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ABSTRACT

With the global push to decarbonize the building sector and growing
interest in occupant-centric building controls, numerous simula-
tion and field studies have been conducted to explore the trade-off
between energy efficiency and occupant comfort. These studies
largely disregard individual differences in thermal comfort and as-
sume each zone has a fixed occupancy schedule. In office buildings,
there is often some leeway in how occupants are grouped and as-
signed to different building spaces (e.g., offices and meeting rooms).
In this paper we investigate the extent of the impact of the space
allocation strategy on the energy-comfort trade-off in office build-
ings, and whether it depends on specific building characteristics.
Our simulation shows that varying the space allocation strategy
in a medium office building can lead to over 3.5%/15.1% change
in annual/monthly energy consumption, and over 15% change in
average thermal comfort when using the personal comfort model.
This finding calls for the joint optimization of HVAC operation and
space allocation, possibly at different timescales.
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1 INTRODUCTION

Improving the energy performance of buildings is at the forefront
of the global effort to decarbonize the buildings sector. The heating,
ventilation, and air conditioning (HVAC) system is responsible for
significant energy consumption across the world, e.g., the energy
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used for space heating, cooling, and ventilation in commercial build-
ings in the US amounted to 3.18 quadrillion British thermal units
in 2022 [1]. Thus, most research in this area has focused on opti-
mizing the HVAC operation while satisfying diverse needs of the
occupants, from air quality to thermal comfort [7]. This includes
the research on occupant-centric building controls, in particular
developing models for estimating building occupancy and individ-
ual thermal comfort [12], and designing control algorithms that
incorporate the observed or inferred occupancy schedule along
with occupant comfort needs to ensure they are satisfied when
reducing the building energy use and operational costs [11].

Most related work on occupant-centric building controls treats
the occupancy state of each zone or the entire building as an exoge-
nous variable, and evaluates a control policy using a generic thermal
comfort model that does not truly reflect the thermal satisfaction
of occupants in the building under study. While there is some prior
work that utilizes personal comfort models [6] to evaluate the per-
formance of an HVAC control strategy [8], the location of every
occupant in the building is assumed to be fixed and given. Yang et
al. [9] propose reducing the HVAC energy consumption by assign-
ing occupants that have similar work schedules to the same space
so as to minimize the number of occupied zones, thereby turning
off the zone-level reheat system in unoccupied zones. Nevertheless,
they do not investigate how this space assignment strategy would
affect thermal comfort of the occupants.

Space planning is an important problem in commercial real estate,
in particular office buildings, which typically have higher vacancy
rates!, and contain many shared offices, meeting rooms, and open-
plan work spaces. Building owners and business managers decide
which spaces should be occupied during business hours or can be
reserved for meetings. They may reassign spaces occasionally (e.g.,
in a quarterly fashion) based on various factors, such as the group
size, outdoor temperature, and solar heat gain. Similarly, rooms
are often reassigned to different organizations and individuals in
coworking spaces. While frequent space reassignment would cause
discomfort for the occupants or could affect their performance neg-
atively, there are always opportunities to reassign building spaces
with negligible impact on productivity and comfort, e.g., when a
lease ends or personnel changes occur in a tenant organization.
Regardless of when space (re)assignment should be performed, it
is important to understand how the way occupants are grouped
and assigned to the zones in a building could impact the HVAC en-
ergy consumption and thermal comfort. This problem has remained
largely unexplored to date.

The average vacancy rate of office buildings is 17.7% in Canada as per this arti-
cle: https://www.cbre.ca/insights/articles/canadian-office-vacancy- hits-all-time- high-
as-workplace-evolution-continues
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(a) Building 1

(b) Building 2

Figure 1: The 3D view and floor plan of the buildings consid-
ered in this paper where north is marked on each floor plan.

The aim of this paper is to provide insight into how the space
assignment strategy could change the trade-off between energy
consumption and occupant comfort in an office building. We are
inspired by the observation that (a) typical office buildings contain
several thermal zones each having a separate setpoint, (b) there
is some flexibility in setting the total number of people that can
occupy each zone as long as it does not exceed the capacity of the
respective rooms, and (c) grouping occupants with similar thermal
comfort needs makes possible greater savings while maintaining
the same level of thermal comfort. We use EnergyPlus to simulate
two medium office buildings over one year, and consider different
occupant distributions to identify the energy-comfort trade-off for
each building. Finally, we redo the experiments using the personal
comfort models developed in [12] by utilizing real data from the
environment and occupants’ feedback.

2 TEST BED

We explore the impact of changing the number of occupants and
their distribution across the zones on the building energy use and
occupant thermal comfort in two commercial buildings depicted in
Figure 1. The buildings are simulated in EnergyPlus 9.3 [4] and
COBS [10] is used to interface with EnergyPlus to change the
number of occupants in each zone. The EnergyPlus model uses
a 15-minute simulation time step, and our study is conducted over
one year to smooth out seasonal fluctuations.

e Building 1 is a 3-story 15-zone medium office prototype
building that is defined by ASHRAE 90.1 [2] and located in
Denver, Colorado. The floors are identical with respect to the
floor plan, each containing a core zone and four perimeter
zones. According to the default occupant density defined
in ASHRAE 62.1 [3], the capacity of the core zone is 53
occupants, the capacity of north and south perimeter zones
is 11 occupants, and the capacity of east and west perimeter
zones is 7 occupants. The total floor area of this building is
4,982.19 m? and its total capacity is 267 occupants.

e Building 2 is a medium educational building containing 9
labs, a library, and an amphitheater. This building is assumed
to be located in San Francisco, California, and we use weather
data for this city in our simulation. The capacity of each of
the 8 smaller lab spaces is 20 occupants, and the capacity of
the larger lab is 97 occupants. The library has the capacity
of 27 occupants and the amphitheater has the capacity of 95
occupants. The total floor area of this building is 5,051 m?
and its total capacity is 379 occupants.
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3 EXPERIMENTAL DESIGN

We adopt a two-step strategy to obtain the total number of people
assigned to each thermal zone in a building that contains m zones.
In the first step, we create m groups of occupants by sampling the
group that each occupant belongs to from a discrete power law
probability distribution, namely the Zipf distribution. In the second
step, we randomly assign these groups to the m thermal zones in
that buiding. We use personal comfort models developed in [12]
and Fanger’s predicted percentage of dissatisfaction to evaluate
thermal comfort of the occupants. We describe each step below.

3.1 Assigning occupants to zones

We group occupants into m groups, where m is the number of zones
in the building. Specifically, each occupant is assigned to a group
according to the Zipf distribution:
i—a
PRRITRA
where Pr(i) represents the probability of assigning an occupant to
group i (i € N), and « is a distribution parameter. Notice that the
Zipf distribution is unbounded, meaning that an occupant might be
assigned to group i where i > m. To prevent this from happening,
we clip the Zipf distribution to the first m groups and normalize
the probabilities so they sum to 1.

Once the m groups are obtained, we randomly assign each group
of occupants to a zone in the building. We resample the zone if the
size of the respective group exceeds the zone capacity. To simplify
the analysis, we assume occupants remain in the zone they are
assigned to during the working hours (9:00am to 5:00pm), and keep
the space assignment unchanged throughout the simulation. Note
we use the Zipf distribution so we can get higher disparity between
the group sizes by increasing the value of « (i.e., having some
empty zones and some zones that are at their capacity). Additionally,
we consider the uniform distribution for assigning occupants to
thermal zones, to establish a baseline.

Pr(i) =

3.2 Controlling the HVAC system

To understand how varying the number of occupants and their work
space affects the total energy consumption of the HVAC system,
we adjust setpoints and control knobs in the HVAC system such
that it continues to maintain the thermal comfort (as expressed by
Fanger’s comfort model described below) within acceptable limits.
To this end, we use EnergyManagementSystem? in EnergyPlus to
ensure the room temperature closely follows the setpoint defined
according to ASHRAE 90.1.

3.3 Incorporating personal comfort models

Thermal comfort reflects an individual’s satisfaction with their lo-
cal thermal environment. Two widely used models to quantify the
thermal comfort of an occupant are developed by Fanger, namely
the predicted mean vote (PMV) and the predicted percentage of
dissatisfaction (PPD). Since Fanger’s models ignore the variability
of individual satisfaction with the thermal environment, it is im-
possible to distinguish between two space allocation strategies that

2Refer to https://bigladdersoftware.com/epx/docs/9-3/input-output-reference/group-
energy-management-system-ems.html
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are identical in terms of the total number of occupants assigned
to each zone but differ in terms of which occupants are grouped
together [5] (e.g., one of them puts occupants that have similar
thermal preferences in one group while the other one does not
take that into account). Thus, we also use the personal comfort
models proposed in [12] and assume that each individual may have
a different thermal preference. In particular, we use the 15 group
comfort models developed in [12] as our personal comfort models to
estimate individual thermal comfort. Each model takes the ambient
environment and outdoor weather data to estimate thermal sensa-
tions, and the output is the probability distribution of occupants
feeling ‘comfortable’, ‘hot’, or ‘cool’. To simplify the problem, we do
not ensemble these group models as described in [12]. Instead, we
assume thermal preferences of each occupant in this experiment
can be fully described by one of the group models (rather than
their mixture). We randomly assign group models to each occupant
with the same probability, and compare the results obtained using
personal comfort models with those under Fanger’s model.

4 RESULTS

In this section we report the result of experiments conducted in
EnergyPlus and answer the following questions: (a) How does the
occupant distribution affect the trade-off between energy consump-
tion and thermal comfort? (b) Is this effect unique to the building
under study or can be generalized to other buildings? (c) How im-
portant is it to use personal comfort models in building controls
when characterizing the energy-comfort trade-oft?

4.1 Effects of occupant distribution on
energy-comfort trade-off under the
conventional comfort model

We first investigate how the occupant grouping and space allocation
strategy could impact the trade-off between energy consumption
and occupant comfort in a given building. Figure 2 shows the total
HVAC energy consumption in one year and the thermal discomfort
ratio averaged over the same period of time, assuming 100 occu-
pants are assigned to the 15 (11) zones in Building 1 (Building 2)
using different strategies. Note, instead of reporting the absolute
value of energy consumption and discomfort ratio, we show the
percentage increase/decrease in these quantities over the baseline
scenario in which occupants are uniformly distributed across the
zones in the buildings. To quantify thermal discomfort, we use
two thermal comfort estimation models: the conventional Fanger’s
model, i.e. PPD (in Figure 2(a) and (c)) and the personal comfort
model described in the previous section (in Figure 2(b) and (d)).
Each dot in Figure 2 shows the result of a single run. The dots
are color-coded based on the Zipf distribution parameter that was
used to produce the occupant distribution, with light-yellow in-
dicating @ = 2 (higher disparity between the group sizes) and
dark-green indicating « = 1.1. For each « value, the random assign-
ment of occupant groups to zones is done 100 times (following the
reject-and-resample method to ensure the zone capacity will not
be exceeded), resulting in 100 dots of the same color.

Notice that the x-axis range is the same in the two plots that
are put in the same row in Figure 2. By examining the x-axis alone,
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Figure 2: Simulation results in both buildings using two mod-
els to quantify thermal comfort and different occupant dis-
tributions, assuming a total of 100 occupants. Each dot repre-
sents the outcome of one run with occupants being assigned
to groups following the specified Zipf distribution. The dot
color shows the distribution parameter and we consider 100
independent runs for each parameter. The annual energy
consumption of the baseline is 108.35 MWh and 57.93 MWh
in Building 1 and Building 2, respectively.

30

Number of Occupants

(a) Efficient assignment

(b) Inefficient assignment

Figure 3: A visualization result to compare the actual occu-
pant distribution obtained from the experiment between the
energy-comfort efficient and energy-comfort inefficient re-
sults in Building 1, both with a Zipf distribution parameter
equal to 2. The darker shade of red represents a higher num-
ber of occupants assigned to the corresponding zone.

it is evident that energy consumption rises in general when oc-
cupants are concentrated in a few zones in Building 1 (higher «
values). This can be attributed to the fact that there is one air loop
for each floor of Building 1, which is used to condition all zones on
that floor. When a specific zone on a given floor has a high cool-
ing/heating demand, all other zones will be conditioned to fulfill
that demand, increasing the energy use substantially. However, by
modifying the space allocation strategy, it is still possible to reduce
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energy consumption when a = 2 compared to the baseline, i.e., uni-
formly distributing occupants. Figure 3 illustrates two allocation
strategies that rely on the same occupant distribution, obtained
with a = 2, but exhibit vastly different performance in Building 1
(the corresponding dots are labelled in Figure 2(a)). One strategy,
labelled efficient assignment, falls on the Pareto front, achieving
a reasonable trade-off between energy consumption and thermal
comfort. The other strategy, labelled inefficient assignment, results
in about 3% more energy consumption than the baseline and a
small improvement in thermal comfort. As depicted in Figure 3,
the main difference between the two strategies is whether the core
zone assigned to the larger group of occupants is on the top or bot-
tom floor. We believe this is because the zone that contains many
occupants has a higher cooling demand, as humans dissipate heat.
In a colder climate (like in Denver), the heat transfer across the
building envelope is higher in the top floor than the bottom floor,
reducing the load on the HVAC system and its energy consumption
consequently.

One interesting observation based on Figure 2(a) is that the dots
form two distinct clusters. To better understand the cause of this
phenomenon, we conducted an additional 200 experiments for each
Zipf distribution parameter, this time without rejecting the space
assignments that exceed zone capacities. We found that the gap
between the two clusters disappears. Thus, we conclude that the
gap in Figure 2(a) is a result of the reject-and-resample strategy
that we employed to ensure the validity of the space assignment.

4.2 Comparision between the two buildings

Figure 2(c) shows the same trade-off in Building 2. In this case, the
percentage change in the energy consumption is rather small (the x-
axis range is four times smaller than the x-axis range in Figure 2(a))
regardless of how occupants are groups and space assignment is
done. Moreover, in contrast to Building 1, a heavily imbalanced
occupant distribution reduces energy consumption in most cases
in Building 2. This is due to the fact that each zone in Building 2
has a separate air loop. Thus, an allocation strategy that puts most
occupants in a few zones would lead to fewer occupied zones that
must be conditioned, hence lower energy consumption.

Turning to thermal comfort, the results for the two buildings are
different if Fanger’s model is used to quantify occupant comfort (i.e.,
the plots in the first column). Specifically, in Building 1, a larger «
value consistently leads to better thermal comfort than the uniform
distribution. In contrast, it is challenging to surpass the baseline in
Building 2 since all zones are adjacent to the outdoor environment
(they are perimeter zones), which makes it difficult for the HVAC
system to meet the comfort requirements at all times. Nevertheless,
a clustered space allocation strategy can improve thermal comfort
under Fanger’s model in both buildings.

The dots in the lower left quadrant of each plot correspond to
the experiments that result in lower energy consumption and better
thermal comfort than the uniform occupant distribution (baseline).
In Building 1, most results obtained using Fanger’s model lie in
the lower right quadrant, yet there are some dots in the lower left
quadrant. This highlights the potential to enhance thermal comfort
by changing the space assignment strategy while reducing energy
consumption. On the other hand, most dots lie in the upper left
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and lower right quadrants in Building 2, with very few being in
the lower left quadrant, suggesting that optimizing both objectives
simultaneously is challenging in that building. Based on these ob-
servations, we can conclude that the impact of occupant grouping
and space allocation strategy on the energy-comfort trade-off de-
pends on certain building characteristics, such as its floor plan and
the design of the HVAC system.

4.3 Importance of using personal comfort
models

Figure 2(a) and (c) suggest that improving thermal comfort is possi-
ble when individual differences in thermal comfort and satisfaction
are ignored, i.e., using the same comfort model for everyone. A
higher value of a generally results in better thermal comfort, which
can be attributed to the reduced number of zones that need con-
ditioning. However, this does not hold true in real life because of
the diversity in human thermal perception. Figure 2(b) and (d) illus-
trate the energy-comfort trade-off when using the personal comfort
model to quantify thermal comfort. We get a completely different
trade-off than the one obtained under Fanger’s model. When ther-
mal comfort is estimated using the personal comfort model, the
dots are more spread out. Moreover, the distribution of results on
the y-axis is not significantly different for different « values, indi-
cating that occupant selection within each group is more critical
than the group size. Figure 2(b) shows dots with positive y-values,
while there is no dots in that area in Figure 2(a), suggesting that
considering individual thermal comfort makes the HVAC optimiza-
tion more challenging but there is greater potential for improving
comfort. Turning to Building 2, there are more dots in the lower
left quadrant in Figure 2(d) than Figure 2(c). Moreover, the low-
est achievable discomfort ratio (the lowest y-value) is consistently
lower when using the personal comfort model compared to using
Fanger’s model in both buildings. This suggests that considering in-
dividual thermal comfort can help achieve better energy efficiency
and thermal comfort over the conventional Fanger’s model.

Overall, the result of this experiment suggests that it is crucial to
put occupants with similar thermal preferences in the same zone to
improve thermal comfort; otherwise, changing just the group size
and space allocation strategy does not necessarily result in better
thermal comfort and satisfaction. When a zone contains people
with dissimilar thermal preferences, it might be impossible to bring
the average discomfort ratio below a threshold regardless of how
the setpoints are adjusted by the controller.

5 DISCUSSION AND CONCLUSION

This paper explores two effective approaches for decarbonizing
the building sector, namely optimizing space utilization and HVAC
operation. Specifically, we characterized the energy-comfort trade-
off in office buildings and elucidated the effect of occupant grouping
and space allocation strategies on this trade-off. We established
empirically that (a) better space planning practices make possible
higher energy savings without sacrificing thermal comfort, (b) the
effect of occupant grouping and space allocation on the whole-
building energy use depends on building characteristics, and (c)
using the conventional Fanger’s model to identify the trade-off or
quantify the energy-saving opportunity can be quite misleading.
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Figure 4: The energy-comfort trade-off obtained in January
and July, using the personal comfort model in Building 1.
The energy use and discomfort ratio are reported relative
to the baseline in which the 100 occupants are uniformly
distributed across the zones.

It is worth mentioning that the impact of the space allocation
strategy on the energy-comfort trade-off varies across different
months and seasons. Figure 4 shows the HVAC energy consump-
tion and discomfort ratio of various occupant grouping and space
allocation strategies in two months in Building 1, using the per-
sonal comfort model. For a fixed Zipf distribution parameter (@),
the distributions are completely different in January and July. In
January, larger « values generally result in higher energy consump-
tion than the baseline, however they can lead to energy savings
(and improved comfort) in July and over the one year period (as
depicted in Figure 2(b)). This underscores the need for a seasonal
redistribution of occupants, possibly using a different a value.

Our result suggests that it is possible to improve the energy per-
formance of the building and occupant thermal comfort by jointly
solving space planning and HVAC control problems. The joint opti-
mization problem can be performed in simulation at two different
timescales, which makes it possible to use reinforcement learning
algorithms to find the best energy-comfort trade-off. This is an inter-
esting research problem that we defer to future work. Additionally,
we plan to model the discomfort caused as a result of changing the
workspace of occupants, and investigate the ideal frequency for
space reassignment in an office building.
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