite of that, we are able to push the estimated states to around
1.15p.u. just by tweaking 𝜖 . This implies that while the target range,
[𝑣𝑚𝑖𝑛, 𝑣𝑚𝑎𝑥 ], defines the attack direction, 𝜖 determines the size of
the leap that we are taking in that particular direction. By choos-
ing higher 𝜖 values, it is possible to generate attack vectors that
are more effective indeed. However, this comes at the cost of an
increased chance of getting detected by the DSSE safeguard mecha-
nism. We defer designing a hyperparameter selection strategy for
a known safeguard mechanism to future work and just note that
striking a good trade-off between effectiveness and stealthiness of
the attack would be of utmost importance to the attacker.

7 CONCLUSION AND FUTUREWORK
We explored the vulnerability of a data-driven DSSE approach to
the traditional targeted FDIA that was found successful in deceiving
the electrical model-based DSSE in a predicted way. Upon observing
the failure of this targeted FDIA against the data-driven DSSE, we
designed a targeted adversarial attack, namely Targeted-FGSM, to
ensure over-estimation of the system states. In practice, such an
attack can cause consistent power quality (under-voltage) issues in
the distribution network.

Our proposed Targeted-FGSM attack approach, despite being
quite successful in achieving its goal, suffers from several key lim-
itations. We believe these limitations illuminate the path toward
further research. The limitations along with future research direc-
tions are listed below:
• There are a number of recent studies that aim to develop
targeted adversarial attack strategies against image classi-
fiers that are transferable across different victim models [14,
20, 35]. Extending these attack strategies to multi-variate
regression problems can help us understand the impact of
these attack strategies on various data-driven smart grid
applications including DSSE.
• Evasion attacks are significantly different from the conven-
tional FDIAs not only in how they create the attack vector
but also in the way they affect the overall system. This calls
for analyzing the effectiveness of conventional DSSE safe-
guard mechanisms (such as BDD) against these attacks and
designing better safeguard mechanisms.
• As discussed in Section 6.2, the effectiveness and stealthiness
of the proposed targeted evasion attack strategy highly de-
pend on the perturbation factor, 𝜖 . Automatically tuning this
hyper-parameter to get an acceptable balance between effec-
tiveness and stealthiness of the attack presents an intriguing
future work direction.
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