# Constructing Features to Learn to Play Hearts

Nathan Sturtevant and Adam White University of Alberta

> Computers and Games May 31, 2006





# Challenge

- Learn to play the game of Hearts well:
  - Multi-Player Game
  - Imperfect Information
  - Learning





### Hearts

- Trick-based card game
- Want to *minimize* your points
  - One point for every heart (♥)
  - I3 points for Q<sup>♠</sup>
  - If one player takes all 26 points
     (shoots the moon) others get 26 each





# Multi-Player Games

- A lot of work in two-player games:
  - Checkers, chess, backgammon, scrabble, othello, go...
- Much less in multi-player games





# Multi-Player Games

#### • Differences:

- Max<sup>n</sup> algorithm; generalization of minimax
- Less efficient search/pruning
- Weaker theoretical properties





## Imperfect Information

- In practice we can't see opponents cards
- Monte-Carlo Sampling
  - Generate perfect-information sample hands for opponents
  - Analyze samples
  - Combine results





# Learning

- Learning algorithms not yet "plug and play"
- Significant tuning often needed to learn





### Previous Work

- Search-based Hearts program
  - Hand-tuned evaluation function
  - Monte-Carlo search
- Plays as well (better than) best computers?











### Average Scores

|                   | Per Game | Per Hand |
|-------------------|----------|----------|
| Expert<br>Program | 56.I     | 5.16     |
| Opponent Avg.     | 76.3     | 6.97     |

#### Played 90 games, each to 100 points.





# Learning in Hearts

- University of Mass. Course Project (Perkins, 1998)
- Operational Advice
   (Fürnkranz, et. al., 2000)
- State sampling with imperfect-information (Fujita and Ishii, 2005)





# General Approach

- Define perfect information features
  - Linearly weighted
- Monte-Carlo sampling
  - Max<sup>n</sup> search in perfect-information game
- Use  $TD(\lambda)$  with linear regression to train





### Hearts

- Promising domain for learning:
  - Game fixed length (13 moves)
  - Cards dealt randomly
    - Occasionally get good cards





# Hearts Difficulty

- Cards have relative value
  - 5<sup>+</sup> is good when 2-4<sup>+</sup> already played
  - 5<sup>+</sup> is bad when 6-A<sup>+</sup> already played





#### Features

- What features to use for each player?
  - 52 cards they could have in their hand
  - 52 cards they could have taken
  - I04 features per player
  - 416 total features





### Valuable Feature

- Interesting feature: P1 has the lowest ¥
  - [PI has 2♥] or
  - [PI has 3♥] and
    [[PI has taken 2♥] or [P2 has taken 2♥]
    [P3 has taken 2♥] or [P4 has taken 2♥]]





### Feature Abstraction

- We defined basic 'atomic' features
- Sample Features
  - Which suits do we hold low/high cards
  - Which suits are we 'short'
  - Which suits does the 'leader' have





### Even More Features

- These features still inadequate
  - Combinations of features more interesting than 'atomic' features
  - Combine features using AND operator





# Learning Part I

- Learn to avoid the  $Q \blacklozenge$ 
  - 60 'atomic features'
  - Predict expected points in game
  - Train against previous program











# Analysis

- What is the network learning
  - Easily understand by examining weights assigned to feature sets





### Features - Avoid Q4

| Rank | Weight | We have | We have | We have | Opponent  |
|------|--------|---------|---------|---------|-----------|
| Ι    | -0.103 | I low 🜢 |         | Lead    | Q≜ no ≜   |
| 2    | -0.097 | I low 🜢 | No 🕈    | Lead    | Q♠ no ♠   |
| 3    | -0.096 | 2 Iow 🜢 | K♠      |         | Q♠ two ♠  |
| 4    | -0.093 | I low 🜢 | No 뢒    | Lead    | Q≜ no ≜   |
| 5    | -0.090 | I low 🜢 | No 🔶    | Lead    | Q≜ no ≜   |
| 148  | -0.040 | I low 🜢 | Q♠      |         | Lead no 소 |





### Features - Take QA

| Rank | Weight | We Have | We have | We have | We have |
|------|--------|---------|---------|---------|---------|
|      | 0.125  | Q♠      | I low 🛧 |         | Lead    |
| 2    | 0.123  | Q       | I low 🛧 |         |         |
| 3    | 0.117  | Q♠      | No 뢒    | No 💙    | Lead    |
| 4    | 0.116  | A/K/Q♠  |         |         | Lead    |
| 5    | 0.112  | Q♠      | No 뢒    | No 🕈    | No 🔶    |





# Learning Part II

- Learn to avoid taking ¥
  - Removed 14 Q<sup>+</sup>-specific features
  - 42 new point (♥) related features (0-13)
  - Same learning parameters











# Learning Part III

- Learn to play the perfect-information game
  - No 'shooting the moon'
  - Take best 10,000 features from the Q<sup>4</sup>
  - Take best 1,000 features from V points
  - Train against expert and by self-play





## Steady-State Evaluation

- Test the learned networks
  - Play trained network against expert
  - Play 100 hands
  - 4 players, 2 player types
  - Repeat each hand 2<sup>4</sup> 2 times





# Arrangement

| Player I | Player 2 | Player 3 | Player 4 |
|----------|----------|----------|----------|
| Expert   | Trained  | Trained  | Trained  |
| Trained  | Expert   | Trained  | Trained  |
| Expert   | Expert   | Trained  | Trained  |
| Trained  | Trained  | Expert   | Trained  |
| Expert   | Trained  | Expert   | Trained  |
| Trained  | Expert   | Expert   | Trained  |
| Expert   | Expert   | Expert   | Trained  |



# Imperfect Info. Play

- Played against expert program
- Single hands
  - 56.9% of hands, 6.35 v. 7.30 average score
- Games to 100 points
  - 63.8% of hands, 69.8 v. 81.1 average score





# Summary

- Learned to beat 'expert' by a large margin
  - Program plays well, but sometimes lacks deep analysis of game
- Not a trivial result





### Future Work

- Different algorithms than max<sup>n</sup>
- Other ways of combining/building features
- Better handling of shooting the moon
- Play against other opponents





### Thank You



