
Computationally Efficient Tiered Inference for Multiple Fault Diagnosis

Juan Liu, Lukas Kuhn, and Johan de Kleer
Palo Alto Research Center,
Palo Alto, CA 94304 USA

{jjliu, lkuhn, dekleer}@parc.com

Abstract

Diagnosing multiple-component systems is difficult and
computationally expensive, as the number of fault hy-
potheses grows exponentially with the number of com-
ponents in the system. This paper describes an efficient
computational framework for statistical diagnosis fea-
turing two main ideas: (1) structuring fault hypothe-
ses into tiers, starting from low cardinality fault as-
sumptions (e.g., single fault) and gradually escalating
to higher cardinality (e.g., double faults, triple faults)
when necessary; (2) at each tier, dynamically partition-
ing the overall system into subsystems, within which
there is likely to be a single fault. The partition is
based on correlation between the system components
and is dynamic: when a particular partition is ruled
out, a new one is constructed based on the updated be-
lief. When no viable partition remains, the search pro-
ceeds to the next tier. This approach enables the use of
single-fault diagnosis, which has only linear complex-
ity, to the subsystems avoiding exponential hypothesis
explosion. We demonstrate the concepts and imple-
mentation via examples and simulation. We analyze
the performance and show that for practical systems
where most components are functioning properly, the
proposed scheme achieves a desirable tradeoff between
computational cost and diagnosis accuracy.

1 Introduction

Troubleshooting a practical system to isolate broken
components can be difficult, as the number of fault
combinations grows exponentially with the number of
components. In diagnosis literature, various ideas have
been proposed to address the computational challenge.
The general diagnosis engine (GDE) work (de Kleer
and Williams 1987) finds minimal diagnoses, isolat-
ing not the complete fault combination, but a minimal
subset of broken components that can explain the ob-
servations. Another example is the production plant
diagnosis work (Kuhn and de Kleer 2008), which ex-
tends model-based diagnosis (Reiter 1987; de Kleer and
Williams 1987) to production systems such as food pro-
cessing plants, oil refineries, and printers. The diag-
nosis engine (Kuhn and de Kleer 2008) discriminates

Copyright c© 2009, Association for the Advancement of Ar-
tificial Intelligence (www.aaai.org). All rights reserved.

fault assumptions based on their complexity. Diagnosis
starts with simple fault assumptions (e.g., single, per-
sistent, and/or independent faults) for computationally
efficient diagnosis, and escalates to more complicated
fault assumptions (e.g., multiple, intermittent, and/or
interaction faults) when necessary. This progression of
diagnosis greatly reduces computation complexity.

The minimal diagnosis idea and the progressive di-
agnosis work are qualitative in nature. Can we extend
similar ideas from qualitative reasoning to statistical
inference? Can we perform Bayesian updates in a com-
putationally efficient manner? This are the questions
we address in this paper.

Statistical inference is now widely adopted in diag-
nosis. The basic idea is to evaluate hypotheses (fault
combinations) based on their probability given the ob-
servation data (Berger 1995). Mathematically, for any
hypothesis x in the hypotheses space X , we update its
probability via the Bayes rule:

p(x|o) = αp(o|x)p(x), (1)

where p(x) is the initial probability (prior) for the hy-
pothesis x, p(o|x) is the likelihood probability of observ-
ing o given that x is true, and α is the normalization
factor to let p(x|o) sum up to 1. The resulting p(x|o)
is the posterior probability that x is true given the ob-
servation o. The diagnosis that best explains the data
is the maximum a posterior (MAP) estimate

xMAP = arg max
x∈X

p(x|o). (2)

While Bayesian update offers a coherent and quan-
titative way of incorporating observation data, it faces
the same need to search through all hypotheses in X .
In practice, a system with M components has the hy-
pothesis space

X = {000000, 000001, . . . , 111111}

Each hypothesis x ∈ X is a bit vector, where i-th bit is
an indicator whether the i-th component has fault (0 for
not having fault, 1 for having fault). The computational
complexity of the Bayesian update is O(2M). When M
is large, the update is prohibitively expensive.

. . . .

A B C D ...
0 0 0 0 0
0 0 0 0 1

H
ypotheses

modules

. . . .

X0

X1

X2

partition into subgroups

organize into
tiers

Figure 1: Basic idea: (1) organize hypothesis into tiers
(along the vertical direction), and (2) partition compo-
nents into subgroups (along the horizontal direction),
for instance, AB are a group, and CD are a group.

In this paper, we propose two ideas to mitigate the
computational difficulty. The first is tiered inference, il-
lustrated in Sec. 2. The basic idea is to organize the hy-
pothesis space X into tiers with increasing fault cardi-
nality. Inference is restricted to lower tiers (fewer defec-
tive modules) until the lower tiers have been ruled out
by the observation data. This idea is implicit in many
diagnosis engines such as GDE (de Kleer and Williams
1987) and MBD (Thiebuax et al. 1996), but we de-
velop it as part of a more general framework. Our main
contribution is the second idea: a divide-and-conquer
strategy presented in Sec. 3. It partitions system com-
ponents into single-fault subsystems. This partitioning
enables utilizing single-fault diagnosis, which only has
linear complexity, to diagnosing a multiple-fault sys-
tem.

Figure 1 illustrates these basic concepts. In the dia-
gram, the hypothesis space X is represented as a ma-
trix, with columns representing components, and rows
representing the different fault assumptions. Organiz-
ing hypotheses into tiers is shown as dividing the hy-
pothesis into vertically stacked blocks. Inference starts
from the top block (no-fault tier), and progresses down
to the single-fault tier X1, then to the double-fault tier
X2, and so on. The second idea is to organize mod-
ules into groups, for instance, AB form a subsystem,
and CD forms a subsystem. This forms a horizontal
partition in the figure.

While partitioning a multiple-fault system into
single-fault subsystems is a neat idea, how to partition
is actually a tricky problem. We take a best-effort ap-
proach: given the posterior belief {p(x)}, we seek a par-
tition which results in subsystems that are single-fault
with maximum probability. Sec. 4 describes a compu-
tationally efficient greedy algorithm based on the in-

tuition that modules within a subsystem must be neg-
atively correlated so that the total number of faults
remains constant (single-fault). The partitioning idea
and algorithm are the main novelty of this paper.

Many diagnosis approaches have taken advantage of
the hierarchical structure of the system being diagnosed
(Pravan 2001) (Srinivas 1994). For example, all possi-
ble combinations of faults in a subsystem can be repre-
sented as a single component, as done in (Siddiqi and
Huang 2007). Similarly, if two distinct faults are in-
distinguishable they can be represented as one fault.
These approaches greatly reduce computational cost.
However, they depend on one single decomposition de-
termined a priori. The approach of this paper is quite
different: it dynamically constructs and modifies the
decomposition as diagnosis proceeds and is complemen-
tary to these fixed approaches.

Sec. 5 demonstrates the application of tiered inference
to production plant diagnosis. Consider a production
system, where raw material is transported through a se-
quence of modules (known as an “itinerary”) and mod-
ified to produce a product. At the end of an itinerary,
one observes a good product or a damaged product.
The product is damaged if any of the modules in the
itinerary malfunctions. Furthermore, damage caused
by a defective module cannot be repaired by subse-
quent modules. In this paradigm, diagnosis aims at
isolating broken modules based on the itineraries and
observed output. For this diagnosis problem, we ana-
lyze the tradeoff between computational cost and infer-
ence accuracy. While we use production plant diagnosis
as an illustration, the ideas presented in this paper are
more general and can be extended to other diagnosis
problems.

2 Tiered inference

To mitigate the computational difficulty, we further ad-
vance our prior work in (Kuhn and de Kleer 2008) and
propose the notion of tiered inference. The basic idea
is to restrict posterior computation to a subset of hy-
potheses, and broaden the scope of inference only when
necessary. In the tiered inference framework, we parti-
tion the overall hypothesis space into tiers, i.e.,

X = X0 ∪ X1 ∪ X2 ∪ · · · ∪ XM , (3)

where each tier Xj is defined as the collection of hy-
potheses assuming a total of j faults in the system, i.e.,
hypotheses with cardinality j (

∑

i xi = j). Once the
system is observed to be malfunctioning, the need for
diagnosis arises. Inference starts with the single-fault
tier X1, assuming that the system has only one fault.
At this tier, the inference only updates the posterior for
the hypotheses in X1 and ignores all other hypotheses.
This drastically reduces the computational complexity
from O(2M) to O(M). However, the single-fault as-
sumption is an approximation, as the system can have
multiple faults. When a conflict is detected, i.e., all the
hypotheses in X1 conflict with the observation data, we
escalate the inference to the next tier X2, assuming a

total of two faults in the system. The inference then
updates all hypotheses in X2. The process repeats until
observation data or the hypothesis space is exhausted.

Before diving into technical details, we first provide
some intuition using an example. Figure 2 shows the
computation structure in the tiered inference frame-
work. The hypothesis space X is partitioned into non-
overlapping tiers X1,X2, . . . ,XM as shown in Figure 2a.
Figure 2b shows the computation in the tiered inference
algorithm. Imagine a sequence of observations as fol-
lows:

1. The first batch of observations is used to update all
hypotheses in X1, hence the computation is linear in
|X1|. In Figure 2b, this is shown as vertical solid lines
in first tier (the upper-left corner). The length of the
lines symbolizes the amount of computation, in this
case proportional to the size of X1.

2. The last observation of the first batch rules out all
hypotheses in X1. In this case, we are forced to es-
calate to the double tier X2. The observations now
need to be re-applied. This corresponds to the solid
lines in the second tier. The computation is linear in
|X2|.

3. The second batch of observations are applied to all
hypotheses in X2. The computation is shown as the
dashed lines in the second tier.

4. The last observation of the second batch further rules
out all hypotheses in X2. Now we escalate to X3

and re-apply all the previous observations (solid and
dashed lines in the third tier). As more observations
are accumulated, the update computation (dotted
lines in the figure) is restricted to X3.

In contrast, Figure 2c shows the computation where all
observations are applied to all hypotheses. Notice that
the total vertical lines are much shorter in Figure 2b
than in Figure 2c. The computational savings are clear.
The savings are primarily due to the fact that the higher
tier hypotheses are not updated until necessary.

In this tiered inference framework, what is the price
to pay in return for the inference computational sav-
ings? First bear in mind that this is an approxima-
tion — we have ignored the higher tiers when the lower
tiers remains consistent with the observations. There-
fore tiered inference loses optimality, for instance, the
maximum a posterior (MAP) diagnosis is only optimal
within the tiers that had been worked on. One can no
longer claim optimality in the overall hypothesis space.
Secondly, the tiered inference framework needs to store
all past observations. In the case where the current tier
is ruled out, the past observations will be re-applied
to the new tier. This means the system should have
enough memory. The comparison is as follows: If the
computation is done sequentially each time a new ob-
servation is made, the memory storage requirement for
updating the whole hypothesis space is 2M — only the
posterior probabilities need to be stored, the observa-
tion itself does not need to be stored. In contrast, the

X 1

X

X

X

2

3

M

(a) (b) (c)

Figure 2: Computational structure: (a) partition hy-
pothesis space into tiers, (b) computation in the tiered
inference framework, (c) computation in the whole hy-
pothesis space.

memory requirement for the tiered inference method is
|Xj |+O(|observations|), i.e., we need to store the prob-
ability of hypotheses in the current tier, as well as all
observations in the past. When the observation history
is long, the memory requirement is high. In essence,
the tiered inference framework reduces the burden on
computation, but shifts the burden to memory storage.
In practice one may be able to compress the observation
history into some aggregated form.

It is important to characterize when this tiered in-
ference framework is advantageous. In practical sys-
tems, most modules are likely to be good, and the total
number of faults is likely to be small. In this case,
the single-fault tier can be much more probable than
the double-fault tier, and even more so than the triple-
fault tier, and so on. Hence it makes sense to focus
computational resources to the single-fault tier, and es-
calate to the higher tiers only when necessary. The
higher tier hypotheses are safely ignored because they
have minimal probability to start with. The compu-
tational savings are tremendous. On the other hand,
a pathological case would be the situation where each
module has a high (close to 1) probability of having
fault. From the computational point of view, starting
from the low cardinality tiers is less attractive, since the
low cardinality hypotheses are likely to be ruled out by
the observations, and the reduction in inference com-
putation is less significant. Furthermore, as we shall
see shortly, the tiered inference framework will incur an
overhead cost of defining the next subset or tier of hy-
potheses to work on every time an existing tier is ruled
out. This overhead cost will be high in this patholog-
ical case, making the tiered inference framework less
attractive. On the flip side, this pathological case is
rare.

3 Partition into single-fault

subsystems

Diagnosing a single-fault is computationally efficient.
If a M -module system is assumed or known to have
a single-fault, we only need compare M hypotheses,
rather than the 2M hypotheses in the multi-fault case.
Given that single-fault inference is computationally effi-
cient, it would be nice to apply this technique whenever
applicable. This motivates us to find single-fault sub-
systems although the overall system can have multiple
faults.

The tiered inference idea in the previous section sug-
gests that we can use single-fault diagnosis in the first
tier X1 until data conflict arises. Figure 3 shows a sim-
ple example system with only 4 modules (ABCD). Fig-
ure 3a arranges the hypotheses based on their cardinal-
ity. This defines the tiers X0, X1, X2, and so on. In
the tiered inference framework, we start from X0 and
X1. When data suggests that the system (ABCD) has
more than one faults, the tiered inference escalates to

the double-fault tier, X2
△
= {x :

∑

i xi = 2}, as shown
in Figure 3b. At this point, we know that the overall
system (ABCD) has at least two faults, but it is possi-
ble that subsystems, for instance, (AB) and (CD) each
has a single fault. In this case, we can still apply single-
fault diagnosis to subsystems (AB) and CD separately
to isolate the faults. The computation is still efficient.
With this partition, the update is restricted to hypothe-
ses into the subset X t = {x | xA+xB ≤ 1, xC+xD ≤ 1},
shown as the hypotheses marked with check-marks in
the top box in Figure 3c. The computation is restricted
to X t, hence fast.

The question now is to seek a good partitioning such
that the partitioned subsystems are most likely to have
single fault. Formally, the partitioning problem is as
follows: given an overall system S containing modules,
the partitioning divides S into two groups S1 and S2

such that S1 ∪ S2 = S and S1 ∩ S2 = ∅. For instance,
in the example in Figure 3, S1 = (AB) and S2 = (CD)
is a valid partition. Note that this partitioning is not
unique: we can partition (ABCD) into {(AB), (CD)}
(top box in the figure), or {(AD), (BC)} (second box
in the figure)1 or other combinations. The next section
addresses the question of which partition to use. The
basic idea is to examine the correlation between system
components to find those subsets which collectively con-
tain only a single fault with maximum probability.

Given a subsystem partition and the corresponding
subset of hypotheses X t assuming at most a single fault
within each subsystem, the algorithm restricts the pos-
terior updates to the subset, until the observation data
conflicts with X t. In this case, we backtrack to the ex-
isting tier X2 and find a more suitable partition. When
the whole tier X2 is ruled out by observation, we esca-

1We use the bracket to denote a group within which there
is believed to be only single-fault, and the curly bracket for
a collection of groups.

X0

A B C D

 0 0 0 0
 0 0 0 1
 0 0 1 0

 1 1 0 1
 1 1 1 0
 1 1 1 1

 0 1 0 0
 1 0 0 0

 1 0 1 1
 0 1 1 1

A B C D

A B C D

 0 1 0 1
 0 1 1 0
 1 0 0 1
 0 0 1 1

 1 1 0 0
 1 0 1 0

 0 1 0 1
 0 1 1 0
 1 0 0 1
 0 0 1 1

 1 1 0 0
 1 0 1 0

if assuming
A+B<=1
C+D<=1

A+D<=1
B+C<=1

if assuming

other partitioning possible

.....

 0 1 0 1
 0 1 1 0
 1 0 0 1
 0 0 1 1

 1 1 0 0
 1 0 1 0

X2

X2

(a) (b) (c)

X0

A B C D

 0 0 0 0
 0 0 0 1
 0 0 1 0

 0 1 0 1
 0 1 1 0

 1 1 0 1
 1 1 1 0
 1 1 1 1

 0 1 0 0
 1 0 0 0

 1 0 0 1
 0 0 1 1

 1 0 1 1
 0 1 1 1
 1 1 0 0
 1 0 1 0

X1

X2

X3

X4

X1

X2

Figure 3: Example of tiered inference: (a) hypothesis
space and tiers; (b) escalating to tier X2; (c) partition
X2 into two groups, each with (at most) a single fault:
top box — partition into {(AB), (CD)}; second box —
partition into {(AD), (BC)}. Other partition are also
possible.

late to the third tier X3 (the collection of hypotheses
with 3 fault modules) and partition the overall system
into three subsystems, each of which hopefully contains
a single fault. The whole process repeats as more ob-
servations are made.

4 How to partition

4.1 Criterion for partitioning

As mentioned in the previous section, when the single-
fault assumption fails, we escalate to X2 and assume
that the overall system has two faults. We partition the
M -module system into two subsystems, or two groups,
within which there is likely to be at most one fault.

There are many ways of partitioning a system into
two groups. For example, (ABCD) can be partitioned
into C1

4 +C2
4/2 = 7 ways. Which one is more preferable?

What optimality criteria should we use? The intuition
is clear: we would like to make sure that the single-fault
assumption for each subsystem is true with maximal
probability.

Criterion: We favor the partition (of the module
set) which captures maximal probability mass, i.e.,
maximizing the probability

∑

x∈X t p(x).

For instance, in Figure 3, partitioning into sub-
systems {(AB), (CD)}, shown as the top block
on the right hand side, captures hypotheses
{0101, 0110, 1001, 1010}. There are two hypotheses
{0011, 1100} that violates the single-fault assumption
in (CD) and (AB) respectively. If the probabilities
p(0011) and p(1100) are small, this means (AB) and
(CD) are likely to have single-fault, and the partition
is advantageous. On the other hand, if p(0011) and
p(1100) are big, this mean the single-fault subsystem
assumption is questionable. To compare the two parti-
tions {(AB), (CD)} and {(AC), (BD)}, we only need
to compare the probability mass of missed hypotheses,
in this case, p(0011) + p(1100) and p(0110) + p(1001).

The partition with a lower probability mass is more
favorable.

4.2 A partitioning algorithm

Now with the optimality criterion, how should we de-
sign the partitioning algorithm? The straightforward
solution is to compare all partitions and see which par-
tition captures the largest probability sum, but this is
too expensive with complexity 2M . Can we find a parti-
tioning which is good (of course suboptimal) with much
less computation time? We first discuss the case of par-
titioning into two groups.

Intuition: For a group of modules to have a
single fault, i.e.,

∑

i∈P xi = 1, the xi’s would have
to be negatively correlated.

In other words, when one member xi increases, there
must be another xj which decreases in order to main-
tain the constant sum. This means we should look for
modules with significant negative correlation and group
them into a group. In contrast, if two members are posi-
tively correlated, i.e., when one increases/decreases, the
other one increases/decreases too, then these two mod-
ules should not be grouped into the same group.

Using this heuristics we propose an algorithm, which
examines the correlation coefficient between modules.
The correlation coefficient is defined as

ρ(i, j)
△
=

Cov(xi, xj)

σiσj

=
E [(xi − µi)(xj − µj)]

σiσj

(4)

For any two modules i and j, xi and xj are the in-
dicators of their respective health (0 if the module is
good, and 1 if the module is bad), µi and µj are the
respective mean of xi and xj , and σi and σj are their
respective standard deviations. The correlation coeffi-
cient ρ(i, j) measures the dependency between xi and
xj . It has the following properties: (a) −1 ≤ ρ ≤ 1;
(b) the sign of ρ shows whether the two random vari-
ables are positively or negatively correlated; (c) ρ = 1
if xi = xj , and ρ = −1 if xi = −xj ; (d) symme-
try: ρ(i, j) = ρ(j, i). Given a set of hypotheses {x}
and their respective probability values, one can easily
compute the mean {µi}i=1,...,M , the standard deviation
{σi}, the covariance matrix {Cov(xi, xj)}i,j=1,...,M , and
the correlation coefficient ρ(i, j) for any i and j. The
computational complexity is linear in the number of hy-
potheses.

The algorithm is the following:

1. From the hypotheses and their respective probabili-
ties, evaluate the correlation coefficient ρ(i, j) for any
(i, j). The result is a correlation coefficient matrix of
size M × M .

2. Find the two group seeds i1 and i2 as the module
which have the highest correlation E(x2

i) values. This
indicates that these two modules are more likely to
have a fault than the others. In the case of a tie,

we select seeds randomly. The two groups “grow”
around the seeds. Previously we have used a random
selection scheme: randomly select the first seed i1,
and then find the second group seed i2 as the module
which has the highest correlation with i1. Since these
two are positively correlated, they should not be in
the same group. The max-correlation scheme works
best in our simulations.

3. For any remaining module j, compare the correla-
tion coefficients ρ(i1, j) and ρ(i2, j). The module is
assigned to group 1 if ρ(i1, j) < ρ(i2, j) and to group
2 if otherwise.

Computational complexity — The computation is
primarily on the computation of {ρ(i, j)}. The com-
plexity if O(M2 · |# of hypotheses|) — there are M2

correlation coefficients, and computing each need to go
through all hypotheses in the current tier. In contrast,
the “oracle” scheme of comparing all partitioning com-
binations has complexity O(2M · |# of hypotheses|).
Performance — Despite its simplicity, this greedy
algorithm works well. In our simulation, we repeated
for a large number (100) of random simulations, and
compared this partitioning scheme against the enumer-
ation of 2M possible partitions. Our partition selection
scheme has the following performance:

• Against the missing probability metric: our parti-
tion selection method is at about the 85% percentile
among all 2M partitions, i.e., around 15% partitions
are better than our solution, and 85% are worse. But
the computational complexity is much less.

• Compared to the “oracle” — the partition with small-
est missing probability, our partition scheme pro-
duces a slightly larger missing probability, on average
3–5% larger.

Example — Consider a 5-module production system
(ABCDE). The observations are as follows: (1) ob-
serving a fault with itinerary (ABCDE); (2) observing
a fault with itinerary (ABC); (3) observing a fault with
(DE). At this point, the single fault assumptions are
eliminated. We assume each module is defective with a
prior probability r = 0.1. We further assume all faults
are persistent. In this case, the covariance coefficient
matrix is:

ρ =











1 −0.5 −0.5 0 0
−0.5 1 −0.5 0 0
−0.5 −0.5 1 0 0

0 0 0 1 −1
0 0 0 −1 1











(5)

The partitioning algorithm selects B and D as group
seeds and partitions modules into two subsystems
(ABC) and (DE), which agrees with our intuition.

A similar problem is optimal number partitioning
(Korf 1995), which partitions a set of integer numbers
into two groups with equal sums. However, there is
a fundamental difference: the optimal number parti-
tioning is deterministic, while our partitioning problem

is inherently statistical and must work with uncertain-
ties. As a result, the algorithms for the two problems
are quite different.

4.3 Preparing probability distribution for
partitioning

The algorithm above requires the computation of cor-
relation coefficients {ρ(i, j)}i,j=1,2,...,M . They are com-
puted based on a set of hypotheses and their respective
probability values. Should this hypothesis set be the
entire hypothesis space (X , size 2M)? or a smaller sub-
set? We argue that it may be sufficient to compute the
distribution for a subset. For instance, if the first tier
(the single fault hypotheses tier X1) is ruled out, and
we must escalate to double faults, we only need to ex-
amine the double fault hypothesis tier X2, since other
hypotheses are out of the representation of two-group
partition anyway. Therefore the other hypotheses will
not be covered by the partitioning. In our tiered in-
ference framework, we use tier X2 for partitioning into
two groups. Likewise, if X2 is ruled out by observations,
we escalate to the triple-fault tier X3, and partition the
M -module system into three groups. The partitioning
is computed based on the probability values of all hy-
potheses in X3.

The algorithm described above can be modified to
partitioning components into any number of groups.
The extension is straight-forward: we just select more
group seeds in Step 2, and let the seeds grow into
groups.

5 Implementation and simulation

As an example to illustrate the advantages and draw-
backs of the tiered inference approach, we consider di-
agnosis of a production plant. Assume that modules
are independent, and each module is defective with a
known prior probability r. All faults are intermittent,
i.e., a defective module damages any product passing it
with a known probability q, known as the intermittency
probability. In practice, each module may have its own
r and q, different from the others. In our implementa-
tion, for simplicity, we assume that all modules share
the same r and q value.

Mathematically, we have the prior probability

p(x) =
(

r
P

i
xi

)

·
(

(1 − r)M−
P

i
xi

)

.

Given an itinerary w, the likelihood of observing an
output o (0 for good, and 1 for damaged) is

p(o|x) =

{

(1 − q)k(w,x) if o = 0
1 − (1 − q)k(w,x) if o = 1

Here the exponent k(w,x) is the number of defective
modules involved in the production itinerary w given
the hypothesis x. This is actually quite intuitive: a
product is undamaged only when none of the defec-
tive modules malfunctions, hence the probability is the
module-wise good probability (1−q) raised to the power
k(w,x).

Now with prior and likelihood probabilities specified,
we perform Bayesian updates (Equation 1). Two diag-
nosis schemes are compared: (a) a baseline scheme ap-
plying all observations sequentially to update the pos-
terior belief p(x|o) for all x ∈ X that has not been ruled
out by previous observation data; and (b) the tiered in-
ference scheme described in Secs. 2 – 4 . To evaluate
the performance, we simulate 300 random trials, each
with an observation sequence of 400 randomly gener-
ated production itineraries and corresponding outputs.
Performance are assessed based on cost and accuracy:

• Computational cost: for the baseline scheme, compu-
tational cost is measured as the accumulative number
of posterior updates, i.e., how many times (Equa-
tion 1) is executed. For tiered inference, the cost is
the sum of two parts: (i) the inference cost, i.e., the
number of posterior updates, and (ii) the overhead
cost of partitioning modules into subsystems, mea-
sured as the number of hypotheses sieved through to
compute the correlation coefficient (Equation 4). Ta-
ble 1 reports the two terms, separated by a “;” in the
third column.

• Diagnosis accuracy, measured as the total number of
bits that xMAP differ from the ground truth. Ideally,
if xMAP recovers the ground truth, this term should
be 0. However, this is often not achieved, even in the
baseline inference scheme. This is due to the fact that
the observations may not be sufficient, for instance, if
some defective modules are never used in production,
and/or the faults are intermittent, hence the defects
are never observed.

Table 1 reports the results for a 10-module produc-
tion system, averaged over 300 random trials. Each
row corresponds to a value of r, ranging from 0.05 to
0.9. Small r implies a healthy system, while r = 0.9
corresponding to an extremely shaky system where all
modules are likely to fail. We use the extremes to pro-
vide insights. Note the following:

(1) The computational cost saving using the tiered
inference scheme is significant. For instance, with r =
0.05, the tiered inference scheme has a computation cost
less than 1% of the baseline scheme. With r = 0.9,
the tiered inference computation is around 10% of the
baseline computation.

(2) The baseline scheme is on average more accurate
than the tiered inference. This is expected, since the
tiered inference is an approximation.

(3) Tiered inference is most advantageous when r
is small. The inference accuracy is almost as good as
the baseline scheme for r ≤ 0.2, and the computation
cost is 1–2 magnitudes order lower. This shows the
benefit of tiered inference. The good performance is
not surprising, as a system with small r is what tiered
inference was originally designed for.

(4) As r increases, tiered inference incurs a increas-
ingly heavy partitioning overhead cost (second num-
ber in the third column). This is due to the fact that
the system has more defective modules, and the single-

Computation cost Diagnosis accuracy
baseline tiered baseline tiered

r = 0.05 285779.7 2268.5; 63.3 0.03 0.03
r = 0.1 265003.1 2051.9; 448.3 0.17 0.13
r = 0.2 236468.3 2705.2; 1435.7 0.47 0.59
r = 0.5 175757.8 6293.7; 4610.0 1.51 2.36
r = 0.9 141973.8 7875.2; 6470.0 1.16 5.07

Table 1: Tradeoff between computational cost and diagno-
sis accuracy. This table is generated assuming the intermit-
tency probability of q = 0.1. The second column reports
computation cost of the baseline scheme measured as the
number of hypotheses updated; the third column reports
the computation cost for tiered inference for Bayesian up-
date and partitioning overhead, and the last two columns re-
port diagnosis accuracy of the two schemes, measured as the
number of bits that MAP estimate differs from the ground
truth.

fault assumption within subsystems is often ruled out
by observation data. In this case, the partitioning op-
erations are frequently repeated. The overhead cost
makes computational savings less dramatic. Further-
more, tiered inference becomes less accurate. For in-
stance, in the last row (r = 0.9), the tiered inference
diagnosis has roughly 5 bits flipped. It misses to de-
tect 5 defective modules. In comparison, the baseline
has 1.16 bits flipped on average. Note that this is due
to their different strategies: the baseline scheme seeks
exact inference and optimal diagnosis, while tiered in-
ference favors low-cardinality diagnosis. Tiered infer-
ence stays at lower tiers as long as the lower tiers can
explain the data. This is similar to a minimal diagno-
sis: the minimal candidate set can be quite different
from the underlying ground truth, especially when the
faults are intermittent and the number of observations
are limited.

6 Conclusion

This paper has presented a new framework for effi-
ciently computing multiple fault diagnoses. This frame-
work introduces the generic notion of tiered inference
which focuses search and inference on the set of hy-
potheses most likely to contain the fault(s). Past
approaches which focus on most probable, subset-
minimal, or minimum cardinality approaches are all
instances of the more general tiered approach. In ad-
dition, this paper introduced the notion of partitioning
the modules such that efficient, linear, single fault infer-
ence can be used (and never requires the usual multiple-
fault inference scheme). By performing single fault di-
agnosis on each partition, the potential computational
inference on each partition is avoided. For smaller car-
dinality diagnoses, we believe the inference saving out-
weighs the cost of computing partitions (including re-
computing partitions when they are discovered to be
unsuccessful).

References

Berger, J. O. 1995. Statistical Decision Theory and
Bayesian Analysis. Springer Verlay, New York.

de Kleer, J., and Williams, B. C. 1987. Diagnosing
multiple faults. Artificial Intelligence (32):97–130.

Korf, R. 1995. Optimal number partitioning. Techni-
cal report, also available at ftp://ftp.cs.ucla.edu/tech-
report/1995-reports/950062.ps.Z.

Kuhn, L., and de Kleer, J. 2008. An integrated ap-
proach to qualitative model-based diagnosis. In Qual-
itative Reasoning Workshop (QR 2008).

Pravan, G. 2001. Hierarchical model-based diagno-
sis. In Proc. International Workshop on Principles of
Diagnosis (DX).

Reiter, R. 1987. A theory of diagnosis from first prin-
ciples. Artificial Intelligence 32(1):57–96.

Siddiqi, S., and Huang, J. 2007. Hierarchical diagnosis
of multiple faults. In Proceedings of IJCAI.

Srinivas, S. 1994. A probabilistic approach to hierar-
chical model-based diagnosis. In Proc. Conference on
Uncertainty in AI (UAI), 538–545.

Thiebuax, S.; Cordier, M.; Jehl, O.; and Krivine, J.
1996. Supply restoration in power distribution sys-
tems – a case study in integrating model-based diag-
nosis and repair planning. In Prof.8th International
Workshop on Principles of Diagnosis (DX).

