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Abstract—This paper studies optimal sizing of an electric vehi-
cle charging station with multiple types of chargers. The station
is coupled with a photovoltaic system and stationary battery
to reduce the overall cost of delivering charging services. Our
approach entails (a) generating sample paths from a stochastic
process that represents the state of the charging station given
the minimum number of chargers of each type needed to meet
some quality of service requirements, (b) solving an optimization
problem for each sample path to find the smallest battery capacity
and number of solar panels that meet specific requirements,
and (c) determining the robust size of co-located distributed
energy systems by finding an upper envelope on the sizing curves
obtained for different sample paths. Using real data, we find
the least expensive size of the entire system that is robust to
seasonality effects, travel patterns, and future increase in the
penetration of electric vehicles.

Index Terms—Electric vehicle charging station, distributed
energy resources, capacity provisioning, Markov chain

I. INTRODUCTION

The widespread introduction of passenger electric vehicles
(EVs) in the mass market will increase the demand for
charging points, especially fast chargers in public charging
stations. As the levelized cost of solar energy continues
to decline, electric vehicle charging stations (EVCSs) will
increasingly be equipped with on-site distributed energy re-
sources (DERs), such as solar photovoltaic (PV) panels, for
maximum savings and efficiency [1]. The PV system can
be paired with a stationary battery energy storage system
(BESS) to shift PV generation for alignment with the charging
station’s busy hours [2–5]. The uptake of PV-powered charging
stations with co-located energy storage poses an important
research question: how to size a charging station with multiple
supply sources to accommodate the expected growth of the
EV charging demand and provide Quality of Service (QoS)
guarantees to customers? Over-provisioning resources will be
prohibitively expensive, hence not a viable solution.

Extensive research has been done on sizing PV and BESS
jointly in smart homes [6] and microgrids [7, 8] to minimize
the probability of requiring grid power to meet the charging
load, or the total amount of energy that must be bought from
the grid [9]. Similarly, there is a vast literature on sizing a
charging station to meet various QoS requirements, such as
keeping the average waiting time or blocking probability be-
low some threshold [10–13]. Yet, to our knowledge, the related
work does not address sizing of a charging station that contains
multiple types of chargers and on-site distributed energy
resources to satisfy QoS and grid power intake requirements
simultaneously. This problem is nontrivial for several reasons.
First, the uncertainty of EV mobility and PV generation makes
it difficult to size the system by solving an optimization

problem over a finite horizon and ensure that the constraints
will not be violated in the long run. Second, modelling battery
imperfections makes the optimization problem nonconvex.
Third, minimizing the total installed cost of the EVCS and
co-located DER requires searching the large space of feasible
sizes, increasing the running time complexity of the algorithm.

To address this problem, in this paper, we introduce a
queueing model for a charging station that contains both
Level 2 (L2) and Level 3 (L3) chargers, where customers have
a strong preference for L3 chargers to reduce the charging time.
Using historical charging data from a real charging station,
we estimate the average arrival rate of EVs to the charging
station and the average initial energy requirement of these
EVs. These estimates are used to construct the transition rate
matrix of a continuous-time Markov chain (CTMC), where
the state represents the number of active chargers. Given this
rate matrix, we compute the stationary probability distribution
over different states and subsequently the probability that an
arriving EV does not find any available charger, hence it
is blocked. To attain our QoS target, we solve a feasibility
problem to obtain the set of designs, in terms of the number
of L2 and L3 chargers, that can keep the blocking probability
below a certain threshold without straining the power grid.

Given a feasible design for the EVCS, we formulate a mixed
integer linear program (MILP) to obtain the smallest BESS
and PV system sizes that are necessary to keep the total
amount of grid energy required to meet the EVCS demand
over the optimization horizon below a threshold. To solve
this optimization problem over an interval of 1 month, we
use sample paths of the CTMC constructed for the EVCS
and obtain real PV generation traces for the EVCS location.
We pick this short interval because solving the optimization
problem over a long time horizon requires a lot of data to
capture non-stationarity of stochastic processes and takes a
significant amount of time due to the large number of variables
and constraints. The downside of solving the problem over a
short interval is that the resulting optimally sized system may
not be able to withstand multiple consecutive cloudy days or
a growing EV population. To address this issue, we sample
this interval from 4 years of data several times and solve the
optimization problem for every sample. Lastly, we use the
empirical Chebyshev inequality [14] to obtain a robust sizing
for the BESS given the size of the PV system and vice versa.

The robust sizing method adopted in this work draws on
the method proposed in [15] for sizing PV systems and BESS.
We extend this work by (a) building a queueing model for the
EVCS; (b) incorporating the QoS requirement and transformer
capacity; (c) decomposing the sizing optimization problem.
The extended method is applied to jointly size an EVCS and
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Fig. 1. Schematic of an EVCS equipped with storage with capacity EB , a
PV system with capacity Cpv , and nL2 L2 and nL3 L3 chargers.

co-located DER, the problem that is not studied in [15].
The rest of this paper is organized as follows. We state our

assumptions and describe the queueing model in Section II.
The robust sizing methodology is introduced in Section III. We
describe the datasets, and present our sizing recommendations
for the EVCS and co-located DER in Section IV.

II. BACKGROUND

We consider a grid-tied EVCS that houses a mix of L2 and
L3 chargers (nL2 and nL3 chargers specifically), coupled with
a PV system with capacity Cpv kW and a BESS with capacity
of EB kWh. We refer to the combined PV and storage system
as DER. Fig. 1 shows the entire system comprised of EVCS
and co-located DERs. When EVs arrive at the EVCS, they
first occupy parking stalls with L3 chargers to take advantage
of fast charging. Once these stalls are full, new arrivals will
occupy parking stalls with L2 chargers. When all stalls get full,
newly arrived EVs cannot be admitted (they are blocked). To
enhance customer comfort and satisfaction, it is important to
keep this blocking probability below an acceptable threshold.
This is viewed as the QoS requirement in this work.

We assume that EVs are charged immediately upon con-
necting to a charger and that their battery is replenished
primarily from on-site PV generation. When the available
PV power exceeds the aggregate demand of all chargers, the
surplus is stored in the stationary BESS. When BESS is full,
PV power must be either exported to the grid or curtailed.
When the available PV power is less than the aggregate EV
demand, the BESS discharges to meet the difference. If the
energy discharged from the BESS is not sufficient to fulfill the
charging demand, the remainder must be imported from the
grid. This specific order of using the supply sources guarantees
the minimum cost operation of the EVCS.

We make the following assumptions about the chargers,
EVCS and EVs that visit the station:
• The charge power of L2 and L3 chargers is constant,

regardless of the state of charge (SOC) of the BESS1. The
charge rate of L3 chargers, denoted by PL3, is higher than
that of L2 chargers, denoted by PL2.

• EVCS consumes real power only. Hence, the loading of
the transformer that supplies the EVCS demand equates
the total real power consumed by the chargers, i.e., it has
a unity power factor.

1This is a simplifying assumption that is only suitable for EVCS sizing
and relaxing it should not change the robust sizing result. To simplify the
derivation, we can assume that the constant power drawn by an active charger
is the maximum charge power it supports.

• The rate of EV arrivals to the EVCS is independent of
the number of EVs that are being charged. The charging
demand of every EV is known upon arrival.

The desired sizing of the EVCS and co-located DER satisfies
the following four key requirements in the long-term operation
of EVCS. First, the total charging demand of the EVCS cannot
surpass the rated capacity of the distribution transformer
as sustained overload can damage it. Second, the blocking
probability must be kept below an acceptable threshold for
the given EV traffic pattern. Third, the fraction of EV charging
demand supplied from the conventional grid power must be
minimal. The cap is defined by the EVCS operator to minimize
the operation cost. We refer to this as the power import
requirement. Fourth, the sizing must have the lowest cost
among all feasible options.

To solve the optimal sizing problem, we first identify all
sizing options that are feasible, i.e., they satisfy the first three
requirements. They should also be robust to solar variability,
random changes in traffic flow, and increased penetration of
EVs. In the next step, we select the robust sizing option
that has the minimum cost among the feasible options. We
cast the robust sizing problem as an optimization problem
where the design variables are the numbers of L2 and L3
chargers, the energy capacity of the stationary BESS, and
the size of the PV system. The structure of this optimization
problem, which follows directly from the operational logic
that the stationary BESS is only charged from the surplus PV
generation, allows for a straightforward decomposition into
two subproblems that can be solved sequentially. The first
one is an EVCS sizing problem which defines bounds on the
number of chargers that can be installed. The upper bound,
in the worst case, is the rated capacity of the transformer2

and the lower bound stems from the QoS requirement. The
second problem is a DER sizing problem subject to the power
import requirement, given the EVCS charging demand, which
depends on the EVCS sizing found in the previous step.
Solving these two problems separately is more tractable than
solving the original optimization problem. We present these
problems in Section III.

A. Proposed Queueing Model for EVCS:

We use a Markovian model to characterize the demand of
the EVCS and find the blocking probability. A reasonable
choice of state space is the number of EVs being served at the
station [10]. By analyzing the real data in Section IV, we show
that Poisson process is an accurate model for EV arrival and
that the exponential distribution is a good fit for EV charge
requirements (energy demand). We model the EVCS as an
M/M/k/k queue with two types of servers (fast and slow)
and determine the blocking probability by finding the steady
state distribution of the corresponding Markov chain shown in
Fig. 2. This birth-death process has k = nL3 +nL2 states. The
arrival rate is denoted by λ. We divide the charge requirement
of each EV by the charge rate of the respective charger to
get the service time distribution of L2 and L3 chargers. The

2The available capacity for EV charging cannot be less than the transformer
rating because the BESS can only be charged from on-site PV generation.
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Fig. 2. State transition diagram for the proposed CTMC of EVCS constructed
with nL2

and nL3
number of L2 and L3 chargers, respectively.

mean of these exponential distributions is denoted by 1/µ2

and 1/µ3, respectively. The service completion rate in state s,
denoted by µ(s), can be written as:

µ(s) =

{
sµ3 0 ≤ s ≤ nL3,
nL3µ3 + (s− nL3)µ2 nL3 < s ≤ k.

(1)

To calculate the total amount of real power consumed by the
EVCS in a state, we associate every state s with the total
power delivered to EVs by the active chargers:

PL(s) =

{
s·PL3

η3
0 ≤ s ≤ nL3,

nL3·PL3

η3
+ (s−nL3)·PL2

η2
nL3 < s ≤ k,

(2)

where η2 and η3 are the charging efficiency of L2 and L3
chargers, respectively.

Since Poisson arrivals see time averages (a.k.a. the PASTA
property), the probability that an EV finds no available charger
upon arrival is the stationary probability of being in state k =
nL3

+ nL2
. It can be written as:

πblk =
λ(nL3

+nL2
)

nL3
!µ
nL3
3

∏nL2
i=1(nL3

µ3 + iµ2)
π(0), (3)

where π(0) is the stationary probability that the EVCS is
empty calculated from the normalizing equation that states the
stationary probabilities must sum to 1:

1

π(0)
=

nL3
−1∑

i=0

λi

i!µi3
+

k∑
i=nL3

λi

nL3 !µ
nL3
3

∏i−nL3
j=1 (nL3µ3 + jµ2)

Assuming that we have access to representative traffic data and
historical charging demand data, we can estimate the arrival
and service rates. The resulting transition rate matrix can be
used to generate sample paths of a desired length. We can
then calculate the net demand of the EVCS for each sample
path from (2). The PV generation traces are based on publicly
available solar radiation data collected at regular intervals (e.g.,
hourly) for the specific location of the EVCS from the Solcast
API3 and fed to PVWatts4. Once both traces are ready, they
can be sampled from to create scenarios for the optimization
problems defined in the next section.

III. JOINT SIZING OF EVCS AND CO-LOCATED DER

We start off with solving the first problem that concerns
finding all feasible (nL3

, nL2
) pairs. In the next step, given

a feasible EVCS design and a fixed BESS size, we find the

3https://solcast.com/solar-data-api/api/
4https://pvwatts.nrel.gov/pvwatts.php

minimum size of the PV system such that the ratio of unmet
load (RUL) by DER to total load is less than a threshold δ.

To find all possible sizing options for the EVCS, we solve
the following feasibility problem

min
nL3

,nL2
Z (4a)

s.t. πblk ≤ θ, (4b)

nL3PL3

η3
+
nL2PL2

η2
≤ PG, (4c)

where Z is an arbitrary constant, and PG is a limit imposed
by the power utility based on the rating of the transformer
that feeds the EVCS. Constraint (4b) gives the lower bound
on the required number of L2 and L3 chargers, while (4c)
caps the number of chargers. This is a convex problem if we
precalculate and cache the blocking probability for different
(nL3

, nL2
) pairs. Solving (4) gives a set H that includes all

tuples (n∗L3
, n∗L2

) that meet the QoS requirement and do not
strain the power grid.

To size the co-located DERs, given a feasible EVCS sizing
option (∈ H), we solve an optimization problem over T
timesteps of equal length, Tu. We denote the power supplied
to EVCS directly from PV panels in timestep i by P iin and
the SOC of the stationary BESS by eib. The charge (resp.
discharge) rate, labeled Pc (resp. Pd), must be less than the
BESS power capacity, which is assumed to be a multiple of
the battery energy capacity (αcEB and αdEB) because BESS
are modular. P ics is the ith element of a sample path generated
from the CTMC as explained in Section II, and Si is the ith
element of the available solar power (as a percentage of the
peak generation capacity) extracted from the data trace. Given
P ics and Si, we solve the following optimization problem to
minimize the capacity of the PV system such that DER’s RUL
is lower than a threshold δ.

min
Cpv,Pc,Pd,Pin,u,eb

Cpv (5a)

s.t. P ic + P iin ≤ SiCpv (5b)

P iin + P id = P ics − ei (5c)

e0b = EB (5d)

ei+1
b = eib + P icηcTu − P idηdTu (5e)

a1P
i
d + b1EB ≤ eib ≤ a2P ic + b2EB (5f)

0 ≤ P ic ≤ αcEBui (5g)

0 ≤ P id ≤ αdEB(1− ui) (5h)

EB , Cpv, P
i
in, e

i, eib ≥ 0 ∀i (5i)

ui ∈ {0, 1} ∀i (5j)
T∑
i=1

ei ≤ δ
T∑
i=1

P ics (5k)

The above problem is a MILP as u is a binary variable.
Constraint (5b) ensures that the total PV power delivered is
less than the PV system output; (5c) is the power balance
equation that ensures grid power is used to supply the unmet
charging demand denoted by ei; (5d)-(5h) are related to the
battery as discussed in [15]; and (5k) limits the ratio of
the charging demand that must be supplied from grid power
in the T timesteps to the total charging demand. We solve
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(a) (b)
Fig. 3. Probability density function of (a) the time between two successive
arrivals to the EVCS and (b) energy requirement of EVs upon arrival. The best
fit is an exponential distribution. λ = 0.98, µ2 = 0.98, µ3 = 4.44 hr−1.

this optimization problem over intervals of length T that are
randomly sampled from the whole dataset. Each sample gives
a sizing scenario. We solve the optimization problem for n
scenarios, each time setting the BESS capacity to a fixed value.

A. Robust Sizing

Solving the two optimization problems introduced earlier
in this section for each scenario yields a set C that contains
PV system sizes for a fixed BESS capacity EB = B and an
EVCS sizing option. The cardinality of this set is Npv ≤ n.
Considering the elements of this set, we compute the empirical
estimates of the mean mC,Npv and standard deviation σC,Npv ,
and write the Chebyshev inequality [14] as follows:

P{|Cpv −mCNpv
| ≥ βσCNpv

} ≤ min(1, f(β)), (6)

f(β) = (Npv + 1)−1

⌊
(Npv + 1)(N2

pv − 1 +Npvβ
2)

N2
pvβ

2

⌋
(7)

This gives an upper bound on the probability that the differ-
ence between a value of Cpv (for any, possibly unseen, sce-
nario) obtained for a BESS of size B and the estimated mean
mCNpv

exceeds a factor β of the estimated standard deviation
σCNpv

. The factor must satisfy our confidence measure γ.

min
β
f(β) ≤ γ (8)

Given the value of β, we derive the optimal PV sizing
from (6), that is C∗pv = mCNpv

+ βσCNpv
. Similarly, we find

a Chebyshev curve on EB values and use both curves (from
PV and BESS sizing) to calculate an upper envelope for DER
sizing. We then employ a simple grid search to find the least
expensive sizing tuple for Cpv and EB among the points that
lie on the upper envelope of the Chebyshev curves.

IV. RESULTS

The proposed robust sizing methodology is evaluated using
real data traces of PV generation from NREL’s PVWatts
and historical EV charging data from the adaptive charging
network (ACN) [16] that contains more than 30,000 charging
sessions since 2018. We collect the traces for a period of 4
years with hourly resolution. In the next step, we verify that the
interarrival times and energy requirements follow exponential
distributions (see Fig. 3), and estimate the parameter of each
distribution to obtain the average arrival and service rates.
These rates are used to construct the transition rate matrix and
subsequently compute the blocking probability of the CTMC.

The timestep is set to Tu = 1 hr (the temporal resolution of
the solar irradiance data). The total length of EV charging Pcs
and PV generation S traces are 4× 365× 24 = 35040 hours.

Fig. 4. Chebyshev bound curves for optimal sizing of Cpv for (a) T 1 and (b)
T 2 sizing options with δ = 0.05. Plots in the second row show the empirical
distribution of Cpv for EB = 295kWh.

From the traces, we randomly select 100 scenarios, 720 hours
each, solve the optimization problem for each scenario, and
find the upper envelope of the empirical Chebychev sizing
curves. For each scenario, we find the optimal Cpv for 30
values of EB in the set EB = [45, 700]. The battery parameters
are borrowed from the lithium-ion battery model used in [15]:
ηc = −0.99, ηd = 1.11, a1 = 0.053, a2 = −0.125, b1 = 0,
b2 = 1, αc = αd = 1. The initial SOC for BESS is set to
e0b = B. The charging station parameters and other parameters
used for the simulations are PL2

= 11 kW, PL3
= 50 kW,

η2 = 0.96, η3 = 0.98, δ = 0.05, γ = 0.95.

A. EVCS Sizing

The total power consumed by the installed chargers cannot
exceed the rated capacity of the transformer, which is assumed
to be 250 kW. By solving the feasibility problem (4), we found
49 feasible tuples (nL2

, nL3
). The installed costs of L2 and L3

chargers are set to $800 and $16,500, respectively [13]. Due
to the high computation overhead of the optimization, we only
investigate two extreme sizing tuples, T 1) the least expensive
option (8, 0), and T 2) the most expensive option (4, 4). Both
options yield a blocking probability that is below θ = 10−6.

B. Solar and Storage Sizing

For each EVCS size, we size the PV system and BESS
based on the mean and standard deviation of sizing curves ob-
tained for a sample population of sizing scenarios. Specifically,
for each value of EB , we have 100 curves in the (EB , Cpv)
space. Similarly, for each value of Cpv , we have 100 curves
in the (EB , Cpv) space. We depict the optimal sizing curves
and empirical Chebyshev bounds for two specific EVCS sizing
options T 1 and T 2 in Fig. 4 for δ = 0.05.

The recommended Cpv sizing, as shown in Fig. 4 for a
randomly selected EB value, is higher for T 2 than T 1. This
shows that the EVCS equipped with 4 L2 chargers and 4
L3 chargers requires approximately 60% higher PV capacity
than (8,0). The upper envelope of Chebyshev curves (shown
as a dotted black curve in Fig. 4) shows our robust sizing
recommendation. Considering all (EB , Cpv) points that lie on
the upper envelope of Chebyshev curves, we find the least
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Fig. 5. Optimal robust sizing recommendation values of δ. In each case, the
design with the lowest cost is suggested as (C∗

pv , E
∗
B) in the legend.

Fig. 6. Robust sizing of a PV-powered EVCS without BESS.

expensive sizing option (C∗pv, E
∗
B) assuming the installed cost

of $2,500/kW for PV and $460/kWh for BESS.
Sensitivity to δ: We evaluate the proposed sizing method for

PV and BESS by incorporating different values of δ in (5).
We illustrate the sizing results for three sample values of δ
in Fig 5. It can be readily seen that the minimum BESS size
increases as the minimum PV system decreases and vice versa.
For small values of δ, both PV system and BESS must be
considerably larger to satisfy the RUL requirement for a fixed
EVCS sizing. The BESS size is especially important for small
δ values because it is impossible to meet the RUL requirement
before sunrise or after sunset regardless of the PV system size.

Sizing PV-powered EVCS without BESS: We also investigate
the case where BESS is not installed in the EVCS to shift
PV generation. To solve the sizing problem in this case,
we modify the optimization problem in (5) by removing
the constraints and variables corresponding to BESS. The
updated optimization problem is a linear program that can
be solved efficiently. We find that the sizing problem has no
feasible solution for δ ≤ 0.46, which is expected because
without BESS it is impossible to meet the EVCS demand
using PV generation without relying too much on grid power.
Fig. 6 shows the minimum C∗pv required to meet the grid
import requirement for values of δ > 0.46. One interesting
observation is that a 10 MW PV system is required to meet
the EVCS demand for a threshold of δ = 0.51. Should we
install a small 45 kWh BESS, the PV system size could be
reduced to 15.25 kW for δ = 0.05 which is 10 times lower
than the previous delta value. This underscores the importance
of installing a BESS for shifting PV generation.

V. CONCLUSION

With the falling costs of solar photovoltaic and battery
technologies, it is anticipated that more EV charging stations
will be equipped with DER. This paper proposes an optimal
sizing methodology for an EVCS with two types of chargers
and co-located DERs, given the constraints imposed by the
power grid operator and customers. The proposed approach
guarantees robustness of the resulting system size to non-
stationarity of PV generation and EV traffic. We use real data
to provide recommendations for the design of a robust system
with optimized cost.

REFERENCES

[1] O. Ardakanian et al., “Quantifying the benefits of ex-
tending electric vehicle charging deadlines with solar
generation,” in International Conference on Smart Grid
Communications. IEEE, 2014, pp. 620–625.

[2] M. Badawy and Y. Sozer, “Power flow management
of a grid tied PV-battery system for electric vehicles
charging,” IEEE Transactions on Industry Applications,
vol. 53, no. 2, pp. 1347–1357, 2017.

[3] J. Ugirumurera and Z. J. Haas, “Optimal capacity siz-
ing for completely green charging systems for electric
vehicles,” IEEE Transactions on Transportation Electri-
fication, vol. 3, no. 3, pp. 565–577, 2017.

[4] J. Domı́nguez-Navarro et al., “Design of an electric ve-
hicle fast-charging station with integration of renewable
energy and storage systems,” Int. Journal of Electrical
Power & Energy Systems, vol. 105, pp. 46–58, 2019.

[5] G. Liu et al., “Optimal sizing of PV and energy storage
in an electric vehicle extreme fast charging station,” in
PES ISGT Conference. IEEE, 2020, pp. 1–5.

[6] Y. Ru et al., “Storage size determination for grid-
connected photovoltaic systems,” IEEE Transactions on
Sustainable Energy, vol. 4, no. 1, pp. 68–81, 2012.

[7] J.-M. Clairand et al., “Power generation planning of
galapagos’ microgrid considering electric vehicles and
induction stoves,” IEEE Transactions on Sustainable
Energy, vol. 10, no. 4, pp. 1916–1926, 2018.
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