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Abstract

The lex leader method for breaking symmetry in CSPs
typically produces a large set of lexicographic ordering
constraints. Several rules have been proposed to reduce
such sets whilst preserving logical equivalence. These
reduction rules are not generally confluent: they may
reach more than one fixpoint, depending on the order of
application. These fixpoints vary in size. Smaller sets
of lex constraints are desirable so ensuring reduction
to a global minimum is essential. We characterise the
systems of constraints for which the reduction rules are
confluent in terms of a simple feature of the input, and
define an algorithm to determine whether a set of lex
constraints reduce confluently.

Introduction

Constraint models often contain symmetries, partition-
ing the set of assignments into equivalence classes.
Symmetries can be exploited by restricting search to
one member of each class (symmetry breaking), dramat-
ically reducing search. A commonly-used symmetry-
breaking technique adds constraints to the model that
break symmetries statically. Crawford et al ’s lex leader
method (Crawford et al. 1996) adds a lexicographic
ordering constraint (hereafter, lex constraint) per sym-
metry to allow only one element of each equivalence
class.

The drawback of this approach is that many lex con-
straints may be required. Symmetries are captured us-
ing the mathematical formalism of a group. A group
on n points can have up to n! elements, requiring n!
lex constraints. A special case was identified in (Puget
2005), where each variable must be assigned a distinct
value, in which the set of ordering constraints collapses
to just n − 1 binary inequalities. The papers (Frisch
and Harvey 2003), (Öhrman 2005) and (Grayland et
al. 2009) define rules for the reduction of a set of lex
constraints to a smaller (in both arity and number), but
logically equivalent, set without the alldifferent con-
straint. The advantage of this reduction method over
other similar static methods is that the reductions may
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be applied to any group, producing a new set of lex con-
straints. In (Luks and Roy 2004) the lex constraints are
described as Boolean formulae, and redundant clauses
are pruned; this is extended in (Roy 2007). Here the
groups considered are initially bounded to have orbits
of size 2, and extensionally to any orbits with some
maximum size c (a fixed constant). Since the resulting
constraints are not lex constraints and an efficient prop-
agation algorithm has not yet been discussed, this paper
continues to advance lex constraint reduction method.

In (Grayland et al. 2009) it is shown that a smaller
number of equivalent lex constraints produces faster
solve times and uses less memory in search when com-
pared to a larger set. At this time it was unknown
whether various complete reductions of the same set
of lex constraints were possible so the paper requires
complex proofs to show that each set of constraints dis-
cussed are the minimum reduction, and not some local
minimum. This process is time consuming but was nec-
essary in order to best utilise the time savings offered
by a reduced set of ordering constraints.

This paper shows that there exist nonconfluent sys-
tems of lex constraints even when the symmetry group
is transitive. Hence, the final set can vary according
to the order of application of the rules. We charac-
terise the systems of lex constraints for which the re-
duction rules are confluent in terms of a simple feature
of the input lex constraints named ‘blocks’. Using this
characterisation it is possible to determine a minimum
reachable fixpoint for some commonly occurring infinite
families of groups without the need for complex proofs.
It also goes some way towards directing reductions in
the future by highlighting areas where divergence will
occur in nonconfluent systems.

Background

Rules 1 and 2 were introduced in (Frisch and Harvey
2003) to reduce the number and arity of lex constraints
whilst maintaining logical equivalence. Rule 3, which
supercedes and is stronger than Rules 1 and 2, is de-
fined in (Öhrman 2005). Let α, β, γ, and δ be strings of
variables, and x and y be individual variables.

1 If α = γ entails x = y then a constraint c of the form



αxβ ≤lex γyδ may be replaced with αβ ≤lex γδ.
2 If C = C ′ ∪ {αx ≤lex γy} is a set of constraints, and
C ′ ∪ {α = γ} entails x ≤ y, then C may be replaced
with C ′ ∪ {α ≤lex γ}.

3 If C is a set of constraints of the form C ′∪{αxβ ≤lex

γyδ}, and C ′∪{α = γ} entails x = y (or C ′∪{α = γ}
entails x ≤ y where |β| = 0), then C may be replaced
with C ′ ∪ {αβ ≤lex γδ}.

Definition 1 Let α, β, γ, and δ be strings of variables,
and x and y be individual variables. In a lex constraint
of the form {αx ≤lex γy}, the pair x ≤ y is said to be
the least significant.
Definition 2 Examining the pair of variables x ≤ y of
a lex constraint c from a set of constraints C, we say
that the support required to remove x ≤ y is the set of
pairs C \ c and the more significant pairs from C that
entail x ≤ y.

Rule 3 extends the previous Rules by allowing both
the consideration of all pairs of variables in any one lex
constraint, provided by Rule 1, and the implications de-
rived from considering the entire set of lex constraints,
provided by Rule 2. Unfortunately the support required
for removal of the least significant pair remains essen-
tially different from that required for the removal of any
other pair. Whilst we can remove any least significant
pair in a lex constraint by showing that it is always less
than or equal at the time it is considered, we must show
that any other pair is equal at the time it is considered
in order to remove it. It is therefore more convenient
to work with Rule 2 and a new Rule 3′:

3′ If C is a set of constraints of the form C ′∪{αxβ ≤lex

γyδ}, and C ′ ∪ {α = γ} entails x = y, then replace
C with C ′ ∪ {αβ ≤lex γδ}.
As an example of Rule 1, consider a constraint c:

x1x2 ≤lex x2x1. To ensure that c is satisfied we need
only compare a pair of variables if each pair of more
significant variables are equal. If x1 = x2 then trivially
the second pair must be equal. Therefore, by Rule 1 we
need only consider the first pair of variables, reducing
c to x1 ≤ x2 without modifying the set of solutions.

For Rule 2 we can also use the rest of the constraints
for the support to remove our pair under consideration.
Consider the two constraints x1x2x4 ≤lex x2x3x5 and
x1x4 ≤ x3x5 where we are attempting to remove the
bold pair x4 ≤ x5. We first assume x1 = x2 and x2 = x3

since the least significant pair in this constraint will only
be used if all more significant pairs are equal. Using
these assumptions we can see that the first pair of the
other constraint, x1 ≤ x3 is equal. This means that
x4 ≤ x5 is active in that constraint. We can therefore
say that x4 ≤ x5 in the first constraint is entailed and
it can be removed by Rule 2.

Rule 3′ generally requires a little more reasoning so
an example of this in action is included in more detail
later in the proof of Theorem 1.

It was demonstrated in (Grayland et al. 2009) that
large sets of lex constraints require a longer solve time

than equivalent smaller sets therefore it is desirable to
reduce a large set as far as possible. To do so, the
reduction rules are applied until a fixpoint is reached.
Definition 3 A reachable fixpoint for a set C of lex
constraints is a set of lex constraints produced by re-
moving pairs from C using Rules 2 and 3′ such that no
further applications of Rules 2 and 3′ are possible.

However, the reduction rules are not, in general, con-
fluent (Grayland et al. 2009). This means that there
may be a number of possible reductions each resulting
in a differing solve time.
Definition 4 A terminating rewriting system is con-
fluent if the rewrite rule reaches the same fixpoint irre-
spective of the order in which they are applied.

More details on the extensive research already com-
pleted in other fields into confluence can be found in
(Baader and Nipkow 1998).
Definition 5 A group of permutations of X is transi-
tive if every point in X can be mapped to any other.

The proof of nonconfluence in (Grayland et al. 2009)
relied on a set of lex constraints derived from an in-
transitive group of symmetries. For this paper we are
more interested in transitive groups. Although intransi-
tive group symmetries appear in CSPs, it is much more
common to find transitive group symmetries. For ex-
ample, the symmetries of a set or a multiset are transi-
tive. Furthermore every intransitive group is composed
of smaller transitive groups.

Rule 1 is confluent, see (Grayland et al. 2009). For
the remainder of the paper we utilise Rule 1 as a pre-
processing step to further reduction. On the remaining
constraints we will use Rule 2 and 3′ for reduction.

Every permutation can be written as a product of
disjoint cycles. Consider the list notation permutation
f := [C,A, F,D,G,B,H,E]. In cycle notation each
point goes to the next one in the cycle, and the last
point in the cycle is mapped to the first. Fixed points
are omitted, so f = (ACFB)(EGH).

Confluence in Lex Leader Reduction
Rules 2 and 3′ are not confluent when applied to ar-
bitrary sets of lex constraints, or to sets of constraints
produced by groups that cannot map any variable to
any other (Grayland et al. 2009). We now show that
the same holds even for transitive groups.
Theorem 1 There exist lex constraints for a transitive
group that are not confluent for Rules 2 and 3′.
Proof Let G be TransitiveGroup(6,6) in GAP’s li-
brary (Conway, Hulpke, and McKay 1998; GAP 2007),
permuting A,B,C,D,E, F . The group elements are:

(), (CF ), (AEC)(BFD), (AECDBF ), (AD)(CF ),
(ACBDFE), (BE)(CF ), (AEFDBC), (ACE)(BDF )

(AEF )(BCD), (ACEDFB), (ACB)(DFE), (AD),
(ABFDEC), (ABF )(CDE), (AFBDCE), (BE),

(AFE)(BDC), (AD)(BE), (AFB)(CED), (AFEDCB),
(ABC)(DEF ), (ABCDEF ), (AD)(BE)(CF )



The group contains 24 elements, but using Rules 2 and
3′ we reduce the full set of lex constraints for G to:

(1) ABD ≤lex BCE, (2) C ≤lex F,
(3) B ≤lex E, (4) A ≤lex D,

(5) ABDE ≤lex CAFD, (6) AB ≤lex CA

Pairs B ≤ A in (5) and (6) can both be removed.
Method 1: From (5) by Rule 3′, see Figure 1. As-

sume A = C, then (6) gives B ≤ A. Since (1) states
A ≤ B, we deduce A = B, and remove B ≤ A from (5).
We then reach a fixpoint (1), (2), (3), (4), (6), ADE ≤lex

CFD.
Method 2: From (6) by Rule 2,see Figure 1.

Assume A = C, then (5) gives B ≤ A, and the second
pair of (6) can be removed. After this (6) is now equal
to the first pair of (5), and so we remove all of (6) by
Rule 2, giving a new fixpoint, (1), (2), (3), (4), (5). 2

It was previously known that Rule 3′ could remove
pairs of variables that Rule 2 cannot remove (Öhrman
2005), but only when applied to sets of lex constraints
that are not reduced from the full set for some group.

Corollary 1 There exists a (transitive) group whose
full set of lex constraints contains pairs which can be
removed by Rule 3′ but not Rule 2.

Activation Graphs and Confluence
We now characterise the features of lex constraints that
make Rules 2 and 3′ non-confluent. In the set of lex con-
straints in the proof of Theorem 1, nonconfluence arises
because the pair B ≤ A occurs in two constraints. Each
copy of this pair can remove the other, but nothing can
remove both of them. In this section we prove that
this is essentially the only way in which sets of lex con-
straints can be nonconfluent under the action of Rules
2 and 3.

Before characterising confluence, we need a precise
understanding of which pairs of which constraints are
used by Rules 2 and 3′ to remove a pair. This pre-
cision is achieved by introducing the notion of an ac-
tivation graph. For the remainder of this paper, let
C = {c1, . . . , ck} be a set of lex constraints, not neces-
sarily derived from a group. The pair of variables in
position j of constraint i is denoted cij .

Definition 6 Let α ∈ 1..k and β ∈ 1..l where l = |cα|.
A goal cαβ is a pair under consideration for removal
by Rules 2 and 3′. Each goal cαβ defines an activa-
tion graph Gαβ, which is a digraph generated from the
assumptions made to remove cαβ by Rule 2 or 3′.

The nodes of Gαβ are {cij | ci ∈ C, j ≤ β if i = α},
and are arranged in k rows, one for each constraint.
The nodes are also arranged in columns from most sig-
nificant to least significant. The first row is cα, trun-
cated immediately after cαβ. The order of the other
rows does not matter, and they should be considered as
a set.

Non-goal nodes can be active or inactive. A node cij
is active if i = α and j < β, or j = 1, or there is an

edge from ci(j−1) to cij. An active node cij is green
(solid edge) if the pair of variables are equal, and is
amber (dashed edge) otherwise. Inactive nodes are red
(dotted edge). The colour of a node may change from
red to amber to green, as edges are added, but not in the
other direction. When initially constructing the graph
the active nodes are ci1 for i 6= α, which are amber, and
cαj for j < β, which are green.

Let cij 6= cαβ, and assume that ci(j−1) is active.
A justification set for cij is a set of nodes Aij =
{cst | (cst, cij) ∈ E(Gαβ)}. If Aij 6= ∅ then it entails
the equality of ci(j−1). The set Aij is minimal if for all
x ∈ Aij the set Aij − x is insufficient to activate cij.

There are several types of edges in Gαβ:

1. If cij 6= cαβ then there is a directed edge from an
active node cst to cij whenever there exists a minimal
justification set for cij containing cst. If so, there is
an edge ci(j−1) ∼ cij, node ci(j−1) is green, and cij is
amber or green.

2. There is a directed edge from an active node cij to cαβ
when cij is a member of a minimal set of nodes entail-
ing cαβ (Rule 2) or entailing equality in the variables
in cαβ (Rule 3′).

3. There are directed edges between consecutive nodes in
row 1, from more significant to less significant, up to
but not including cαβ.

The node cαβ can be removed by Rules 2 and 3′ if
and only if there is a directed edge into cαβ in Gαβ .

Definition 7 An activation chain for cαβ is a sub-
graph of Gαβ whose nodes include cαβ and which con-
tains a minimum justification set for each of its nodes.
Note that cαβ can have more than one activation chain.

Intuitively, an activation chain represents an argu-
ment for the removal of cαβ . To clarify this, we present
activation graphs G52 and G62 for the set {(1), . . . , (6)}
of constraints given in the proof of Theorem 1.

We now show that if an activation chain for cij con-
tains cst, and cst is removed, then unless all activation
chains for cst include cij we can still remove cij .

Lemma 1 Let cst have at least one activation chain.
If there exists an activation chain C1 for cij such that
cst 6∈ C1 then there exists an activation chain C2 for cst
such that cij 6∈ C2. Thus the order of removal cij and
cst does not alter the set of reachable fixpoints.

Proof If no activation chain for cst includes cij then
the result follows. So let C3 be an activation chain for
cst with cij ∈ C3. To construct Gij we make cil green
for l < j, and cm1 amber for m 6= i. All other edges
in C1 are entailed by these initial assumptions. Let Aij
be the set of nodes with directed edges to cij in C1.

Since cij is in C3 it is active, so cil is green for l < j
in C3. Clearly cm1 is amber or green for m 6= i, thus all
entailments in Gij are in Gst. In particular, nodes Aij
are the same colour in Gst as in C1.

We now modify C3. Remove cij , then add all edges
from Gst required to activate all of Aij , then place a
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Figure 1: This gives the reduction described in
Method 1 of Theorem 1. The solid black edges represent
a possible activation chain, with the dashed edges rep-
resenting activations not used in that activation chain.
Green nodes are equal, amber nodes are less than or
equal and red nodes are not active. The goal is c52,
B ≤ A and the assumption is A = C.
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Figure 2: This gives the reduction described in
Method 2 of Theorem 1. The solid black edges represent
a possible activation chain, with the dashed edges rep-
resenting activations not used in that activation chain.
Green nodes are equal, amber nodes are less than or
equal and red nodes are not active. The goal is c62,
B ≤ A and the assumption is A = C.

directed edge from every node in Aij to every node
with an edge from cij . Finally, reduce C3 back to an
activation chain. Since Aij entails cij , all active nodes
and the goal have a justification set, but cij /∈ C3. 2

We now define the generalisation of the two pairs B ≤
A in the proof of Theorem 1 that prevented confluence.

Definition 8 A block B is a set of at least two pairs
cij, where not all of the constraints ci have the same
fixpoint if reduced first, such that for all p, q ∈ B the
node q is in at least one activation chain for p, and
conversely all chains for p contain at least one q ∈ B.

Our main result shows that a system of lex con-
straints is confluently reduced if and only if it contains
no blocks.

Theorem 2 The reduction of a set C of constraints by
Rules 2 and 3′ is confluent if and only if C has no block.

Proof First we show that blocks prevent confluence.
Since every element of a block B has at least one activa-
tion chain, any element of B can be removed. However,
the last element of B will have no remaining activation
chains – all such chains contain at least one member of
B. Since more than one fixpoint is possible amongst
the constraints containing the pairs in the block, C has
more than one fixpoint under Rules 2 and 3′.

We sketch the proof that if C has no blocks then its
reduction by Rules 2 and 3′ is confluent. There are two
cases. If no activation chain for any element of C that
can be removed includes any other element that can be
removed, then clearly the reduction of C is confluent.
So suppose that cij has an activation chain including
cst, and that cst can also be removed. If cst has an
activation chain C with cij 6∈ C then cij has activation
chains that do not use cst, by Lemma 1. Hence the
order of removing cij and cst does not matter. If
instead all activation chains for cst include the node
cij then again by Lemma 1 all activation chains for cij
must include cst. Hence cst and cij form a block, a
contradiction. 2

Some Families of Symmetries

In (Grayland et al. 2009) a number of general formulae
for the construction of minimal lex constraints for prob-
lems with particular symmetries were defined. These
symmetries are amongst the most common in CSPs.
We now show that these general formulae produce min-
imum sets of lex constraints with respect to Rules 2 and
3′ and therefore the actions of the Rules is confluent.

Symmetric Groups
The symmetric group, Sn, is the group whose elements
are the set of bijections from {1, . . . , n} into itself; we
can freely interchange all variables. Symmetric groups
arise frequently as symmetries of CSPs, in particular
whenever a set is modelled as a list we introduce the



symmetric group on variables. Since the set is un-
ordered but a list is ordered we can freely interchange
any variables of the list and get a new list representing
the same set.

Theorem 3 Let P be a CSP with n decision variables
{x1, ..., xn} whose symmetry group is Sn on variables.
Given a lex leader with variable ordering x1 to xn,
Rules 2 and 3′ reduce the corresponding lexicographic
constraints confluently to:

Ms = {xi ≤ xi+1 : 1 ≤ i ≤ n− 1}

Proof We show there is only one reachable fix-point.
Each pair in Ms is the most significant non-trivial

pair of one or more lex constraints from the full set,
C. Rule 1 confluently removes all trivial pairs xi = xi
(Grayland et al. 2009). We define a new set of lex
constraints C1 which is C after application of Rule 1 to
a fix-point.

Recall that the jth most significant pair in a con-
straint i is referred to as cij . We now consider which
pairs would need to appear on an activation chain in
order to remove the pair ci1, where c ∈ Ms. Since ci1
is the only, and hence last, pair of its constraint we con-
sider reduction by Rule 2. We could use Rule 3′, but
since Rule 3′ requires equality in ci1, a lack of reduction
by Rule 2 implies no possible reduction by 3′. There are
no more significant pairs to consider equal. Since there
are no assumptions, only the most significant pairs of
the other constraints C′1, where C′1 = C1\ci, may become
active in any activation graph with goal ci1, otherwise
we would have some pairs defined as always equal by the
lex constraints. Recall that ci1 is of the form xi ≤ xi+1.
Given no assumed equalities the only methods to acti-
vate ci1 in an activation chain are to either activate
another node xi ≤ xi+1, or to activate a set of nodes
such that xi ≤ xj ≤ . . . ≤ xk ≤ xi+1.

Given our canonical ordering, the left hand side of
each constraint in C is x1x2 . . . xn. The first moved
point in a permutation must be mapped to a higher
moved point, so, having applied Rule 1 to obtain C1, if
xi ≤ xj is the first pair of a constraint in C1 then i < j.

Assume there exist more than one active nodes in an
activation chain for ci1. The chain contains both xi ≤
xb and xc ≤ xi+1. Since xi ≤ xj is not a possible active
node, if i > j we conclude that i < b ≤ n. Similarly,
1 ≤ c < (i + 1) and hence b > c. Without loss of
generality we may assume that if a chain of active nodes
exists such that xb ≤ ... ≤ xc we may consider there to
be an active node xb ≤ xc. Since b > c we know this
chain of nodes cannot exist, a contradiction.

Hence, the only remaining method to remove ci1 by
Rule 2 is to find a node xi ≤ xi+1 in another constraint
cm ∈ C1 which is active in an activation graph for ci1.
No assumptions are made, so xi ≤ xi+1 must be the
most significant pair in cm. If such a constraint cm
exists then we remove ci1, however the constraint cm
has most significant pair xi ≤ xi+1, and as such, the
above proof can be used to define the removal of it.

We can continually prune the pair ci1 until no such
constraint cm exists.

There will always exist the node xi ≤ xi+1 in some
constraint, since the last instance of xi ≤ xi+1 will have
no active nodes in its activation graph.

Thus the Rules are confluent. 2

Cyclic Groups
If all elements of a group G can be written as powers
of some fixed g ∈ G then G is cyclic. The cyclic group
on n points is denoted Cn.

Theorem 4 (Grayland et al. 2009)
Let P be a CSP with decision variables,

{x1, x2, . . . , xn} whose symmetry group is the cyclic
group Cn on variables. A complete setMc of symmetry
breaking constraints is:

i = 1 x1 ≤ x2

i = 2 x1x2 ≤lex x3x4

...
...

i = n− 1 x1x2 . . . xn−1 ≤lex xnx1 . . . xn−2

Lemma 2 Let Mc be as above. If i > n/2 then the
assumption of equality in the first (i − 1) pairs in ci
partitions the variables in ci into n−i nontrivial equality
classes. If i ≤ n/2 then (i−1) nontrivial equality classes
are produced.

Proof The first case is i ≤ n/2. Then ci ∈ Mc is
x1 . . . xi ≤lex xi+1 . . . x2i. All variables in ci are dis-
tinct, hence i−1 nontrivial equality classes are created.

We now assume that i > n/2, so ci is

x1 . . . xi ≤lex xi+1 . . . xnx1 . . . x2i−n.

The n − i most significant pairs in ci contain distinct
variables x1, . . . , xn−i, xi+1, . . . , xn.

We assume that x1 = xi+1, x2 = xi+2, . . ., xn−i =
xn. After these n− i pairs of variables there is a repeat
on the right hand side of x1x2x3 . . . x(n−i). We assume
that x1x2x3 . . . xn−i = x(n−i)+1x(n−i)+2 . . . x2(n−i).

This produces n − i equality classes, each in-
volving 3 variables. The pattern then continues
with x(n−i)+1x(n−i)+2 . . . x2(n−i) appearing on the right
hand side, assumed to be equal to the next n − i vari-
ables, x2(n−i)+1, . . . , x3(n−i). This pattern continues
until the pair of variables under consideration, namely
xi ≤ x2i−n.

As each equality class grows, the additions are new
variables, so the initial n − i classes do not merge.
The new variables are always assumed to be equal to a
variable currently in a class of size at least 2, so there
will never be more than n−i classes of size at least 2.2

Theorem 5 Let P be a CSP on variables {x1, ..., xn}
with symmetry group Cn on variables. Given a lex
leader with the natural variable ordering, Rules 2 and
3′ reduce the corresponding lex constraints confluently
to Mc.



Proof We show that there is only one reachable fix-
point. The complete set of lex constraints C for Cn is:

(c1) x1x2...xn ≤lex x2x3...xnx1

(c2) x1x2...xn ≤lex x3x4...xnx1x2

...
(cn−1) x1x2...xn ≤lex xnx1...xn−1

We show that C′ = C \ ci does not support the removal
of cii by Rule 2. We then show that C′ does not remove
any pair from ci by Rule 3′. The result follows.
Rule 2: The pair cii is xi ≤lex xj , where j = 2i
if 2i ≤ n and j = 2i − n if 2i > n. To prune
cii we assume x1 . . . xi−1 = xi+1 . . . x2i if 2i ≤ n or
x1 . . . xi−1 = xi+1 . . . xnx1 . . . x2i−n if 2i > n.

We begin by showing that we cannot activate any
pair with xi on the left hand side (LHS) and that xi
is not equal to any other variable, therefore we cannot
imply that xi ≤ xj . Our arguments depend on whether
2i ≤ n.

If 2i ≤ n then there are equality classes x1 =
xi+1, x2 = xi+2, . . . , xi−1 = x2i−1. The constraints
ca for a < i have most significant pairs x1 ≤ x2,
x1 ≤ x3, . . . x1 ≤ xi−1. The constraints cb for b > i,
have most significant pairs x1 ≤ xi+2, x1 ≤ xi+3, . . .,
x1 ≤ xn−1. In order to use less significant pairs of
variables in these constraints we must show equality in
these initial pairs, however they all lie in distinct equal-
ity classes. Since xi is not assumed to be less than or
equal to anything cii cannot be reduced.

Now assume that 2i > n, so that cii is xi ≤ xj , where
j = 2i− n. Look for xi on the LHS of cb for b > i. By
Lemma 2, the first n − i decision variables are never
assumed to be equal to each other. Notice also that
x1 = xi+1, x2 = xi+2, . . ., xn−i = xn.

The equality classes not containing x1 contain
xi+2, . . . , xn. These are the right hand variables of the
most significant pairs of cb. Therefore the Rule 2 as-
sumptions of equality do not imply equality in these
most significant pairs and so all less significant pairs
are not active on an activation graph with goal cii.

Now consider ca for a < i. There is equality in the
most significant pairs of cn−i, c2(n−i), . . ., because the
LHS of the pair is x1 which is equal to every (n − i)th
element by Lemma 2. In these constraints the pairs of
variables are matched to those in the Rule-2-assumed
equality classes from ci. This is because the equality
relations step along in groups of n− i.

The first pair of variables in ca which are not assumed
to be equal is the pair with xi on its RHS, hence at most
we deduce that xi is greater than another variable. This
does not imply equality in the most significant pair of
any other constraint, so we still cannot use later pairs.
Since xi has not been assumed to equal anything else
and since nothing has implied it to equal anything else,
we cannot deduce that xi ≤ xj .
Rule 3′: We first consider Rule 3′ on the pair cik for
k < i, which is not least significant in the constraint
ci ∈ Mc. First we show that the assumptions and

implied equalities are insufficient to show equality in
the most significant pairs of constraints of a larger arity.

The set of assumed equalities in application of Rule
3′ on cik is a subset of the set of assumed equalities in
the application of Rule 2 on cii since k < i. Therefore
the most significant pairs in constraints cb ∈ C′ for b > i
are never assumed to be equal.

We now show that the constraints ca ∈ C′ for a < i
do not imply equality in cik. First consider i ≤ (n/2).
The equality class containing x1 is {x1, xi} so we can
only consider ca1, and xk ≤ xk+i cannot be removed.

Now consider i > (n/2). All variables on one side
of ca are distinct, and variables occur on the LHS of ci
before the RHS, so xk is not assumed to be equal to any
other variable under Rule 3’. To show xk = xk−(n−i) we
require xk to appear on the LHS of another constraint.

The variable xk appears on the LHS of ca after xi has
appeared on the RHS. The variable xi only appears in
the least significant pair of ci, so xi is never assumed
equal to anything and we cannot reach the pair in ca
containing xk. Thus there exists no activation chain
with goal xk = xk−i or xk = xk−(n−i) for Rule 3′.

It follows that Ms is the unique fixpoint and hence
the system is confluent. 2

In both cases we produce a linear number of con-
straints. We intend to prove confluence results for all
groups and constructions in (Grayland et al. 2009).

An Algorithm to Detect Blocks
We now present an algorithm D to detect blocks and
hence decide if a set of lex constraints will reduce con-
fluently to a set of size m. We use the Rule 2 and 3′

reduction algorithm R discussed in (Öhrman 2005) and
(Grayland et al. 2009). The time complexity of D is
only a factor of m greater than the time complexity of
R since it utilises at most m copies of that procedure.

Given a set of lex constraints C and the reduction
R, the following algorithm detects blocks. A negative
result does not necessarily mean that the reduction is
not confluent, we discuss this later.

1. apply R to C until some fix-point C′

2. for each constraint c′ ∈ C′

(a) locate the corresponding constraint c ∈ C to c′.
(b) run R on c′, using (C \ c) as the additional con-

straints, until some fix-point with constraint c′′

(c) if c′! = c′′ then END return Undecided
3. END return Confluent

Theorem 6 Algorithm D is correct.

Proof Algorithm R produces a minimal set, since
we apply it until a fixpoint is reached. Suppose that
c′i ∈ C′ is fixed by C \ ci. Then no matter what order
the Rules were applied to reduce C, the constraint
beginning c′i must occur in the fixpoint. If this holds
for all i then there is a unique fixpoint, namely C′. 2



Number Result Time Number Result Time
1 C 79 9 U 297
2 C 46 10 U 406
3 C 125 11 U 219
4 C 141 12 C 718
5 U 94 13 U 328
6 U 172 14 C 1375
7 U 172 15 C 2657
8 C 453

Figure 3: Running D on lex leaders derived from the
first 15 transitive groups on 6 points in GAP’s library.

Further work is required to detect all confluent re-
ductions. For example, if the ci could be removed by
cj and cj and ci both reduce to the same prefix under
the other constraints, then the reduction is still con-
fluent since the resulting set of constraints will always
be the same. This is what happens for the symmetric
groups, although Theorem 3 shows that in fact the lex
constraints for Sn do reduce confluently.

Algorithm D was tested on various families of groups.
The first family selected was the transitive groups on
6 points. The reasons for selecting this family were
twofold: the intransitive groups are composed of smaller
transitive groups making transitive groups more inter-
esting to examine; and the transitive groups of order
6 are fully classified and relatively small in number al-
lowing for a much fairer distribution of results when
compared to picking random groups. In Figure 3 the
number i refers to TransitiveGroup(6, i) in GAP’s
library. The second family of groups selected was the
primitive groups. The number of transitive groups on
more than 6 points grow very rapidly and it is there-
fore not possible to test all of them in a reasonable
amount of time. The primitive groups do not dis-
play this behaviour to such a great extent, allowing
us to test groups on a range of points. In Figure 4
the pair (x, y) refers to PrimitiveGroup(x, y). The
result C means confluent whilst U means undecided.
Times are in milliseconds. There are a number of ex-
amples where reduction is confluent, thus for each of the
groups any fixpoint under Rule 2 and 3′ is the unique
minimum. The case we know to be not confluent, the
TransitiveGroup(6,6) from Theorem 1, is undecided
which is what we would expect. We ran further tests
on the first 8 Cyclic groups with the answer confluent
in each case, again, as expected.

Conclusion

There are three main contributions of this work. Previ-
ously it was necessary to show that all possible orders
of rule applications produce the same fixpoint to show
confluence, which was infeasible with large examples.
Now it suffices to find a single fixpoint and use the al-
gorithm to show confluence. Also, if a system of lex
constraints is confluent with respect to Rules 2 and 3′,

(x,y) Result Time (x,y) Result Time
(6,1) C 1078 (7,3) C 1547
(6,2) C 3219 (9,1) C 49422
(6,3) C 7937 (9, 2) U 104515
(6,4) U 15156 (9,3) U 211532
(7,2) C 1313 (9,4) U 210328

Figure 4: Results from running D on 10 lex leaders
derived from primitive groups in GAP’s library.

then every reduction strategy is optimal. Conversely, if
the system is not confluent, then the blocks determine
all fixpoints. One next step is to complete the algo-
rithm to detect blocks such that it also detects set-wise
confluence, and hence to determine which families of
groups produce blocks. We will also investigate opti-
mal reduction strategies for blocks.
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