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® | earn to play the game of Hearts well:

® Multi-Player Game

® |mperfect Information

® | earning
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® Trick-based card game
® VWant to minimize your points

® One point for every heart (V)

® |3 points for Q#

® |f one player takes all 26 points

(shoots the moon) others get 26 each
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® A lot of work in two-player games:

® Checkers, chess, backgammon, scrabble,
othello, go...

® Much less in multi-player games
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® Differences:

® Max" algorithm; generalization of minimax

® | ess efficient search/pruning

® Weaker theoretical properties
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® |n practice we can’t see opponents cards

® Monte-Carlo Sampling

® Generate perfect-information sample
hands for opponents

® Analyze samples

® Combine results
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® | earning algorithms not yet “plug and play”

® Significant tuning often needed to learn
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® Search-based Hearts program

® Hand-tuned evaluation function
® Monte-Carlo search

® Plays as well (better than) best computers!?

Learning In Hearts s ik Nathan Sturtevant




1D Hearts Deluxe 7.5 0506

e

2H3Q4 SEoNAR2REAR3IGIKRA
AlARA VIVEVEsERROegeg e

Your lead...

Learning In Hearts LR e T Nathan Sturtevant




Per Game Per Hand

Expert

56.1 5.16
Program

Opponent Avg. 76.3 6.97

Played 90 games, each to 100 points.
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® University of Mass. Course Project

(Perkins, 1998)

® Operational Advice

(Furnkranz, et. al., 2000)

® State sampling with imperfect-information

(Fujita and Ishii, 2005)
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® Define perfect information features
® |inearly weighted
® Monte-Carlo sampling

® Max" search in perfect-information game

® Use TD(A) with linear regression to train
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® Promising domain for learning:

® Game fixed length (|13 moves)

® Cards dealt randomly

® Occasionally get good cards
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® Cards have relative value

® 5% js sood when 2-4% already played
® 5% js bad when 6-A% already played
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® What features to use for each player?

® 52 cards they could have in their hand
® 52 cards they could have taken
|04 features per player

416 total features
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® |nteresting feature: P| has the lowest ¥

® [Pl has 29] or
® [P| has 3¥] and

[[P] has taken 2¥] or [P2 has taken 2]
[P3 has taken 2¥] or [P4 has taken 29¥]]
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® \We defined basic ‘atomic’ features

® Sample Features

® Which suits do we hold low/high cards

® \Which suits are we ‘short’

® Which suits does the ‘leader’ have
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® These features still inadequate

® Combinations of features more
interesting than ‘atomic’ features

® Combine features using AND operator
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® | earn to avoid the Q#
® 60 ‘atomic features’

® Predict expected points in game

® Train against previous program
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® What is the network learning

® FEasily understand by examining weights
assigned to feature sets
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Weight Ve have We have We have Opponent
I

-0.103 | low & Q% no 4
-0.097 | low 4 Q% no 4
-0.096 2 low & Q% two 4
-0.093 | low & Q% no 4
-0.090 | low 4 Q% no 4
8 -0.040 | low & Lead no &
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0.125 | low #

0.123 Qe

| low #

0.117 Qs No &
0.116 A/K/Q#

0.112 Qe

No ¢

No & No ¥

Lead

Lead
Lead
No ¢
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® | earn to avoid taking ¥

® Removed |4 Q#-specific features

® 42 new point (¥) related features (0-13)

® Same learning parameters
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- Break Even =— |Ix Features =— 2x Features =— 3x Features
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® | earn to play the perfect-information game

® No ‘shooting the moon’
® Take best 10,000 features from the Q#

Take best 1,000 features from ¥ points

Train against expert and by self-play
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® TJest the learned networks
® Play trained network against expert

® Play 100 hands
4 players, 2 player types

Repeat each hand 2% - 2 times
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Learning In Hearts
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— Break-Even — Expert Trained — Self Trained
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= Break Even — Expert Trained — Self Trained
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= Self Trained — Expert Trained = Break Even
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® Played against expert program

® Single hands

® 56.9% of hands, 6.35 v. 7.30 average score

® Games to |00 points

® 63.8% of hands, 69.8 v.81.1 average score
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® | earned to beat ‘expert’ by a large margin

® Program plays well, but sometimes lacks
deep analysis of game

® Not a trivial result
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Different algorithms than max"

Other ways of combining/building features

Better handling of shooting the moon

Play against other opponents
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INFORMATICS

C ORE

CIRCLE OF RESEARCH EXCELLENCE
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