Last-Branch and Speculative Pruning Algorithms for Maxⁿ

Nathan Sturtevant
UCLA Computer Science Department*

*soon to be University of Alberta

Problem Overview

Problem Overview

 There have been notable successes in developing expert-level 2-player games

Problem Overview

- There have been notable successes in developing expert-level 2-player games
- We'd like to develop programs to play multiplayer games well

Most commonly used 2-player decision rule

- Most commonly used 2-player decision rule
- Implemented with alpha-beta pruning

- Most commonly used 2-player decision rule
- Implemented with alpha-beta pruning
 - In best case, alpha-beta reduces tree size from b^d to $b^{d/2}$

- Most commonly used 2-player decision rule
- Implemented with alpha-beta pruning
 - In best case, alpha-beta reduces tree size from b^d to $b^{d/2}$
 - Approach best case in practice by ordering nodes well

• Generalization of minimax to *n* players

- Generalization of minimax to *n* players
 - Luckhardt and Irani, 1986

- Generalization of minimax to *n* players
 - Luckhardt and Irani, 1986
- Static evaluation returns *n*-tuple of scores

Maxn

- Generalization of minimax to n players
 - Luckhardt and Irani, 1986
- Static evaluation returns n-tuple of scores
 - Each player tries to maximize their own component of the n-tuple

Outline

- Maxⁿ Decision Rule
- Maxⁿ Pruning Techniques
- Experimental Results
- Conclusions

Shallow Pruning (Korf, 1991)

- Shallow Pruning (Korf, 1991)
- Alpha-Beta Branch and Bound Pruning (Sturtevant and Korf, 2000)

- Shallow Pruning (Korf, 1991)
- Alpha-Beta Branch and Bound Pruning (Sturtevant and Korf, 2000)
- Are not always effective and/or applicable

- Shallow Pruning (Korf, 1991)
- Alpha-Beta Branch and Bound Pruning (Sturtevant and Korf, 2000)
- Are not always effective and/or applicable
 - Effectiveness depends on both node ordering and static evaluation function

• Assume at least:

- Assume at least:
 - Lower bound on each score (0)

- Assume at least:
 - Lower bound on each score (0)
 - Upper bound on sum of all scores (maxsum)

- Assume at least:
 - Lower bound on each score (0)
 - Upper bound on sum of all scores (maxsum)
- If the sum of scores always equals maxsum, the game is constant-sum

Shallow Pruning

maxsum = 10

 Average case model predicts no asymptotic gain (Korf, 1991)

- Average case model predicts no asymptotic gain (Korf, 1991)
- Dependent on properties of evaluation function

- Average case model predicts no asymptotic gain (Korf, 1991)
- Dependent on properties of evaluation function
 - For some games, natural evaluation functions allow no pruning

 Can we prune deeper in the tree based on the same bound?

- Can we prune deeper in the tree based on the same bound?
 - Not directly valid in multi-player games

maxsum = 10 $(\geq 4, \leq 6, \leq 6)$ $\boxed{2}$ $(\underline{4}, 4, 2)$

maxsum = 10(≥4, ≤6, ≤6) (≤8, ≥2, ≤8) 2 (4, 4, 2) $(\leq 4, \leq 4, \geq 6)$ (3, 2, 5)(0, 3, 7)(3, 1, 6)

maxsum = 10(≥4, ≤6, ≤6) $(\leq 8, \geq 2, \leq 8)$ (4, 4, 2) $(\leq 4, \leq 4, \geq 6)$ (3, 2, 5)(0, 3, 7)(3, 1, 6)

maxsum = 10(≥4, ≤6, ≤6) (≤8, ≥2, ≤8) (4, 4, 2) $(\leq 4, \leq 4, \geq 6)$ (3, 2, 5)

(3, 1, 6)

(0, 3, 7)

 The maxⁿ value of the last child cannot be the maxⁿ value of the tree

- The maxⁿ value of the last child cannot be the maxⁿ value of the tree
- It can still affect the maxⁿ value of the tree (Korf, 1991)

- The maxⁿ value of the last child cannot be the maxⁿ value of the tree
- It can still affect the maxⁿ value of the tree (Korf, 1991)
- Is there a valid way to do this pruning?

(Part I)

maxsum = 10(≥4, ...) (,≥2,) (4, 4, 2)(…,≥6) (3, 2, 5)(6, 3, 1)(0, 3, 7)(3, 1, 6)

(Part I)

maxsum = 10(≥4, ...) (,≥2,) $(\underline{4}, 4, 2)$ (...,≥6) (3, 2, 5)(0, 3, 7)(3, 1, 6)

(Part I)

maxsum = 10(≥4, ...) (,≥2,) $(\underline{4}, 4, 2)$ (...,≥6) (3, 2, 5)(0, 3, 7)(3, 1, 6)

(Part I)

maxsum = 10(≥4, ...) (,≥2,) (4, 4, 2)(…,≥6) (3, 2, 5)(0, 3, 7)(3, 1, 6)

We can now deep prune when:

- We can now deep prune when:
 - Scores sum to maxsum or greater

- We can now deep prune when:
 - Scores sum to maxsum or greater
 - Second player on their last branch

- We can now deep prune when:
 - Scores sum to maxsum or greater
 - Second player on their last branch
- Can we still do better?

(Part 2)

maxsum = 10(≥4, ...) (,≥2,) $(\underline{4}, \overline{4}, 2)$ (...,≥6) (3, 2, 5)(3, 1, 6)

(Part 2)

maxsum = 10(≥4, ...) (,≥2,) $(\underline{4}, \overline{4}, \overline{2})$ $(3, \underline{2}, 5)$

(Part 2)

maxsum = 10(≥4, ...) (,≥2,) $(\underline{4}, \overline{4}, 2)$ (...,≥4) (3, 2, 5)(3, 3, 4)

(Part 2)

maxsum = 10(≥4, ...) (,≥2,) $(\underline{4}, \overline{4}, 2)$ (...,≥4) (3, 2, 5)(3, 3, 4)

Directional Algorithm

- Directional Algorithm
- Prunes when:

- Directional Algorithm
- Prunes when:
 - Sum of players' bounds ≥ maxsum

- Directional Algorithm
- Prunes when:
 - Sum of players' bounds ≥ maxsum
 - Second player on their last branch

- Directional Algorithm
- Prunes when:
 - Sum of players' bounds ≥ maxsum
 - Second player on their last branch
- Limited to last branch! Can we do better?

Non-directional algorithm

- Non-directional algorithm
 - Prunes are not guaranteed to be correct

- Non-directional algorithm
 - Prunes are not guaranteed to be correct
 - Can re-search branches if needed

- Non-directional algorithm
 - Prunes are not guaranteed to be correct
 - Can re-search branches if needed
- Works on any constant-sum game tree

- Non-directional algorithm
 - Prunes are not guaranteed to be correct
 - Can re-search branches if needed
- Works on any constant-sum game tree
 - Effectiveness depends only on node ordering

Reduces branching factor:

- Reduces branching factor:
 - In the best case, as b gets large

- Reduces branching factor:
 - In the best case, as b gets large
 - b(n-1)/n

- Reduces branching factor:
 - In the best case, as b gets large
 - b(n-1)/n
- Effective even in the average case

Speculative Pruning (3-Players)

Ь	b ^{2/3}	actual b
2	1.59	1.84
3	2.08	2.47
4	2.52	3.00
10	4.64	5.42
1000	100.0	103.6

Outline

- Maxⁿ Decision Rule
- Maxⁿ Pruning Techniques
- Experimental Results
- Conclusions

• 3 Players

- 3 Players
- Played 30 games, ~1500 searches

- 3 Players
- Played 30 games, ~1500 searches
 - Iterative deepening search

- 3 Players
- Played 30 games, ~1500 searches
 - Iterative deepening search
 - Limited branching factor to 10 moves

- 3 Players
- Played 30 games, ~1500 searches
 - Iterative deepening search
 - Limited branching factor to 10 moves
 - Measured average expansions at depth 6

- 3 Players
- Played 30 games, ~1500 searches
 - Iterative deepening search
 - Limited branching factor to 10 moves
 - Measured average expansions at depth 6
- Previous algorithms could not prune tree

Algorithm	Node expansions (depth 6)
Max ⁿ	1.2 million
Spec. Max ⁿ	I 00k

Trick-based card games

- Trick-based card games
 - Have monotonic heuristics

- Trick-based card games
 - Have monotonic heuristics
- Shallow pruning does not occur in Hearts

- Trick-based card games
 - Have monotonic heuristics
- Shallow pruning does not occur in Hearts
- Measured average search depth

- Trick-based card games
 - Have monotonic heuristics
- Shallow pruning does not occur in Hearts
- Measured average search depth
 - Iterative deepening search

- Trick-based card games
 - Have monotonic heuristics
- Shallow pruning does not occur in Hearts
- Measured average search depth
 - Iterative deepening search
 - 500k node search limit

Average Search Depth

	Hearts	Spades
Best Prev. Max ⁿ	20.9	21.7
Spec. Max ⁿ	22.1	24.3

New pruning algorithms for maxⁿ

- New pruning algorithms for maxⁿ
- Last-Branch Pruning

- New pruning algorithms for maxⁿ
- Last-Branch Pruning
 - Directional algorithm

- New pruning algorithms for maxⁿ
- Last-Branch Pruning
 - Directional algorithm
- Speculative Pruning

- New pruning algorithms for maxⁿ
- Last-Branch Pruning
 - Directional algorithm
- Speculative Pruning
 - Non-directional algorithm

- New pruning algorithms for maxⁿ
- Last-Branch Pruning
 - Directional algorithm
- Speculative Pruning
 - Non-directional algorithm
- First algorithms effective in pruning any constant-sum game