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Active End-nodes are Being Rapidly Deployed

Global PV Cumulative Capacity
* Solar PV systems .

— smart inverters

GwW

 Electric vehicles

— smart chargers
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— smart controllers

Omid Ardakanian | PhD Defence 2



Critical Challenges

* Increased uncertainty
— Intermittent renewable generation
— Mobility of electric vehicles

— Requires additional operating reserves
* costly and inefficient

* Decreased reliability
— Branch and transformer congestion
— Over-voltage and under-voltage conditions
— Reverse power flow



Control is Necessary yet Challenging!

* Traditional grid control mechanisms are
inadequate to reliably and economically
control the active end-nodes

— High active end-node penetration in distribution networks
— Spatial and temporal uncertainties
— Competing objectives of system operators and customers



Contributions

e Studied three problems:

— Accommodating high penetration of EVs in
distribution networks

— Accommodating high penetrations of PVs and
elastic loads in low-voltage distribution networks

— Energy procurement and allocation in a grid-tied
solar-powered EV charging station



Contributions — cont’d

 Two distributed algorithms for the control of
active end-nodes at scale

— using near real-time measurements
— balance system-level and user-level objectives
— meet system constraints

* Optimal charging strategy for grid-tied solar-
powered EV charging stations
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System Model

every line or transformer
has a rated capacity and—
a setpoint

Transmission Network
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Prior Work

e Solving an OPF problem (day-ahead)

[Vlachogiannis09, Clement-Nyns10, Mehboob14, Sharmali, ...]
— precise model of the distribution network
— EV arrival and departure times
— EV point of connection

e Near real-time control

* Centralized [Deilami11, Shao12, ...]
— not scalable
* Decentralized [Hermansl12, Hilshey12, Fan12, Studlil2, Wenl12, Gan13, ...]

— different objectives
— distribution network model



TCP-inspired Control

sum of controlled and uncontrolled loads (measured by an MCC node)
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line/transformer loading
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- EV chargers adapt their |
p | charge powertothe
time | available capacity
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Proportionally Fair Allocation

A single snapshot optimization problem:

in:
subtree())
max 2 log(rate,)
rate
SES
subject to
0 < rate; < maxrate Vs €S
EV load; + home load; < setpoint, Vie L

Similar to [Yaiche00] [Low99], [Kelly98]
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Dual Decomposition

Phase 1
Master Problem
pr‘iceS (solved at MCC nodes) pr‘iceS
Subproblem 1 Subproblem n

(solved at EV charger 1) (solved at EV charger n)




Dual Decomposition — cont’d

Phase 2

EV load,

Master Problem
(solved at MCC nodes)J

rate, rate

Subproblem 1 Subproblem n
(solved at EV charger 1) (solved at EV charger n)




Average Energy Stored in EVs with Control

——Level 1 charging
—-e-Level 2 charging

L.

0]
0]
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EV population

Average daily energy stored in an EV battery (kWh

For an acceptable level of overload, only 70 EVs could be fully charged without control
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Insights

e Congestion control methods developed for computer networks
are applicable, with some changes, to EV charging control

* MCC nodes are needed primarily at hotspots

* Distributed control algorithm scales well with the size of the
distribution network and the number of chargers

* Limitations:
— Slow convergence in some cases
— Does not address voltage problems
— Cannot deal with renewable generation or storage
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System Model

Assumption: the utility is granted remote control
and monitoring of active end-nodes
and pays for solar generation even if it is curtailed
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System Model - cont’d

Radial Distribution System

Substation )
o -1 Balancing Zone (a subtree)
Transmission . |
Network |
Power Stations
Distribution network problems | Primary distribution system = |
e over-and under-voltage Secondary distribution system —— |

e overloads
* reverse power flows

small business with
active end-nodes
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Mitigating Solutions for Utilities

* Upgrading distribution networks
* Curtailing solar PV generation

* Controlling active end-nodes
— Storing/consuming excess solar generation
— Sharing within each balancing zone



Prior Work

 DER integration in the smart grid (paudyaia1;
— Control taps and capacitors
— Different objectives
— Unbalanced distribution network model

* Volt/VAR control in the distribution network

[Turitsyn10, Farivarl2, Farivarl3]

— Control PV inverters



Our Approach

Myopic
Hierarchical
— at two different levels: substation, balancing zone

Relies on real-time measurements

Incorporates a linearized power flow model
— voltage, capacity, and reverse flow constraints



Objectives

 Maximize revenue of the utility

— i.e., maximize power allocated to elastic loads while
providing fairness to elastic loads

* Minimize curtailment of solar power
* Minimize carbon emissions

— i.e., minimize use of conventional (grid) power



Test Distribution Network
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Modified IEEE 13 bus test feeder
2300 households

1000 small businesses

200 EV chargers
{100,200,300,400,500} PVs+Storage
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Curtailed Solar Energy vs. PV Penetration Rate

Curtailed Solar Energy (MWh)
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Insights

 The synergy between EV chargers and PV inverters can
be used to cancel out their effects on distribution feeders

* Using a linearized power flow model, the optimal control
can be computed in near real-time

* This approach does not require deployment of expensive
MCC nodes

* Limitations:
— The substation controller can be a bottleneck
— Balanced radial distribution network model
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System Model

/—-\

a) conventional power
the carbon footprint of
conventional power
is assumed to be a
convex function of C(t) @

: b) on-site solar generation

Cmaxl but no storage
I

c) feeder constraints {
max d) EVs

- initial state of charge
- deadline (set by owners)

g ]
utility:= energy_stored/initial_demand
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Insights

EVs are fully charged

Regime 2

Regime 1 Regime 3
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Summary of Contributions

* A real-time distributed control scheme for fair power
allocation to EV chargers based on measurements of
feeder/transformer loading

— A novel approach in this space

* A hierarchical control scheme for active end-nodes
based on linearized power flow equations and real-time

measurements of loads and states of the active end-
nodes

* A cost-minimizing charging strategy for a solar-powered
EV charging station
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Future Work

a)

b)
C)

d)

Using a Faster Distributed Algorithm to Control EV
Charging

TCP-style Control for Active End-nodes

Generalizing to Unbalanced Multi-phase
Distribution Systems

Optimizing Switching Operations of Load Tap
Changers and Capacitors

Model Predictive Control for the Public EV Charging
Station



Traditional Grid is Inefficient and Under-utilized

Peak demand happens just a few
hours a year

Power generation facilities, and
transmission and distribution
networks are overprovisioned to
ensure reliability

Distribution networks are poorly
monitored and controlled
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Exponential Growth of Solar PV Capacity

Total PV Capacity

60,000 -
50,000 - ~49.1GW
40,000 -
~33.1GW
S
= 30,000 -
=
~21.1GW
20,000 -
~13.1GW
10,000
~7.1GW
N ~3.8GW
ey 1GW 156W  “2.1GW .
2007 2008 2009 2010 2011 2012 2013E 2014E 2015E 2016E
m Total PV Capacity (MW dc)

Source: Deutsche Bank
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spatial & temporal
uncertainties

significant

EV charging load is

|

feeder & transformer
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System Model

Measurement, communications, and control (MCC)

nodes
- measure branch power flow/transformer load,

- generate some feedback, and
- send to downstream nodes and smart chargers

Transmission Network

in every time slot AT

smart
v chargers

every line/transformer
has a rated capacity
and a setpoint
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Dual Decomposition & Control Rules

Master Problem
(solved at MCC nodes)

prices prices
Subproblem 1 Subproblem n
(solved at EV charger 1) (solved at EV charger n)

1. MCC nodes update congestion prices and send them to downstream EV chargers
price; « max{price, —>< (setpoint; — load,), 0}



Dual Decomposition & Control Rules

EV load,
Master Problem

(solved at MCC nodes)J

rate, rate

Subproblem 1 Subproblem n
(solved at EV charger 1) J (solved at EV charger n)J

Phase 2: New rates are obtained from solving subproblems using new congestion prices

1
path priceg

rate;< min { ,maxrates}



Average Daily Overload without Control
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Choosing the Setpoint
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High Penetration of Residential Solar
Power has Wide Ramifications

in addition to overvoltage and reverse flow at the distribution level

Net Load (MW)
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Mitigating Solutions for Utilities

Balancing supply and demand where and to the extent that is possible using new technologies
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Results

100 PV panels (3% penetration) 400 PV panels (12% penetration)
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Requirements

1. On-site solar generation should not negatively
affect the utility of an EV owner

2. Carbon emissions must be minimized
Power allocation must be fair to users

This is a multi-objective optimization problem!



Offline Algorithm

* Has three steps:

— Compute the worst-case utility, assuming no solar
(satisfying the first requirement)

— Compute the carbon-minimizing power allocation to
meet the worst-case utility, given the amount of solar
power available (satisfying the second requirement)

— Allocate the available power fairly among the users
(satisfying the third requirement)
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Step 1: Compute the Worst-Case Utility

Cv)

binding constraint  Cmax]

Lmax

'y

PE(t) PE(t) P& (D)

Input: EV arrival times, initial demands, and deadlines

Output: energy supplied to every EV, i.e., the worst-case utility of every EV
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Step 2: Find the Carbon-Minimizing Dispatch

(1) -
Cone / r - J7
: —
Losgy

PE@) P;(t)  Pi(0)

Input: worst-case utilities, incoming solar radiation

Output: optimal use of grid power - C*(t)
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Step 3: Compute the Fair Allocation of
Available Power

C*(t)+ G(t)

O

binding constraint Limax

R

PI(t) P;(t)  Pg(t)

Input: worst-case utilities, total available power

Output: fair energy allocation to EVs, never less than before
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