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Problem Overview

® [here have been notable successes in
developing expert-level 2-player games

® We'd like to develop programs to play multi-
player games well
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® Most commonly used 2-player decision rule
® |mplemented with alpha-beta pruning

® |n best case, alpha-beta reduces tree size
from bd to b??

® Approach best case in practice by
ordering nodes well
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Max"

® Generalization of minimax to n players
® | uckhardt and lrani, 1986

® Static evaluation returns n-tuple of scores

® Each player tries to maximize their own
component of the n-tuple




Max" Decision Rule

2 2

i B o ¢

3,5,2) (4,3,3) (1,3,6) (2,6,2)




Max" Decision Rule

2 2

i B o ¢

3,5,2) (4,3,3) (1,3,6) (2,6,2)




Max" Decision Rule

(3,5,2)

2 2

i B o ¢

3,5,2) (4,3,3) (1,3,6) (2,6,2)




Max" Decision Rule

(3,5,2)

2 2

i B o ¢

3,5,2) (4,3,3) (1,3,6) (2,6,2)




Max" Decision Rule

(3,5,2)

2 2

i B o ¢

3,5,2) (4,3,3) (1,3,6) (2,6,2)




Max" Decision Rule

(3,5, 2) (2, 6,2)
) )

i B o ¢

3,5,2) (4,3,3) (1,3,6) (2,6,2)




Max" Decision Rule

(3,5, 2) (2, 6,2)
) )

i B o ¢

3,5,2) (4,3,3) (1,3,6) (2,6,2)




Max" Decision Rule

(3,5, 2) (2,6,2)
) )

i B 0 ¢

3,5,2) (4,3,3) (1,3,6) (2,6,2)




Max" Decision Rule

(3,5,2)
I

(3,5, 2) (2,6,2)
) )

i B 0 ¢

3,5,2) (4,3,3) (1,3,6) (2,6,2)




Max" Decision Rule

(3,5,2)
I

(3,5, 2) (2, 6,2)
) )

i B o ¢

3,5,2) (4,3,3) (1,3,6) (2,6,2)




Qutline

® Max" Decision Rule

® Max" Pruning Techniques

® Experimental Results

® Conclusions




Previous Max" Pruning




Previous Max" Pruning

® Shallow Pruning (Korf, 1991)




Previous Max" Pruning

® Shallow Pruning (Korf, 1991)

® Alpha-Beta Branch and Bound Pruning
(Sturtevant and Korf, 2000)




Previous Max" Pruning

® Shallow Pruning (Korf, 1991)

® Alpha-Beta Branch and Bound Pruning
(Sturtevant and Korf, 2000)

® Are not always effective and/or applicable




Previous Max" Pruning

® Shallow Pruning (Korf, 1991)

® Alpha-Beta Branch and Bound Pruning
(Sturtevant and Korf, 2000)

® Are not always effective and/or applicable

® Effectiveness depends on both node
ordering and static evaluation function
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® Assume at least:
® [ower bound on each score (0)

® Upper bound on sum of all scores
(maxsum)

® |[f the sum of scores always equals maxsum,
the game is constant-sum
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Shallow Pruning

® Average case model predicts no asymptotic
gain (Korf, 1991)

® Dependent on properties of evaluation
function

® For some games, natural evaluation
functions allow no pruning
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Deep Pruning

® Can we prune deeper in the tree based on
the same bound!?

® Not directly valid in multi-player games
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Deep Pruning

® The max" value of the last child cannot be
the max" value of the tree

® |t can still affect the max" value of the tree
(Korf, 1991)

® |s there a valid way to do this pruning?
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® We can now deep prune when:
® Scores sum to maxsum or greater

® Second player on their last branch

® Can we still do better?
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Last-Branch Pruning

® Directional Algorithm
® Prunes when:
® Sum of players’ bounds 2 maxsum

® Second player on their last branch

® Limited to last branch! Can we do better?
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maxsum = 10

T 4,3,3) No
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Speculative Pruning

® Non-directional algorithm
® Prunes are not guaranteed to be correct
® Can re-search branches if needed

® Works on any constant-sum game tree

® Effectiveness depends only on node ordering
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Speculative Pruning

® Reduces branching factor:

® |n the best case, as b gets large

® b(n-l)/n

® Effective even in the average case

21




Speculative Pruning

(3-Players)
b b3 actual b
2 |.59 Rz
3 2.08 2.47
4 2.52 3.00
|0 4.64 5.42
1000 100.0 103.6
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Chinese Checkers

® 3 Players
® Played 30 games, ~1500 searches
® [terative deepening search
® | imited branching factor to 10 moves
® Measured average expansions at depth 6

® Previous algorithms could not prune tree

25




Chinese Checkers

Node expansions

Algorithm (depth 6)
Max" |.2 million
Spec. Max" | 00k
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Hearts and Spades

® Trick-based card games

® Have monotonic heuristics
® Shallow pruning does not occur in Hearts
® Measured average search depth

® |terative deepening search

® 500k node search limit
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Average Search Depth

Hearts Spades

Best Prev.

s 20.9 21.7

Spec. Max" 22.1 24.3




Conclusions

29




Conclusions

® New pruning algorithms for max"

29




Conclusions

® New pruning algorithms for max"

® [ast-Branch Pruning

29




Conclusions

® New pruning algorithms for max"
® [ast-Branch Pruning

® Directional algorithm

29




Conclusions

® New pruning algorithms for max"
® [ast-Branch Pruning
® Directional algorithm

® Speculative Pruning

29




Conclusions

® New pruning algorithms for max"
® [ast-Branch Pruning

® Directional algorithm
® Speculative Pruning

® Non-directional algorithm

29




Conclusions

® New pruning algorithms for max"
® [ast-Branch Pruning

® Directional algorithm
® Speculative Pruning

® Non-directional algorithm

® First algorithms effective in pruning any
constant-sum game
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