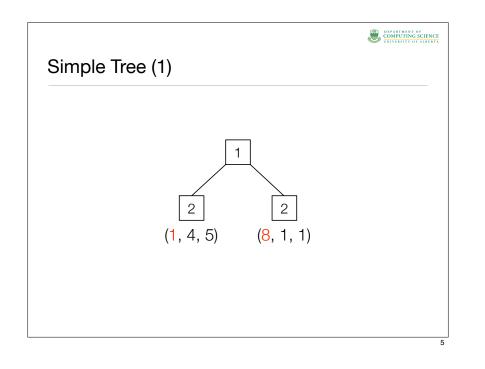


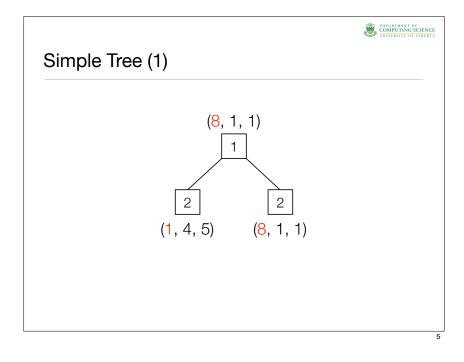
Research Overview

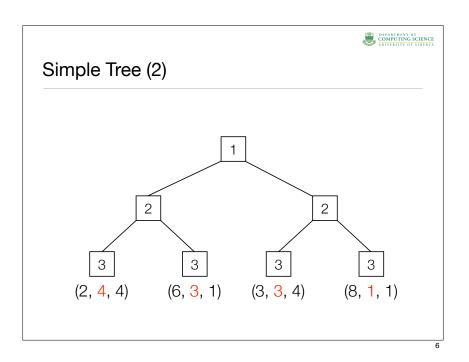
•How does UCT extend to multi-player games?

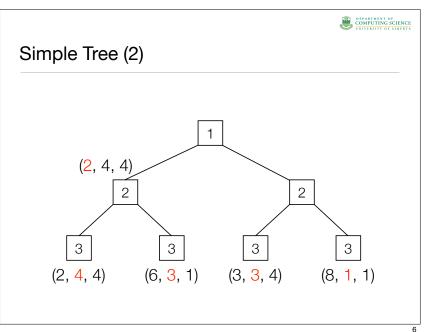
•How does UCT perform in multi-player games?

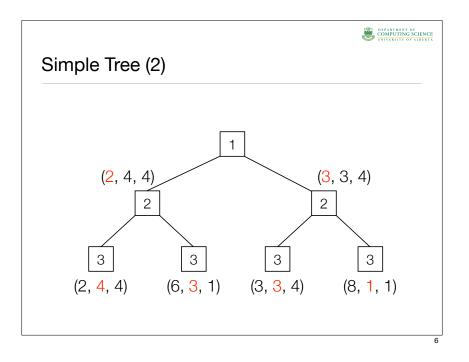
• How do UCT enhancements perform in multiplayer games?

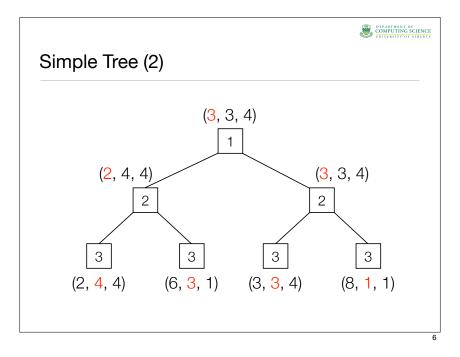

COMPUTING SCIENCE

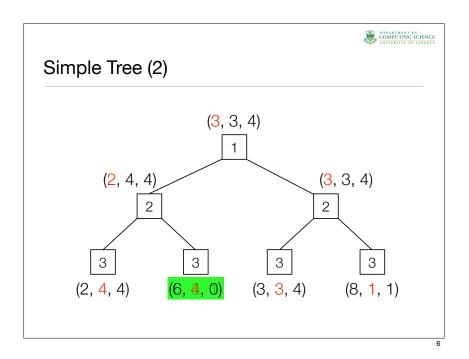

Background

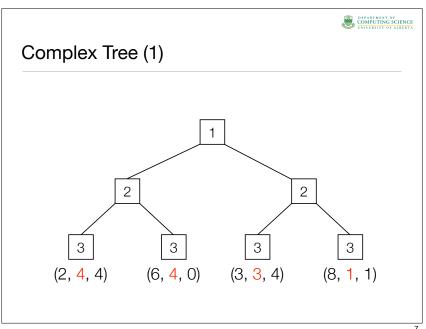

- •Maxⁿ (Luckhardt & Irani, 1985)
 - •Computes an equilibrium strategy
- Paranoid (Sturtevant & Korf, 2000)
 - •Reduces a game to two-player game
 - Improves pruning
 - •Special case of maxⁿ

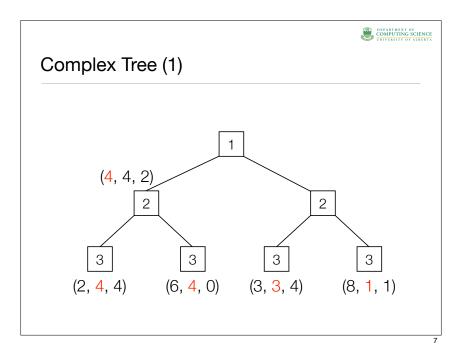

Background: UCT X_i $C\sqrt{\frac{T}{T_i}}$

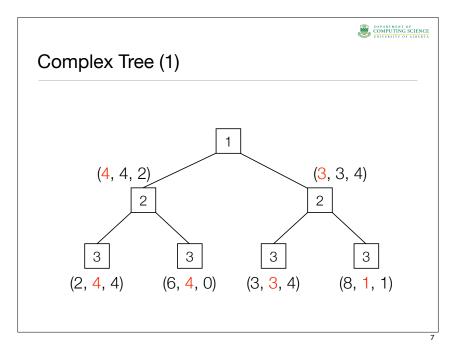

- •UCT provides a rule for selecting the next node to explore in a monte-carlo simulation
 - •Based only on the player to move at each node
 - "Trivial" to expand to multiple players
 - •Backup *n*-tuple of scores
- •What computation is UCT performing?
 - •Assume unlimited expansions

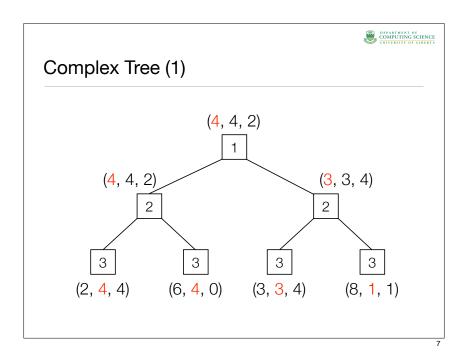


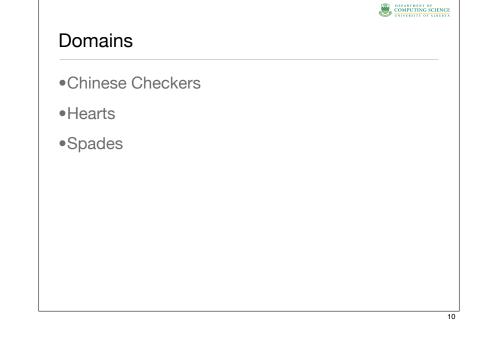












	DEPARTMENT OF COMPUTING SCIENCE UNIVERSITY OF ALBERTA
Multi-Player UCT	
•UCT computes a strategy that is in equ	uilibrium
 No single player can gain by deviating payoffs are perfectly accurate 	g, assuming
 Strategy may be mixed 	
 May not actually play in a mixed way 	
 Assumption of mixed play can chang strategy played 	le the

Experimental Results

- •Compare to existing (maxⁿ, paranoid) algorithms
- Evaluate UCT enhancements (Gelly & Silver, 2007)
 - •RAVE
 - •Pre-initialization of data
 - •Playout policies

Chinese Checkers	
 Race to get across the b 	ooard 0
 Pre-computed table of shortest single-player distance 	
 17 moves to solve sing agent problem optimal 	
 Minimize distance from g or maximize difference in distance? 	

Chinese Checkers						
	UCT	Pardiff	Pardist	Maxn _{diff}	Maxn _{dist}	
UCT	-	92.0	96.0	96.3	94.0	
Paranoid _{diff}	8.0	-	53.7	75.0	63.3	
Paranoid _{dist}	4.0	46.3	-	53.7	31.3	
Maxn _{diff}	3.7	25.0	46.3	-	43.7	
Max ⁿ dist	6.0	36.7	68.7	56.3	-	

11

9

Chinese Checkers - 250k Node exp.

	UCT	Pardiff	Pardist	Max ⁿ diff	Maxn _{dist}
UCT	-	92.0	96.0	96.3	94.0
Paranoid _{diff}	8.0	-	53.7	75.0	63.3
Paranoid _{dist}	4.0	46.3	-	53.7	31.3
Max ⁿ diff	3.7	25.0	46.3	-	43.7
Max ⁿ dist	6.0	36.7	68.7	56.3	-

Chinese Checkers

	UCT	Pardiff	Pardist	Maxn _{diff}	Maxn _{dist}
UCT	-	92.0	96.0	96.3	94.0
Paranoid _{diff}	8.0	-	53.7	75.0	63.3
Paranoid _{dist}	4.0	46.3	-	53.7	31.3
Max ⁿ diff	3.7	25.0	46.3	-	43.7
Max ⁿ dist	6.0	36.7	68.7	56.3	-

Chinese Checkers						
	UCT	Pardiff	Pardist	Max ⁿ diff	Max ⁿ dist	
UCT	-	92.0	96.0	96.3	94.0	
Paranoid _{diff}	8.0	-	53.7	75.0	63.3	
Paranoid _{dist}	4.0	46.3	-	53.7	31.3	
Max ⁿ diff	3.7	25.0	46.3	-	43.7	
Max ⁿ dist	6.0	36.7	68.7	56.3	-	

UNIVERSITY OF ALBERTA
Chinese Checkers - Playout Policy
 Always play the move that makes the most progress across the board
 Decreases average playout length
•80 moves (27 per player)
•200 moves (67 per player)
 Increases player strength

•81% of games won by new policy given the same number of simulations

15

13

14

COMPUTING SCIENCE

Chinese Checkers

- •RAVE (History Heuristic)
 - Ineffective
- •Pre-initializing states
 - Use database
 - Also ineffective

Hearts

- •Trick-based card game
 - •4 players
 - •Every game is exactly 52 moves long
 - •Every card is played exactly once in the game
- •Goal is to minimize the points taken
 - •Get 0 points for "shooting the moon"

COMPUTING SCIENCE

17

Hearts - Results

- •Shooting the moon test
 - •Which algorithm is most effective in stopping players from shooting the moon?
 - •3,244 test problems

Preventing Shooting the Moon

	UCT	Max ⁿ Learned	Random	Max ⁿ Hand-tuned
total	250	312	411	1377
percentage	7.70%	9.62%	12.67%	42.45%

18

COMPUTING SCIENCE

COMPUTING SCIENCE

DEPARTMENT OF COMPUTING SCIENCE UNIVERSITY OF ALBERTA

Quality of Play vs. UCT

	Learned	Max ⁿ	Random
UCT score	46.12	51.77	16.31
vs. score	67.30	88.31	89.23
win%	83.9%	88.0%	100%

Hearts - UCT Enhancements

- •Playout policies
 - Most policies ineffective in increasing strength of play
- Pre-initialization
- •Only effective with very few simulations
- •RAVE / History Heuristic
 - Also not effective

22

Spades

- •Play 3-player version of Spades
 - •Bid on tricks that will be taken in the game
 - •Delayed penalty for overbidding
- Previous work dominated by opponent modeling
 - •What strategy do players use to cope with overbidding?

Spades				EXAMPLEY OF COMPUTING SCIEN
Player 1	Player 2	P1 Avg	P2 Avg	P1 Win %
mOT _{MT}	MT _{mOT}	231.84	171.48	67.0%
mOT _{mOT}	MT _{MT}	179.19	212.76	43.0%
mOT _{gen}	prob- max ⁿ	212.60	202.67	53.2%

21

COMPUTING SCIENCE

25

Conclusions

- •UCT works very well in multi-player games
 - •UCT enhancements not as well
- •Future work
 - •Find ways to improve UCT performance
 - •Better handle imperfect information