
Parallel Best-First Search: Optimal and Suboptimal Solutions

Ethan Burns1 and Seth Lemons1 and Wheeler Ruml1 and Rong Zhou2

1Department of Computer Science 2Embedded Reasoning Area
University of New Hampshire Palo Alto Research Center

Durham, NH 03824 USA Palo Alto, CA 94304 USA
eaburns, seth.lemons, ruml at cs.unh.edu rzhou at parc.com

Abstract

To harness modern multi-core processors, it is imperative to
develop parallel versions of fundamental algorithms. In this
paper, we present a general approach to best-first heuristic
search in a shared-memory setting. Each thread attempts
to expand the most promising nodes. By using abstraction
to partition the state space, we detect duplicate states while
avoiding lock contention. We allow speculative expansions
when necessary to keep threads busy. We identify and fix po-
tential livelock conditions. In an empirical comparison on
STRIPS planning, grid pathfinding, and sliding tile puzzle
problems using an 8-core machine, we show that A* imple-
mented in our framework yields faster search performance
than previous parallel search proposals. We also demonstrate
that our approach extends easily to other best-first searches,
such as weighted A* and anytime heuristic search.

Introduction

It is widely anticipated that future microprocessors will not
have faster clock rates, but rather more computing cores per
chip. Tasks for which there do not exist effective parallel al-
gorithms will suffer a slowdown relative to total system per-
formance. In artificial intelligence, heuristic search is a fun-
damental and widely-used problem solving framework. In
this paper, we develop a parallel version of best-first search,
a popular method underlying algorithms such as A* (Hart,
Nilsson, and Raphael 1968).

In best-first search, two sets of nodes are maintained:
open and closed. Open contains the search frontier, nodes
that have been generated but not yet expanded. In A*, open
nodes are sorted by their f value, the estimated lowest cost
for a solution path going through that node. Closed contains
all previously expanded nodes, allowing the search to detect
duplicated states in the search space and avoid expanding
them multiple times. One challenge in parallelizing best-
first search is avoiding contention between threads when ac-
cessing the open and closed lists. We will use a technique
called parallel structured duplicate detection (PSDD), orig-
inally developed for parallel breadth-first search, in order
to dramatically reduce contention and allow threads to en-
joy periods of synchronization-free search. PSDD requires
the user to supply an abstraction function that maps multiple
states to a single abstract state, called an nblock.

In contrast to previous work, we focus on general best-
first search. Our algorithm is called Parallel Best-NBlock-
First (PBNF). It extends easily to domains with non-
uniform, non-integer move costs and inadmissible heuris-
tics. This algorithm was introduced by Burns et al. (2009),
who discuss its performance using A*. In this paper, we
review the algorithm and its performance and then show in
detail its extension to weighted A* and anytime heuristic
search. We study the empirical behavior of PBNF on three
popular search domains: STRIPS planning, grid pathfind-
ing, and the venerable sliding tile puzzle. We compare
against several previously proposed algorithms, as well as
novel improvements of them, using a dual quad-core Intel
machine. Our results show that PBNF yields optimal so-
lutions faster than all other algorithms tested. We also show
that PBNF is able to find bounded suboptimal solutions, with
its advantages increasing as problem difficulty increases.

Previous Work

The most basic approach to parallel best-first search is to
have mutual exclusion locks (mutexes) for the open and
closed lists and require each thread to acquire the lock be-
fore manipulating the corresponding structure. Burns et
al. (2009) show that this naive approach to parallelizing A*
does not perform very well. Parallel Retracting A* (PRA*)
(Evett et al. 1995) attempts to avoid contention by assign-
ing separate open and closed lists to each thread. A hash-
ing scheme is used to assign nodes to the appropriate thread
when they are generated. (Full PRA* also includes a re-
traction scheme for bounded-memory operation; we ignore
that feature in this paper.) We use a novel hashing scheme
for PRA* based on state-space abstraction, we call this im-
plementation APRA* (’A’ because of the abstraction based
hashing scheme). This method was found to give better
performance than a trivial hashing algorithm (Burns et al.
2009). Note that with PRA* each thread needs a synchro-
nized open list or message queue that other threads can add
nodes to. While this is less of a bottleneck than having a
single global, shared open list, Burns et al. (2009) show that
it can still be expensive.

Parallel Structured Duplicate Detection

The intention of PSDD is to avoid the need to lock on every
node generation. It builds on the idea of structured duplicate



detection (SDD), which was originally developed for exter-
nal memory search (Zhou and Hansen 2004). SDD uses an
abstraction function, a many-to-one mapping from states in
the original search space to states in an abstract space. The
abstract node to which a state is mapped is called its image.
An nblock is the set of nodes in the state space that have the
same image in the abstract space. We’ll use the terms ‘ab-
stract state’ and ‘nblock’ interchangeably. The abstraction
function creates an abstract graph of nodes that are images
of the nodes in the state space. If two states are successors
in the state space, then their images are successors in the
abstract graph.

For efficient duplicate detection, we equip each nblock
with its own open and closed lists. Two nodes representing
the same state s will map to the same nblock b. When we
expand s, its children can map only to b’s successors in the
abstract graph. These nblocks are called the duplicate de-
tection scope of b because they are the only nblocks whose
open and closed lists need to be checked for duplicate states
when expanding nodes in b.

In parallel SDD (PSDD), the abstract graph is used to
find nblocks whose duplicate detection scopes are disjoint.
These nblocks can be searched in parallel without any lock-
ing. An nblock b is considered to be free iff none of its
successors are being used. Free nblocks are found by ex-
plicitly tracking σ(b), the number of nblocks among their
successors that are in use by another processor. An nblock
can only be acquired when its σ is zero. PSDD only uses a
single lock, controlling manipulation of the abstract graph,
and it is only acquired by threads when finding a new free
nblock to search.

Zhou and Hansen (2007) used PSDD to parallelize
breadth-first heuristic search (Zhou and Hansen 2006). In
each thread, only the nodes at the current search depth in an
nblock are searched. When the current nblock has no more
nodes at the current depth, it is swapped for a free nblock
that does have open nodes at this depth. If no more nblocks
have nodes at this depth, all threads synchronize and then
progress to the next depth. An admissible heuristic cost-to-
go estimate is used to prune nodes below the current solution
upper bound.

Variations of PSDD

As implemented by Zhou and Hansen, PSDD uses the
heuristic estimate of a node only for pruning; this is only
effective if a tight upper bound is already available. This
can be handled by using iterative deepening, but it has been
shown previously that this does not perform well on do-
mains that do not have a geometrically increasing number
of nodes within successive f bounds (Burns et al. 2009).
Another drawback of PSDD is that breadth-first search can-
not guarantee optimality in domains where operators have
differing costs. In anticipation of these problems, Zhou
and Hansen (2004) suggest two possible extensions to their
work, best-first search and a speculative best-first layering
approach that allows for larger layers in the cases where
there are few f value ties. Best-first PSDD (BFPSDD) uses
f value layers instead of depth layers. This means that all
nodes that are expanded in a given layer have the same (low-

1. while there is an nblock with open nodes
2. lock; b← best free nblock; unlock
3. while b is no worse than the best free nblock or
4. we’ve done fewer than m expansions
5. n← best open node in b
6. if f(n) > f(incumbent), prune all open nodes in b
7. else if n is a goal
8. if f(n) < f(incumbent)
9. lock; incumbent← n; unlock
10. else for each child c of n
11. insert c in the open list of the appropriate nblock

Figure 1: A sketch of basic PBNF search, showing locking.

est) f value. BFPSDD provides a best-first search order, but
may incur excessive synchronization overhead if there are
few nodes in each f layer. To ameliorate this, one can en-
force that at least m nodes are expanded before abandoning
a non-empty nblock. (Zhou and Hansen credit (Edelkamp
and Schrodl 2000) with this idea.) Our implementation of
the BFPSDD algorithm performs a minimum of m expan-
sions per nblock. When populating the list of free nblocks
for each layer, all of the nblocks that have nodes with the
current layer’s f value are used or a minimum of k nblocks
are added. Following Burns et al. (2009) we use the value
four times the number of threads for k. This allows us to add
additional nblocks to small layers in order to amortize the
cost of synchronization. With these enhancements, threads
may expand nodes with f values greater than that of the cur-
rent layer. Because the first solution found may not be op-
timal, search continues until all remaining nodes are pruned
by the incumbent solution.

Parallel Best-NBlock-First (PBNF)

Ideally, all threads would be busy expanding nblocks that
contain nodes with the lowest f values. To achieve this,
we combine PSDD’s duplicate detection scopes with an idea
from the Localized A* (LA*) algorithm of Edelkamp and
Schrodl (2000). LA*, which was designed to improve the
locality of external memory search, maintains sets of nodes
that reside on the same memory page. Decisions of which
set to process next are made with the help of a heap of sets
ordered by the minimum f value in each set. By maintaining
a heap of free nblocks ordered on their best f value, we can
approximate our ideal parallel search. We call this algorithm
Parallel Best-NBlock-First (PBNF).

In PBNF, threads use the heap of free nblocks to acquire
the free nblock with the best open node. A thread will search
its acquired nblock as long as it contains nodes that are bet-
ter than those of the nblock at the front of the heap. If the
acquired nblock becomes worse than the best free one, the
thread will attempt to release its current nblock and acquire
the better one. There is no layer synchronization, so the first
solution found may be suboptimal and search must continue
until all open nodes have f values worse than the incum-
bent. It can, however, be used to prune an nblock’s entire
open list when the minimum f value is greater than the cost
of the incumbent. Figure 1 shows pseudo-code, indicating
where locking is necessary.



Because PBNF is only approximately best-first, we can
introduce optimizations to reduce overhead. It is possible
that an nblock has only a small number of nodes that are bet-
ter than the best free nblock, so we avoid excessive switch-
ing by requiring a minimum number of expansions. Our
implementation also attempts to reduce the time a thread
is forced to wait on a lock by using try lock whenever
possible. Rather than sleeping if a lock cannot be acquired,
try lock immediately returns failure. This allows a thread
to continue expanding its current nblock if the lock is busy.
Both of these optimizations can introduce ‘speculative’ ex-
pansions that would not have been performed in a serial best-
first search.

Livelock

The greedy free-for-all order in which PBNF threads ac-
quire free nblocks can lead to livelock in domains with in-
finite state spaces. Because threads can always acquire new
nblocks without waiting for all open nodes in a layer to
be expanded, it is possible that the nblock containing the
goal will never become free. We have no assurance that
all nblocks in its duplicate detection scope will be unused
at the same time. To fix this, we have developed a method
called ‘hot nblocks’ where threads altruistically release their
nblock if they are interfering with a better nblock. We call
this enhanced algorithm ‘safe PBNF.’

We define the interference scope of an nblock b to be
those nblocks whose duplicate detection scopes overlap
with b’s. In safe PBNF, whenever a thread checks the heap
of free nblocks, it also ensures that its nblock is better than
any of those in its interference scope. If it finds a better one,
it flags it as ‘hot.’ Any thread that finds a hot nblock in its
interference scope releases its nblock in an attempt to free
the hot nblock. For each nblock b, σh(b) tracks the number
of hot nblocks in b’s interference scope. If σh(b) 6= 0, b is
removed from the heap of free nblocks. This ensures that
a thread will not acquire an nblock that is preventing a hot
nblock from becoming free.

The method for setting nblocks to hot is designed so there
are never two hot nblocks interfering with one another, and
that the nblock that is set to hot is the best nblock in its inter-
ference scope. This guarantees the property that if an nblock
is flagged as hot it will eventually become free. Complete
pseudo-code for safe PBNF is given in the appendix and fur-
ther details are discussed in earlier work (Burns et al. 2009).

Empirical Evaluation

We have implemented and tested the parallel heuristic search
algorithms discussed above on three different benchmark
domains: grid pathfinding, the sliding tile puzzle, and
STRIPS planning. Our list of algorithms includes APRA*,
BFPSDD, and safe PBNF. Other algorithms were tested in
earlier work (Burns et al. 2009). The algorithms were pro-
grammed in C++ using the POSIX threading library and
run on dual quad-core Intel Xeon E5320 1.86GHz proces-
sors with 16Gb RAM, except for the planning results, which
were written in C and run on a dual quad-core Intel Xeon
X5450 3.0GHz processors limited to roughly 2GB of RAM.

For grids and sliding tiles, we used the jemalloc library
(Evans 2006), a special multi-thread aware malloc imple-
mentation, instead of the standard glibc (version 2.7) malloc,
because the latter is known to scale poorly above 6 threads.
We configured jemalloc to use 32 memory arenas per CPU.
In planning, a custom memory manager was used which is
also thread-aware and uses a memory pool for each thread.
For the following experiments we show the performance of
each algorithm with its best parameter settings (e.g., min-
imum number of expansions and abstraction granularity)
which we determined by experimentation.

Grid Pathfinding

We tested on grids 2000 cells wide by 1200 cells high, with
the start in the lower left and the goal in the lower right.
Cells are blocked with probability 0.35. We test two cost
models (discussed below) and both four-way and eight-way
movement. The abstraction function we used maps blocks
of adjacent cells to the same abstract state, forming a coarser
abstract grid overlaid on the original space. For this domain
we are able to tune the size of the abstraction and we de-
termined that 6400 nblocks gives good performance for all
relevant algorithms. We use the value 64 for the minimum
number of expansions (where relevant) which we also deter-
mined to give good performance.
Four-way Unit Cost: In the unit cost model, each move
has the same cost. The upper left plot in Figure 2 shows
the APRA*, BFPSDD, and safe PBNF algorithms on unit-
cost four-way movement path planning problems. Error bars
indicate 95% confidence intervals on the mean and algo-
rithms in the legend are ordered on their average perfor-
mance. Each plot includes a horizontal line, which repre-
sents the mean performance of a serial A* search. From
this figure we see that safe PBNF is superior to any of the
other algorithms, with steadily decreasing solution times as
threads are added. The BFPSDD algorithm also gives good
results on this domain, surpassing the speed of APRA* af-
ter 3 threads. APRA*’s performance gets gradually worse
for more than four threads. While APRA* does not perform
as well as safe PBNF and BFPSDD, it has the advantage of
being very simple to implement.
Four-way Life Cost: Moves in the life cost model have cost
equal to the row number of the state where the move was
performed. Moves at the top of the grid are free, moves at
the bottom cost 1200, and the shortest path is likely not the
cheapest. The bottom left plot in Figure 2 shows these re-
sults. Safe PBNF has the best performance for two threads
and beyond. The BFPSDD algorithm has the next best per-
formance, following the same general trend as PBNF. The
APRA* algorithm performs the worst, as it doesn’t seem to
improve its performance beyond four threads.
Eight-way Unit Cost: In our eight-way movement path
planning problems, horizontal and vertical moves have cost

one, but diagonal movements cost
√

2. These real-valued
costs make the domain different from the previous two path
planning domains. The top right panel shows that safe PBNF
gives the best performance quite clearly. While APRA* is
initially better than BFPSDD, it does not scale and is slower
than BFPSDD at 6 or more threads.



Grid Unit 4-way 6400 nblocks
ti

m
e 

(s
ec

o
n

d
s)

1.8

1.5

1.2

0.9

0.6

threads

8642

A*
APRA*

BFPSDD-4mult-64min
SafePBNF-64min

Grid Unit 8-way 6400 nblocks

ti
m

e 
(s

ec
o

n
d

s)

1.8

1.5

1.2

0.9

0.6

threads

8642

A*
BFPSDD-4mult-64min

APRA*
SafePBNF-64min

Grid Life 4-way 6400 nblocks

ti
m

e 
(s

ec
o

n
d

s)

5

4

3

2

1

threads

8642

A*
APRA*

BFPSDD-4mult-64min
SafePBNF-64min

Grid Life 8-way 6400 nblocks

ti
m

e 
(s

ec
o

n
d

s)

8

6

4

2

threads

8642

A*
BFPSDD-4mult-64min

APRA*
SafePBNF-64min

Korf 100 15-puzzles

ti
m

es
 (

se
co

n
d

s)

8

6

4

2

threads

8642

BFPSDD-4mult-64min-1tile
A*

APRA*-2tile
SafePBNF-32min-2tile

Figure 2: Results on grid path planning and the sliding tiles puzzle

Eight-way Life Cost: This model combines the eight-way
movement and the life cost models; it is the most diffi-
cult path planning domain presented in this paper. Figure
2 shows that safe PBNF gives the best performance for all
thread counts beyond two. BFPSDD gives performance sim-
ilar to PBNF, but consistently slower. The APRA* algorithm
does fairly well in the eight-way life cost model showing so-
lution speeds which are on par with that of BFPSDD, but it
again scales poorly after 5 threads.

Sliding Tiles

The sliding tiles puzzle is a common domain for benchmark-
ing heuristic search algorithms. For these results, we use
fourty-three of the easiest Korf 15-puzzle instances (ones
that were solvable by A* in 15GB of memory) because they
are small enough to fit into memory, but are difficult enough
to differentiate algorithmic performance.

We found that a smaller abstraction which only considers
the position of the blank and 1-tile (240 nblocks on the 15-
puzzle) did not produce a sufficient number of abstract states
for PBNF and APRA* to scale as threads were added, so
we used one which takes into account the blank, the 1-tile,
and the 2-tile (3360 nblocks). This is because the smaller
abstraction does not provide enough free nblocks at many
points in the search, and threads are forced to contend heav-
ily for the free list. BFPSDD, however, did better with the
smaller abstraction, presumably because it did not require
switching between nblocks as often because of the narrowly

defined layer values. The PBNF algorithm used 32 for the
minimum expansions parameter and BFPSDD used 64 min-
imum expansions. These values gave the best performance
for their respective algorithms on this domain.

The right-most panel in Figure 2 shows the results for
BFPSDD, APRA*, and safe PBNF. Safe PBNF shows the
best performance consistently. The APRA* algorithm has
very unstable performance, but often performs better than
A*. We found that APRA* had a more difficult time solving
some of the larger puzzle instances, consuming much more
memory at higher numbers of threads. BFPSDD’s perfor-
mance was poor, but it improves consistently with the num-
ber of threads added and eventually gets faster than A*.

STRIPS Planning

In addition to the path planning and sliding tiles domains,
the algorithms were embedded into a domain-independent
optimal sequential STRIPS planner using regression and the
max-pair admissible heuristic of Haslum (2000). Figure 3
presents the results for APRA*, PSDD and PBNF, which
were identified as the most competitive based on the results
presented above, and serial A* for comparison. PSDD per-
formed better than PBNF by 3% on one problem. On aver-
age at seven threads, safe PBNF takes 66% of the time taken
by PSDD. Interestingly, while plain PBNF was often a lit-
tle faster than the safe version, it failed to solve two of the
problems within our time bound. This is most likely due to
livelock, but could also simply be because the hot nblocks



A* APRA* Safe PBNF PSDD
Problem 1 1 3 5 7 1 3 5 7 1 3 5 7 Abst.

logistics-6 2.30 1.46 0.76 1.22 0.84 1.17 0.64 0.56 0.62 1.20 0.78 0.68 0.64 0.42
blocks-14 5.19 7.12 5.50 3.78 3.65 6.21 2.69 2.20 2.02 6.36 3.57 2.96 2.87 7.90
gripper-7 118 59.8 51.1 41.0 27.5 39.6 16.9 11.2 9.21 65.7 29.4 21.9 19.2 0.83
satellite-6 131 95.5 48.5 65.9 48.8 77.0 24.1 17.3 13.7 61.5 23.6 16.7 13.3 0.98
elevator-12 336 213 269 241 169 150 53.5 34.2 27.0 162.8 62.7 43.3 36.7 0.67
freecell-3 199 150 112 60.5 39.9 127 47.1 38.1 37.0 126.3 53.8 45.5 43.7 16.6
depots-7 MEM 301 144 MEM MEM 156 63.0 42.9 34.7 160 73.0 57.7 54.7 3.59
driverlog-11 MEM 322 103 MEM MEM 154 60.0 38.8 31.2 156 63.2 41.9 34.0 9.68
gripper-8 MEM 528 MEM MEM MEM 235 98.2 63.7 51.5 388 172 121 106 1.11

Figure 3: Computation time on STRIPS planning problems, in seconds, for various numbers of threads.

Threads
w 1 2 4 5 7 8

1.1 1.01 0.95 0.92 0.96 1.02 0.95
1.2 1.23 1.20 1.12 1.13 1.20 1.11
1.4 1.24 1.17 1.10 1.10 1.19 1.12
1.8 0.90 0.83 0.82 0.79 0.88 0.86

Figure 4: AwPBNF speedup over standard PBNF.

fix allows safe PNBF to follow a different search order than
PBNF.

The right-most column shows the time that was taken by
the PBNF and PSDD algorithms to generate the abstraction
function. The abstraction is generated dynamically on a per-
problem basis and, following Zhou and Hansen (2007), this
time was not taken into account in the solution times pre-
sented for these algorithms. In the current implementation,
the abstraction generation algorithm is implemented serially
but it should be trivial to parallelize and, therefore, execute
much more quickly.

The PSDD algorithm was given the optimal solution cost
as an upper bound to perform pruning in the breadth-first
heuristic search. These times can be used as a lower bound
on the time BFPSDD (with m = 0 and k = 1) would take,
because it expands the same nodes without the overhead of
sorting or re-expanding. The PBNF algorithm finds its own
upper bound from suboptimal solutions and therefore will
give the performance shown in this figure without first re-
quiring the cost of the optimal solution.

Anytime Search

Hansen and Zhou (2007) show that using wA* as an any-
time algorithm (searching until an optimal solution is found;
giving a stream of incumbent solutions at increasing quali-
ties) can lead to speedup over A* for some weight values in
certain domains. Figure 4 shows results for an anytime adap-
tation of PBNF which we call AwPBNF (anytime weighted
PBNF). The values in this table represent the speedup of Aw-
PBNF over PBNF for some of the easiest Korf 15-Puzzles
using 3360 nblocks and 32 minimum expansions per nblock.
For weight values of 1.2 and 1.4, the AwPBNF algorithm
performs up to 24% better than the standard PBNF algo-
rithm. The performance increase over PBNF seems to de-
crease as more threads are added, this may be due to extra

Grid Unit 4-way Anytime Profiles

S
o

lu
ti

o
n

 C
o

st
 (

fa
ct

o
r 

o
v

er
 o

p
ti

m
al

)

1.08

1.06

1.04

1.02

1.0

Wall time relative to serial A*

0.90.60.3

AwA*
AwPBNF 2 threads
AwPBNF 4 threads
AwPBNF 8 threads

Figure 5: Grid pathfinding: lower hull performance profile.

speculation as more of the frontier nodes are searched in par-
allel.

Figure 5 shows a comparison of the performance of Any-
time weighted A* (AwA*) (Hansen and Zhou 2007) and
Anytime weighted PBNF at 2, 4 and 8 threads on four-
way unit cost grid pathfinding. In these results AwPBNF
uses 10000 nblocks and 64 minimum expansions. Each data
point in this figure represents the best performance of the
respective algorithm over all of the following weights: 1.1,
1.2, 1.4, 1.8. From this figure we can see that AwPBNF gives
similar performance to AwA*, however as threads are added
the profile shifts to the left and the upper tail gets smaller as
better solutions are found more quickly.

Bounded Suboptimal Search

Sometimes it is acceptable or even preferable to search for a
solution which is not optimal. Suboptimal solutions can of-
ten be found much more quickly than optimal ones and with
lower memory consumption. When a suboptimal search is
performed it is usually desirable to have a bound on the sub-
optimality of the solution found. Weighted A* guarantees
that suboptimality will be bounded by the weight used. It is
possible to modify PBNF, PSDD, and PRA* to use weights
to find suboptimal solutions, but a strict f ′ ordering is not
followed. This causes the first solution found to, possibly,
be outside the bound. Much like the original versions of



these algorithms, we must prove the quality of our solution
by either exploring or pruning all nodes.

Let s be the current incumbent solution and w the subop-
timality bound. A node n can clearly be pruned if f(n) ≥
g(s). It can also be pruned if w ·f(n) ≥ g(s). We only need
to retain n if it is on the optimal path to a solution that is a
factor of w better than s.

Theorem 1 We can prune a node n if w ·f(n) ≥ g(s) with-
out sacrificing w-admissibility.

Proof: If the incumbent is w-admissible, we can safely
prune any node, so we consider the case where g(s) >
w · g(opt), where opt is an optimal goal. Note that without
pruning, there always exists a node p in some open list (or
being generated) that is on the best path to opt. By the ad-
missibility of h and the definition of p, w·f(p) ≤ w·f∗(p) =
w · g(opt). If the pruning rule discards p, that would imply
g(s) ≤ w · f(p) and thus g(s) ≤ w · g(opt), which contra-
dicts our premise. Therefore, an open node leading to the
optimal solution will not be pruned if the incumbent is not
w-admissible. A search that does not terminate until open is
empty will not terminate until the incumbent is w-admissible
or it is replaced by an optimal solution. �

We make explicit a useful corollary:

Corollary 1 We can prune a node n if f ′(n) ≥ g(s) without
sacrificing w-admissibility.

Proof: Clearly w · f(n) ≥ f ′(n), so Theorem 1 applies. �

With this corollary, we can use a pruning shortcut: when the
open list is sorted on increasing f ′ and the node at the front
has f ′ ≥ g(s), we can prune the entire open list.

As before, when all open lists are empty, we can termi-
nate with the guarantee that our current solution is within
the suboptimality bound. The time spent proving that the
incumbent solution is within the bound, however, poses a
significant disadvantage against wA*. Our method may re-
quire many re-expansions of nodes early on in a path be-
cause speculation led us to them through a non-w-admissible
route. This effect gets more important as weight increases
and makes it difficult to perform competitively on easy prob-
lems at high weights.

Evaluation

We implemented and tested weighted versions of A*,
APRA* (wPRA*), BFPSDD (wBFPSDD), and PBNF
(wPBNF). All algorithms prune nodes based on f ′ and w∗f
criteria. All parallel algorithms prune whole open lists on
f ′. Duplicates which have been expanded are dropped in
serial wA*, regardless of value, in grids, as discussed by
Likhachev, Gordon, and Thrun (2003). We do not use dupli-
cate dropping with wA* in the sliding tiles domain because
these problems do not have as many duplicates and have
fewer paths to the goal. We found that duplicate dropping
makes wA* perform worse in the sliding tiles domain.

Speedup versus wA* is plotted in Figure 6 showing num-
ber of threads and weight used. A 10000 nblock abstrac-
tion was used in path planning, 3360 nblocks were used in
tiles. wPBNF used 64 min expansions on path planning, 32
on tiles. wBFPSDD used a multiplier of 4 and 64 min ex-
pansions on path planning, 32 on tiles. From Figure 6 we

wPBNF: Unit Four-way Path Planning
Threads

w 1 2 4 5 7 8

1.1 0.83 1.50 2.68 3.20 3.94 4.25
1.2 0.75 1.37 2.36 2.77 3.33 3.48
1.4 0.51 1.00 1.60 1.81 1.94 2.00
1.8 0.53 0.61 0.66 0.66 0.68 0.67
3.0 0.44 0.43 0.42 0.42 0.41 0.41

wBFPSDD: Unit Four-way Path Planning
Threads

w 1 2 4 5 7 8

1.1 0.84 1.25 1.87 2.10 2.39 2.40
1.2 0.76 1.11 1.61 1.80 1.98 1.93
1.4 0.51 0.75 1.10 1.15 1.19 1.16
1.8 0.45 0.48 0.50 0.48 0.43 0.39
3.0 0.42 0.41 0.39 0.37 0.33 0.30

wAPRA*: Unit Four-way Path Planning
Threads

w 1 2 4 5 7 8

1.1 0.94 1.51 1.96 1.88 1.72 1.68
1.2 0.87 1.38 1.78 1.69 1.57 1.50
1.4 0.55 0.90 1.20 1.11 1.08 0.96
1.8 0.51 0.66 0.57 0.48 0.50 0.40
3.0 0.57 0.59 0.39 0.31 0.36 0.27

wPBNF: Korf 100 15-Puzzle instances
Threads

w 1 2 4 5 7 8

1.4 0.79 1.50 2.02 2.42 3.02 3.27
1.8 0.71 0.90 1.62 1.82 1.85 2.10
2.0 0.51 0.88 1.68 1.86 1.64 2.09
3.0 1.01 0.77 1.17 1.00 1.05 0.97
5.0 0.56 0.60 0.76 0.72 0.67 0.64

wBFPSDD: Korf 100 15-Puzzle instances
Threads

w 1 2 4 5 7 8

1.4 0.87 1.12 1.52 1.61 1.92 1.98
1.8 0.53 0.83 1.16 1.07 1.40 1.27
2.0 0.60 0.71 0.94 0.92 1.00 0.95
3.0 0.47 0.58 0.64 0.55 0.55 0.49
5.0 0.38 0.46 0.42 0.40 0.36 0.32

wAPRA*: Korf 100 15-Puzzle instances
Threads

w 1 2 4 5 7 8

1.4 0.65 1.07 0.98 1.40 1.51 1.22
1.8 0.64 1.12 1.00 1.30 1.18 0.89
2.0 0.64 1.27 1.02 1.19 0.90 0.89
3.0 0.58 0.89 0.65 0.62 0.57 0.40
5.0 0.54 0.76 0.48 0.45 0.34 0.31

Figure 6: Speed-up over serial weighted A*.

see that all of the algorithms lose their advantage over wA*
as weights increase, presumably because the overhead of
threads and contention is great compared to the low number
of nodes expanded. It is interesting that wPBNF consistently



wPBNF Korf100 1.8wt 32min 3360nblocks

ti
m

es
 f

as
te

r 
th

an
 w

A
* 

lo
g

10
1

0

-1

wA* expansions log10

6543

wpbnf-1.4
wpbnf-1.8

Wwpbnf-2.0
wpbnf-3.0

Swpbnf-5.0

W

W

W

W

W

W

W

W

WW

W

W

W

W

W W

W

W

W

W
W

W

W

W

W
W

WW

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W
W

W

W

W

W

W

W

W

W

W

W

W

W W

W

W
W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W W W

W

W

W

W

WW W

W

W

W
W

W

S

S

S

S

S

S

S
S

S

S

S
S

S

S

SS

S

S

S

S

S S

S

S

S

S

S

S

S

SS

S

S

S

S

S

S

S

S

S
S

S

S

S

S

S

S

S

S

S
S

S

S

S

S

S

S

S

S

S

S
S

S

S

S

S

S

S

S

S

S

S

S
SS

S

S

S

S

SS

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

Figure 7: wPBNF speedup over wA* v.s. wA* expansions.

wPBNF: Easy Korf 15-Puzzle instances
Threads

w 1 2 4 8 16 32 64

1.0 1.21 2.26 4.44 8.72 13.9 17.1 7.68
1.4 0.72 1.44 2.75 5.09 8.07 9.52 2.55
1.8 0.69 1.06 1.79 3.03 3.52 2.98 1.05
2.0 0.58 1.28 1.63 2.61 3.10 2.62 0.85
3.0 1.61 1.81 2.12 2.66 2.72 1.90 0.71

Figure 8: Speedup over wA* of wPBNF on a Sun T5440.

performs better than wPRA* or wBFPSDD. Also, wPBNF
and wBFPSDD consistently improve as threads are added
for all but the largest weight values. wPRA* increases at
first, but its performance drops off after a few threads, much
like the results for optimal searches.

Figure 7 shows a comparison of wPBNF to weighted A*.
The points in this scatter plot represent time taken by wA*
divided by the time taken by wPBNF (at 8 threads with
3360 nblocks and 32 minimum expansions) on the y axis
and number of nodes expanded by wA* on the x axis. Each
different set of glyphs represents a different weight value
used for both wPBNF and wA*. The data in this figure
shows that, while wPBNF does not outperform wA* on eas-
ier problems, the benefits of wPBNF over wA* increase as
problem difficulty increases. The speed gain for the 1.4
weight value appears to increase with problem difficulty and
levels off just under 10 times faster than wA*. This behav-
ior is ideal since the machine used for this experiment had
eight cores. Speeds at greater weights do not reach 10 times
faster than wA*, however there are a few instances that seem
to have super linear speeds. These can be explained by the
speculative expansions that wPBNF performs. The poor be-
havior of wPBNF for easy problems is most likely due to the
overhead of the abstraction and contention. wPBNF outper-
forms wA* more often at low weights (where the problems
require more expansions) and less often at higher weights
(where the problems will require fewer expansions).

We are beginning to experiment with PBNF on the
SPARC architecture, using a Sun SPARC Enterprise T5440
with 4 1.2GHz T2+ processors (8 cores per processor, 8

threads per core), 64 GB of RAM. Our preliminary results
on some of the easiest Korf 15-puzzles using a Sun T5440
are given in Figure 8. This figure shows the speedup over
wA* of wPBNF (with 3360 nblocks and 32 minimum ex-
pansions per nblock) at various weights and threads. From
this data we can see that wPBNF continues to perform better
up to 32 threads at low weights. At 64 threads the perfor-
mance drops off. We expect that, as we learn more about
this platform, we will see better scalability and more of an
advantage over wA* at more threads.

Discussion

We presented empirical results for PRA*, BFPSDD, and
safe PBNF, testing their abilities to return optimal and
bounded suboptimal solutions. It is clearly shown that
PBNF outperforms the other parallel algorithms tested in all
cases. We also illustrated that PBNF can perform better than
weighted A* when returning bounded suboptimal solutions,
and that its advantages grow as threads are added and as
problem difficulty increases.

The PBNF algorithm outperforms BFPSDD because of
the lack of layer based synchronization and a better uti-
lization of heuristic cost-to-go information. Another reason
why PBNF may perform better is because a best-first search
can have a larger frontier size than the breadth-first heuris-
tic search used by the PSDD algorithm. This larger frontier
size will tend to create more nblocks which have nodes in
them. With more nblocks containing search nodes there will
be more disjoint duplicate detection scopes with open nodes
and, therefore, the possibility of increased parallelism.

Conclusions

We have presented Parallel Best-NBlock-First, a parallel
best-first heuristic search algorithm that combines the du-
plicate detection scope idea from PSDD with the heap of
sets and speculative expansion ideas from LA*. PBNF ap-
proximates a best-first search ordering while trying to keep
all threads busy. In an empirical evaluation on STRIPS
planning, grid pathfinding, and the sliding tile puzzle, we
found that the PBNF algorithm is most often the best among
those we tested across a wide variety of domains. We have
also demonstrated that PBNF, PRA* and BFPSDD can be
modified to use weighted heuristic values for suboptimal so-
lutions that can outperform their optimal counterparts and
can find solutions faster than weighted A* in some situa-
tions. Evidence that we present suggests that wPBNF can
be preferable to wA* for more difficult problems.

Acknowledgements

We gratefully acknowledge support from NSF grant IIS-
0812141, the DARPA CSSG program and helpful sugges-
tions from Jordan Thayer. Some results and algorithms dis-
cussed here are were presented by Burns et al. (2009).

References

Burns, E.; Lemons, S.; Zhou, R.; and Ruml, W. 2009. Best-
first heuristic search for multi-core machines. In Proceedings of



the 14th International Joint Conference on Artificial Intelligence
(IJCAI-09).

Edelkamp, S., and Schrodl, S. 2000. Localizing A*. In AAAI
2000, 885–890.

Evans, J. 2006. A scalable concurrent malloc(3) implementation
for freebsd. In Proceedings of BSDCan 2006.

Evett, M.; Hendler, J.; Mahanti, A.; and Nau, D. 1995. PRA* -
massively-parallel heuristic-search. Journal of Parallel and Dis-
tributed Computing 25(2):133–143.

Hansen, E. A., and Zhou, R. 2007. Anytime heuristic search.
JAIR 28:267–297.

Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A formal
basis for the heuristic determination of minimum cost paths. IEEE
Transactions of Systems Science and Cybernetics SSC-4(2):100–
107.

Haslum, P. 2000. Admissible heuristics for optimal planning. In
AIPS, 140–149.

Likhachev, M.; Gordon, G.; and Thrun, S. 2003. ARA*: Formal
analysis. Technical Report CMU-CS-03-148, Carnegie Mellon
University School of Computer Science.

Zhou, R., and Hansen, E. A. 2004. Structured duplicate detection
in external-memory graph search. In AAAI 2004.

Zhou, R., and Hansen, E. 2006. Breadth-first heuristic search. AI
170(4–5):385–408.

Zhou, R., and Hansen, E. A. 2007. Parallel structured duplicate
detection. In AAAI 2007.

Pseudocode

search(initial node)
1. insert initial node into open
2. for each p ∈ processors, threadsearch()
3. while threads are still running, wait()
4. return incumbent

threadsearch()
1. b← NULL
2. while not done
3. b← nextnblock(b)
4. exp← 0
5. while ¬shouldswitch(b, exp)
6. n← best open node in b
7. if n > incumbent then prune n
8. if n is a goal then
9. if n < incumbent then
10. lock; incumbent← n; unlock
11. else if n is not a duplicate then
12. children← expand(n)
13. for each child ∈ children
14. insert child into open of appropriate nblock
15. exp← exp + 1

shouldswitch(b, exp)
1. if b is empty then return true
2. if exp < min-expansions then return false
3. exp← 0
4. if best(freelist) < b or best(interferenceScope(b)) < b then
5. if best(interferenceScope(b)) < best(freelist) then
6. sethot(best(interferenceScope(b)))

7. return true
8. lock
9. for each b′ ∈ interferenceScope(b)
10. if hot(b′) then setcold(b′)
11. unlock
12. return false

sethot(b)
1. lock
2. if ¬hot(b) and σ(b) > 0
3. and ¬∃i ∈ interferenceScope(b) : i < b ∧ hot(i) then
4. hot(b)← true
5. for each n′ ∈ interferenceScope(b)
6. if hot(n′) then setcold(n′)
7. if σ(n′) = 0 and σh(n′) = 0
8. and n′ is not empty then
9. freelist← freelist \ {n′}
10. σh(n′)← σh(n′) + 1
11. unlock

setcold(b)
1. hot(b)← false
2. for each n′ ∈ interferenceScope(b)
3. σh(n′)← σh(n′)− 1
4. if σ(n′) = 0 and σh(n′) = 0 and n′ is not empty then
5. if hot(n′) then
6. setcold(n′)
7. freelist← freelist ∪ {n′}
8. wake all sleeping threads

release(b)
1. for each b′ ∈ interferenceScope(b)
2. σ(b′)← σ(b′)− 1
3. if σ(b′) = 0 and σh(b′) = 0 and b′ is not empty then
4. if hot(b′) then
5. setcold(b′)
6. freelist← freelist ∪ {b′}
7. wake all sleeping threads

nextnblock(b)
1. if b has no open nodes or b was just set to hot then lock
2. else if trylock() fails then return b
3. if b 6= NULL then
4. bestScope← best(interferenceScope(b))
5. if b < bestScope and b < best(freelist) then
6. unlock; return b
7. release(b)
8. if (∀l ∈ nblocks : σ(l) = 0) and freelist is empty then
9. done← true
10. wake all sleeping threads
11. while freelist is empty and ¬done, sleep
12. if done then n← NULL
13. else
14. n← best(freelist)
15. for each b′ ∈ interferenceScope(n)
16. σ(b′)← σ(b′) + 1
17. unlock
18. return n


