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Talk Overview

• Part I: Building Abstractions

• Minimizing memory requirements

• Performances measures

• Part II: BioWare Corp®

• Implementation

• Experience
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Background

• State-space abstractions have commonly 
been used to speed search

• Pattern Databases for heuristics

• Graph abstractions for pathfinding

• PRA*, HPA*, etc
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Motivation

• Games have tight memory budgets

• ~4MB total memory

• 1024x1024 or larger maps

• 1MB per byte per grid cell

• Can we use build an abstraction which 
minimizes memory usage?
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Assumptions

• Grid world

• No true 3-d movement

• Cells can be blocked/free/weighted

• May be height difference between cells

• Units can move across real-valued space
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Sectors / Regions

• Divide world into 
large sectors

• Fixed size

• Index implicitly

• Divide sectors      
into regions

• Regions entirely 
connected

• Regions have a 
center point
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Edges

• Look at borders of 
regions to 
determine edges
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Abstract Graph

• Original Map:

• 32x32 = 1024 cells

• Abstract Graph:

• 9 nodes

• 10 edges
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Memory Usage

• 32 bits per sector

• Can use less

• 16 bits per region

• 8 bits per edge

• 3 bits - direction

• 5 bits - region

• Skip some regions

• Edges duplicated

Sector Data Example

# Regions 2

unused -

Region Data Example

center 196

# edges 3

center 142

# edges 4

left:3

upleft:1

up:1

up:2

up:1

variable-sized 

edge storage
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Find Sector/Region

• Begin with x/y location in real world

• Must find sector/region

• If sector only has 1 region, done

• Otherwise do BFS to find region center

• Can do reverse A* search from region 
centers

• Avoids pointers!
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Usage (1)

• Find sector/region for starts and goals

• Use A* to find a complete abstract path

• Now we must use the abstract path to 
guide the search for an actual path
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Usage (2)

• Many different methods for using 
abstract path

• Simplest method:

• Find path from start to first region

• Compute path to successive regions

• Find path from last region to goal
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Usage Example

• Find abstract 
parents

• Find abstract path

• Find real path
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Total Pathfinding Cost

• Abstract planning cost + Refinement

• Refinement cost depends on obstacles 
and total path length

• Abstract planning cost depends on 
sector size

• For fixed path length, the total work 
should depend only on sector size
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Optimizing

Region Centers

• How to determine 
the region centers?

• Some locations are 
much better than 
others
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Optimizing

Region Centers

• Consider each region independently

• Measure the A* cost to path between 
region and all neighbors

• Choose the region center which 
minimizes the maximum cost
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Pathfinding 

Optimization

• Refinement at start/
goal can be 
inefficient

• Trimming helps

• Skip to next node at 
start/goal
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Experimental Results

• 93,000 paths over 120 maps

• Maps scaled to 512x512

• Paths in 128 buckets length 1…512

• Measure:

• Total cost

• Incremental cost
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Memory Usage

• How does the memory usage scale with 
sector size?

• How much memory can be saved with 
simple compression?

• Don’t store “default” regions

• 1 region, 8 neighbors
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Memory Usage

Maps Size 512x512
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Dynamic Region Centers

• Is there a gain to dynamically optimizing 
region centers?

• Measure 95% work done in one-step 
path refinement
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Dynamic v. Static Centers

(1-Step Planning)
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Optimality

• Paths will not be optimal

• Special cases for start/goal help a lot

• Smoothing will be applied as a post-
processing step (not measured)
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Optimality

Optimality
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Total Work

• Sum of work needed:

• Find parents

• Find abstract path

• Refine low-level path

• Compare to A*
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Total Work
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Total Work v. A*

Savings Over A*
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Dragon Age™

BioWare Corp®

Due Winter 2007/2008
30



Dragon Age™

BioWare Corp®

Due Winter 2007/2008
31

Implementation

• 2 weeks:

• Implement 
abstraction

• Implement 
pathfinding

• Initial testing

• Met pathfinding 
requirements
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Observations

• Cannot be an expert 
in one thing

• Get it “good 
enough”

• Both more and less 
rigorous testing 
than expected

• Great people
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Future

• Continuing work:

• Smoothing

• Placeables
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More Info

• http://dragonage.bioware.com/

• http://www.1up.com/do/gameOverview?cId=2019479

• http://www.1up.com/do/previewPage?cId=3155733

35

Thanks
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