
Minimal

Memory

Abstractions
(As implemented for BioWare Corp®)

Nathan Sturtevant

University of Alberta

GAMES Group

February 22, 2007

1

Talk Overview

• Part I: Building Abstractions

• Minimizing memory requirements

• Performances measures

• Part II: BioWare Corp®

• Implementation

• Experience

2

Background

• State-space abstractions have commonly
been used to speed search

• Pattern Databases for heuristics

• Graph abstractions for pathfinding

• PRA*, HPA*, etc

3

Motivation

• Games have tight memory budgets

• ~4MB total memory

• 1024x1024 or larger maps

• 1MB per byte per grid cell

• Can we use build an abstraction which
minimizes memory usage?

4

Assumptions

• Grid world

• No true 3-d movement

• Cells can be blocked/free/weighted

• May be height difference between cells

• Units can move across real-valued space

5

Sectors / Regions

• Divide world into
large sectors

• Fixed size

• Index implicitly

• Divide sectors
into regions

• Regions entirely
connected

• Regions have a
center point

a

b

a b c

a

b

a

b

0 1

2 3

6

Sectors / Regions

• Divide world into
large sectors

• Fixed size

• Index implicitly

• Divide sectors
into regions

• Regions entirely
connected

• Regions have a
center point

a

b

a b c

a

b

a

b

0 1

2 3

6

Sectors / Regions

• Divide world into
large sectors

• Fixed size

• Index implicitly

• Divide sectors
into regions

• Regions entirely
connected

• Regions have a
center point

a

b

a b c

a

b

a

b

0 1

2 3

6

Edges

• Look at borders of
regions to
determine edges

b c

a

b

a

b

1

2 3

0

a

7

Edges

• Look at borders of
regions to
determine edges

b c

a

b

a

b

1

2 3

0

a

7

Edges

• Look at borders of
regions to
determine edges

b c

a

b

a

b

1

2 3

0

a

7

Edges

• Look at borders of
regions to
determine edges

b c

a

b

a

b

1

2 3

0

a

7

Edges

• Look at borders of
regions to
determine edges

b c

a

b

a

b

1

2 3

0

a

7

Edges

• Look at borders of
regions to
determine edges

b c

a

b

a

b

1

2 3

0

a

7

Abstract Graph

• Original Map:

• 32x32 = 1024 cells

• Abstract Graph:

• 9 nodes

• 10 edges

a

b

a b c

a

b

a

b

0 1

2 3

8

Memory Usage

• 32 bits per sector

• Can use less

• 16 bits per region

• 8 bits per edge

• 3 bits - direction

• 5 bits - region

• Skip some regions

• Edges duplicated

Sector Data Example

Regions 2

unused -

Region Data Example

center 196

edges 3

center 142

edges 4

left:3

upleft:1

up:1

up:2

up:1

variable-sized

edge storage

1
6
 b

it
s

Memory Address 0

3
2
 b

it
s

9

Find Sector/Region

• Begin with x/y location in real world

• Must find sector/region

• If sector only has 1 region, done

• Otherwise do BFS to find region center

• Can do reverse A* search from region
centers

• Avoids pointers!

10

Usage (1)

• Find sector/region for starts and goals

• Use A* to find a complete abstract path

• Now we must use the abstract path to
guide the search for an actual path

11

Usage (2)

• Many different methods for using
abstract path

• Simplest method:

• Find path from start to first region

• Compute path to successive regions

• Find path from last region to goal

12

Usage Example

• Find abstract
parents

• Find abstract path

• Find real path

a

b

a b c

a

b

a

b

0 1

2 3

13

Usage Example

• Find abstract
parents

• Find abstract path

• Find real path

a

b

a b c

a

b

a

b

0 1

2 3

13

Usage Example

• Find abstract
parents

• Find abstract path

• Find real path

a

b

a b c

a

b

a

b

0 1

2 3

13

Usage Example

• Find abstract
parents

• Find abstract path

• Find real path

a

b

a b c

a

b

a

b

0 1

2 3

13

Usage Example

• Find abstract
parents

• Find abstract path

• Find real path

a

b

a b c

a

b

a

b

0 1

2 3

13

Usage Example

• Find abstract
parents

• Find abstract path

• Find real path

a

b

a b c

a

b

a

b

0 1

2 3

13

Total Pathfinding Cost

• Abstract planning cost + Refinement

• Refinement cost depends on obstacles
and total path length

• Abstract planning cost depends on
sector size

• For fixed path length, the total work
should depend only on sector size

14

Optimizing

Region Centers

• How to determine
the region centers?

• Some locations are
much better than
others

b c

a

b

a

b

1

2 3

0

a

15

Optimizing

Region Centers

b c

a

b

a

b

1

2 3

0

a

16

Optimizing

Region Centers

b c

a

b

a

b

1

2 3

0

a

17

Optimizing

Region Centers

• Consider each region independently

• Measure the A* cost to path between
region and all neighbors

• Choose the region center which
minimizes the maximum cost

18

Pathfinding

Optimization

• Refinement at start/
goal can be
inefficient

• Trimming helps

• Skip to next node at
start/goal

a a

0 1

S G

19

Pathfinding

Optimization

• Refinement at start/
goal can be
inefficient

• Trimming helps

• Skip to next node at
start/goal

a a

0 1

S G

19

Pathfinding

Optimization

• Refinement at start/
goal can be
inefficient

• Trimming helps

• Skip to next node at
start/goal

a a

0 1

S G

19

Pathfinding

Optimization

• Refinement at start/
goal can be
inefficient

• Trimming helps

• Skip to next node at
start/goal

a a

0 1

S G

19

Pathfinding

Optimization

• Refinement at start/
goal can be
inefficient

• Trimming helps

• Skip to next node at
start/goal

a a

0 1

S G

19

Experimental Results

• 93,000 paths over 120 maps

• Maps scaled to 512x512

• Paths in 128 buckets length 1…512

• Measure:

• Total cost

• Incremental cost

20

Memory Usage

• How does the memory usage scale with
sector size?

• How much memory can be saved with
simple compression?

• Don’t store “default” regions

• 1 region, 8 neighbors

21

Memory Usage

Maps Size 512x512

0

10

20

30

40

50

60

70

5 6 7 8 9 10 11 12 13 14 15 16

Sector Size

T
o

ta
l

M
em

o
ry

 (
K

B
)

22

Dynamic Region Centers

• Is there a gain to dynamically optimizing
region centers?

• Measure 95% work done in one-step
path refinement

23

Dynamic v. Static Centers

(1-Step Planning)

0

50

100

150

200

250

5 6 7 8 9 10 11 12 13 14 15 16

Sector Size

N
o
d

es
 E

x
p

a
n

d
ed

Static (95th percentile)

Dynamic (95th percentile)

Dynamic Centers

24

Optimality

• Paths will not be optimal

• Special cases for start/goal help a lot

• Smoothing will be applied as a post-
processing step (not measured)

25

Optimality

Optimality

0

5

10

15

20

25

5 6 7 8 9 10 11 12 13 14 15 16

Sector Size

%
 S

u
b

o
p

ti
m

a
l

95%

Average

5%

26

Total Work

• Sum of work needed:

• Find parents

• Find abstract path

• Refine low-level path

• Compare to A*

27

Total Work

0

500

1000

1500

2000

2500

3000

0 16 32 48 64 80 96 112

Bucket (Path Length/4)

T
o
ta

l
N

o
d

es
 E

x
p

a
n

d
ed Sector Size 5

Sector Size 16

28

Total Work v. A*

Savings Over A*

1

10

100

1000

10000

100000

0 16 32 48 64 80 96 112

Bucket (Path Length/4)

T
o
ta

l
N

o
d

es
 E

x
p

a
n

d
ed

Max (A*) Average (A*)

Max (MM) Average (MM)

Minimum

29

Dragon Age™

BioWare Corp®

Due Winter 2007/2008
30

Dragon Age™

BioWare Corp®

Due Winter 2007/2008
31

Implementation

• 2 weeks:

• Implement
abstraction

• Implement
pathfinding

• Initial testing

• Met pathfinding
requirements

32

Observations

• Cannot be an expert
in one thing

• Get it “good
enough”

• Both more and less
rigorous testing
than expected

• Great people

33

Future

• Continuing work:

• Smoothing

• Placeables

34

More Info

• http://dragonage.bioware.com/

• http://www.1up.com/do/gameOverview?cId=2019479

• http://www.1up.com/do/previewPage?cId=3155733

35

Thanks

36

