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nonlinear dynamics, safety, stability and worst-case performance requirements, 

numerous components and interfaces, adversarial and strategic decisions by 

humans and control agents

How to reliably control energy systems?
Scale and complexity



● reliability, safety and stability come before optimality 

● high variability and uncertainty 

● partial observability
- e.g. only a few sensors installed beyond the substation, zone occupancy is not measured directly, …

● human-in-the-loop issues
- e.g. setpoints and occupancy schedules defined by facilities managers

But they are far from optimized!
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Urgent need to reduce emissions of future energy systems
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Urgent need to learn and incorporate time-varying dynamics 
and constraints into the operation of future energy systems
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Satellite image taken during Winter Storm Uri; Source: National Oceanic and Atmospheric Administration (NOAA)
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Requirements
Designing future energy systems

Functional requirements
● increase efficiency, adaptability, and autonomy
● ensure safe and stable operation at design time and after deployment

- 3 safety levels: violations are discouraged, no violations with high probability, no violations

● ensure robustness against adversarial and strategic behaviors

Non-functional requirements
● controls must be simple and easy to implement
● operators and domain experts must find controls intuitive



● build off of existing controllers when possible
— there is already a stabilizing controller for most energy systems

● guarantee safety in probability or at all times
— discouraging constraint violation is not enough

● pay attention to performance in worst-case scenarios
— focusing on average-case performance only can be disastrous

● design data-efficient learning algorithms 
— "useful” data is not abundant
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Principles
Designing future energy systems



Benefits:

● optimize performance given a prior system dynamics model

● constraints (safety, stability, risk) can be handled

● theoretical guarantees for stability and performance under (bounded) uncertainty

Control-theoretic approaches
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Benefits:

● optimize performance given a prior system dynamics model

● constraints (safety, stability, risk) can be handled

● theoretical guarantees for stability and performance under (bounded) uncertainty

Challenges:
● achieving high performance requires a sufficiently accurate model
● high computation cost

— limited to specific families of cost functions and constraints
— need to opt for a short prediction horizon, e.g. when there are many control variables

● lack of generalization to new contexts

Control-theoretic approaches
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Benefits:

● optimal control is learned* from offline or online data

— prior or learned model can help but is not necessary

● low-cost implementation once training completes

● endless adaptation to changing environment with continual learning

Learning-based approaches

1
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Challenges:

● neural networks may bend the laws of physics and violate constraints!

● opaque decision making

● relationship between data need and achievable performance is not well understood

● convergence is not guaranteed when neural networks are used to approximate value function or policy

● learning from interaction with the real environment is potentially risky

Benefits:

● optimal control is learned* from offline or online data

— prior or learned model can help but is not necessary

● low-cost implementation once training completes

● endless adaptation to changing environment with continual learning

Learning-based approaches
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Can we bring together the best 
of each approach?
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Extensive work in this area

● integrating learning with model predictive control (MPC)
— learning dynamics and cost via 

end-to-end learning with imitation loss or reinforcement learning reward, 
convex body chasing, 
black-box optimization, …

— learning terminal cost and constraint (e.g. using a neural network that approximates value function)

● PID controller tuning using reinforcement learning
● learning to switch between high-performance and high-assurance controllers
● …
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Extensive work in this area

● incorporating physics and constraints into a learning-based controller during training
— physics-informed/corrected neural network

— implicit optimization layer for constraint satisfaction in neural network

— differentiable MPC as policy instead of a generic neural network 

— risk-averse and constrained reinforcement learning

— …

● imposing constraints on a learning-based controller after training
— using model-based advice, e.g. model predictive safety/stability filter

— through combination with one or multiple model-based controllers

— …
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● learning system dynamics   TCNS‘19, ENB’21, TCNS’23

● learning a convex cost function for optimization and control           eEnergy’24

● learning to tune a feedback controller       eEnergy’20, TSG’21

● learning constrained RL policies eEnergy’23, BuildSys’22

● learning a finite pool of RL policies and  ENB’23
choosing the most suitable one for transfer to a novel environment

My work in this area
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Learning a pool of diverse black-box policies 
and transferring the most suitable one



minimize HVAC energy consumption while keeping the temperature of 
occupied zones within bounds

● decoupling AHU and VAV control problems is common

Problem statement
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● Existing controller
— satisfies thermal comfort requirements by maintaining zone temperature around its setpoint 
— performance is not optimal with respect to energy consumption

● MPC
— a sufficiently accurate model must be developed for each building which is labour intensive and costly

● RL policy
— ensuring no constraint violation (e.g. thermal comfort) is challenging
— convergence to asymptotic performance is slow when state/action space is large

Control schemes
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● Existing controller
— satisfies thermal comfort requirements by maintaining zone temperature around its setpoint 
— performance is not optimal with respect to energy consumption

● MPC
— a sufficiently accurate model must be developed for each building which is labour intensive and costly

● RL policy
— ensuring no constraint violation (e.g. thermal comfort) is challenging
— convergence to asymptotic performance is slow when state/action space is large

● Our approach (RL policy + existing controller)
— adopt RL policy to continuously adjust a few points (temperature setpoint or minimum damper position) 

and keep using the existing controller to control other knobs in AHU and VAV 

Control schemes

20



Control policy for HVAC
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s: state (observation)
r: reward (observation)

𝛑𝛳(a|s): policy

a: control action for one or 
multiple subsystems of HVAC

simulation or 
real building

Background on deep reinforcement learning

3. 𝛳 ← 𝛳 + ɑ∇𝛳 E𝜋 [Σt r(st,at)]

3. 𝛳 ← 𝛳 + ɑ∇𝛳 E𝜋 [Q(st,at)]

Policy-based

Actor-Critic

Value-based

3. 𝜋(s) ← argmaxa Q(st,at)

2. Fit Q(s,a)

2. Fit V(s) or Q(s,a) to sampled reward sum

2. Evaluate R = Σt r(st,at)

1. Generate samples



it may take several months (or years) to learn a high-quality control policy 

Learning is quite slow in the target environment
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result obtained in a 5-zone building simulated in EnergyPlus & COBS

Tianyu Zhang, Gaby Baasch, Omid Ardakanian, Ralph Evins, "On the Joint Control of Multiple Building Systems with Reinforcement 
Learning", In Proceedings of the 12th ACM International Conference on Future Energy Systems (ACM e-Energy), pp. 60-72, 2021.



● if agent interacts with the real building, poor performance is likely in the early 
stage of training

● if agent interacts with a simulator, discrepancies between real and simulated 
environments could lead to poor performance after deployment

Practical challenges
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● if agent interacts with the real building, poor performance is likely in the early 
stage of training

● if agent interacts with a simulator, discrepancies between real and simulated 
environments could lead to poor performance after deployment

Practical challenges
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Question: how to reduce the training cost of RL so we can learn a high-quality 
policy without a high-fidelity simulator?



deploy the 
learned policy

control (a)

observe (s)

How to reduce training cost of RL agents?
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train RL agent through interaction with a reference commercial building (e.g. a test facility), 
deploy to the target building, and retrain

Problem: source and target buildings may have a different amount of sense and control points 
so we have different MDPs!

Transfer learning approach

𝛑𝛳(a|s)

target building

source 
building



use the multi-agent reinforcement learning framework in which each 
agent is responsible for controlling a single zone

How to reduce training cost of RL agents?

26

Source and target buildings may have different control knobs



use the multi-agent reinforcement learning framework in which each 
agent is responsible for controlling a single zone

Problem: learned policy in the source building may still perform poorly 
in the target building because they have different dynamics

How to reduce training cost of RL agents?
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Source and target buildings may have different control knobs

observe (s)

𝛑𝛳(az|sz)

control (a)
source 
building

deploy the learned policy 
to the corresponding zone

target building



How to reduce training cost of RL agents?
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train a finite pool of RL agents by exposing them to different dynamics, then identify and 
assign the most suitable one to each zone of the target building

Problem: a single environment may not exhibit (many) distinct dynamics

Choosing a learned policy from a finite pool of candidates

…

policy library

𝛳

𝛳’

𝛳’’
source building(s)



How to reduce training cost of RL agents?
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train a finite pool of RL agents by exposing them to different dynamics, then identify and 
assign the most suitable one to each zone of the target building

Problem: a single environment may not exhibit (many) distinct dynamics

Choosing a learned policy from a finite pool of candidates

…

policy library

𝛳

𝛳’

𝛳’’

evaluate on log 
data from target 
building

deploy the best 
one to the zone

target building

𝛑𝛳(az|sz)



Policy Diversity and Evaluation

● there are not many environments (test facilities) that can be used for training, so we 
learn diverse policies in each to get a larger pool of candidate controllers

● then we efficiently identify the best policy in the pool for transfer to each zone
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Intuition: the specific skill learned for one task may not be useful in another, 
but having a diverse set of skills could be helpful in a novel task



● augmenting the loss function of a policy gradient RL algorithm  (policy diversity)
– the policy must be different from previously learned policy in addition to maximizing the expected return

Different kinds of diversity
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Diversity weight

Aakash Krishna, Tianyu Zhang, Omid Ardakanian, Matthew Taylor, "Mitigating an Adoption Barrier of Reinforcement Learning-Based Control Strategies in Buildings", 
Energy and Buildings 285 (2023): 112878.

Loss of diversity-induced
reinforcement learning



Set of previously 
learned policies

Diversity loss
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Aakash Krishna, Tianyu Zhang, Omid Ardakanian, Matthew Taylor, "Mitigating an Adoption Barrier of Reinforcement Learning-Based Control Strategies in Buildings", 
Energy and Buildings 285 (2023): 112878.



● augmenting the loss function of a policy gradient RL algorithm  (policy diversity)
– the policy must be different from previously learned policy in addition to maximizing the expected return

Different kinds of diversity
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● learning policies on multiple environments (environmental diversity)
– the more environments we see during training, the lower would be our uncertainty 

Aakash Krishna, Tianyu Zhang, Omid Ardakanian, Matthew Taylor, "Mitigating an Adoption Barrier of Reinforcement Learning-Based Control Strategies in Buildings", 
Energy and Buildings 285 (2023): 112878.



● brute force: run every policy in the library on each zone of the target 
building, use energy consumption under this policy as evaluation metric, 
and transfer the best policy determined in this way to that zone

– extremely expensive

– yields a lower bound on HVAC energy consumption through policy transfer

Policy evaluation/selection methods
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● off-policy evaluation (OPE): evaluate the performance of policies learned 
in a training environment without online interaction with the target 
environment

– IPW and SNIPW use importance and rejection sampling to reweight the rewards according to 
log data obtained from the target environment

Gaussian Kernel (GK) uses kernel density estimation instead of rejection sampling for continuous 
actions

Policy evaluation/selection methods
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● zero-cost proxy (ZCP) is used in the domain of neural architecture search 
to rank different architectures at initialization

– gradnorm (GN) and single-shot network pruning (SNIP) compute the loss and its gradient for a 
minibatch of data (log data obtained from the target environment)

– since our control policies are neural networks, ZCPs can be used to rank them!

Policy evaluation/selection methods
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State as perceived by each agent
- zone temp.

- zone humidity

- zone occupancy

- outdoor temp.

- solar radiation

- hour of the day

Action of each agent
- minimum damper position

Reward provided to each agent
- energy use of the respective VAV system

MARL framework
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all policies learned using PPO

The big picture

38



- Building A: 1-story 5-zone small office (511.16 m2), located in Denver, US

- Building B: 3-story 15-zone medium office (4,982.19 m2)

- Building C: 5-story 26-zone real building (5,051 m2), located in San Francisco, US
all experiments were run in COBS*

Training

Source and target buildings
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* Tianyu Zhang, Omid Ardakanian, "Poster Abstract: COBS: COmprehensive Building Simulator", 
In Proceedings of the 7th ACM Conference on Systems for Built Environments (BuildSys), November 2020.



Experiment result

Policy evaluation/selection is done using 15 days of log data from Building BDenver
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Transfer to Building BDenver (same city) 

agent(s) trained on 
target building only (no 
knowledge transfer)

if we knew the best policy 
assignment to zones in 
the target building



Experiment result

Policy evaluation/selection is done using 15 days of log data from Building BSanFrancisco
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Transfer to Building BSanFrancisco

agent(s) trained on 
target building only (no 
knowledge transfer)

if we knew the best policy 
assignment in the target 
building (lower bound)



Policy evaluation/selection is done using 15 days of log data from Building C

Experiment result
Transfer to a real building (Building C)
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Conclusion
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﹘ up to 30.4% energy savings can be achieved early on 

﹘ proposed controller outperforms default rule-based controller even before 
retraining in the target building

﹘ can we use a combination of the top K policies rather than picking the 
top-ranked policy to control a zone?

○ tune weights using an online algorithm…



● combining machine learning and control techniques is a promising direction
— higher control performance with formal guarantees for safety and stability

● dealing with abruptly changing and slowing drifting dynamics is still 
challenging

● reinforcement learning has been successful in discovering drugs and game 
playing strategies, but “discovering” black-box control policies will not make 
the cut in safety-critical systems

— design-time guarantees, efficient run-time recovery mechanisms, and 
explainability are required to build trust
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Summary
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