Importance of Variables Semantic in CNF Encoding of Cardindity Constraints

Anbulagan
NICTA & The Australian National University
Canberra, Australia
anbulagan@nicta.com.au

Abstract

In the satisfiability domain, it is well-known that a SAT al-
gorithm may solve a problem instance easily and another in-
stance hardly, whilst these two instances are equivalert CN
encodings of the original problem. Moreover, differentaalg
rithms may disagree on which encoding makes the problem
easier to solve. In this paper, we focus on the CNF encoding
of cardinality constraints, which states that exagtfyroposi-
tional variables in a given set are assignettde. \We demon-
strate the importance of the semantics of the SAT variables i
the encoding of this constraint. We implement several vari-
ants of the CNF encoding in which the close semantic vari-
ables are grouped. We then examine these new encodings on
problems generated from diagnosis of discrete-eventsyste
Our results demonstrate that both stochastic and systemati
SAT algorithms can now solve most of the problem instances,
which were unreachable before (Grastétral. 2007). These
results also indicate that, on average cases, there is ad-enc
ing that suits well both SLS and DPLL algorithms.

Introduction

The fast growing research in propositional satisfiability
(SAT) has a positive impact on solving an increasing num-
ber of practical applications, including diagnosis, plan-
ning, scheduling, hardware and software verification, agnon

many others. Basically, an application problem will be en-
coded into a CNF formula, which will then be solved using a
SAT solver. It has been shown in SAT planning (Ernst, Mill-

stein, & Weld 1997) that the SAT encoding of a problem ii) For any subse{v, ..
can have huge impact on the runtime. This paper focuses on
CNF encodings of cardinality constraints, which state that

a given number of propositional variables within a specified

subset of the variables in the SAT problem is assigned to
true. The constraint is defined on a set of variables, and can
be encoded by several equivalent ways depending on the or-
der in which the variables are integrated in the constraint.
We show that this ordering has a huge impact on the runtime

of both SLS and DPLL algorithms.
We examine the encoding of cardinality constraints in

discrete-event system (DES) diagnosis problems, but the re
sults can be generalized to other problems. DES diagno-

sis is the problem of determining whether the behavior of

Copyright © 2009, American Association for Atrtificial Intelli-
gence (www.aaai.org). All rights reserved.

Alban Grastien
NICTA & The Australian National University
Canberra, Australia
alban.grastien@nicta.com.au

a system is normal or faulty according to the observations
generated by this system. The use of SAT algorithms in bet-
ter solving the DES diagnosis problems was first proposed
in (Grastienet al. 2007), where the results demonstrated
that SAT algorithms outperformed the traditional diagsosi
algorithms. However, the SAT algorithms were still unable
to solve about 30% of the SAT-encoded instances exam-
ined in that study (within 1200 seconds each), particularly
the diagnosis problem under partially ordered observation
Therefore, in this paper we propose several variants of CNF
encodings of cardinality constraints in which the close se-
mantic variables are grouped. Experimental results indica
that both stochastic and systematic SAT algorithms can now
solve most of the problem instances, which were unreach-
able before (Grastieeat al. 2007). Another important find-
ing is that, on average cases, there is an encoding that suits
well the SAT algorithms.

CNF Encoding of Cardinality Constraints

The cardinality constraintin a SAT problem is the following
given a sefS of n propositional variables, exactkyvariables
of S are assigned toue, wherek < n.

The following set of naive rules can be used to encode the
constraint into CNF form without auxiliary variables:

i) For any subsef{vy,...,vp+1} Of k + 1 variables ofS,
specify that at least one variable must be assignéaldea
—v1 V-V k4.

< Un—k+1} Of n — k + 1 variables
of S, specify that at least one variable must be assigned to
true: vy V- - Vup_gy1.

n!

However, it reqUIreS(k-ﬁ-l)!xr(lr!z—k—l)! + DX (k)
clauses which makes it impractical for ahy> 1. For the
special case where = 1, Marques-Silva and Lynce (2007)
proposed an encoding that is better than the naive one.
Another encoding method introduced by Bailleux and
Boufkhad (2003) and further studied by Sinz (2005) is the
one based on wtalizer (also called circuit). The totalizer
is a tree (see Figure 2) whose leaves are labeled with the
variables ofS. The nodes of the tree are labeled with aux-
iliary variables modeling a number; the constraints on the
totalizer ensure that this number equals the number of vari-
ables assigned toue in the leaves of this node subtree. The
variables on the root are assigned to ensure the constraint.

To model an integer betwe@nand a maximum valu&
(for instanceK = k) at a node, the literature proposes the
binary and the unary encodings.

Binary Encoding A number is modeled with the usual
binary encoding as proposed in (Warners 1998). Let
ai,...,a; be the set of variables used to model the in-
tegera; the value ofa is ¥;cq1,. 4 (val(a;) x 2771)
whereval(a;) = 1if a; is set totrue or v(a;) = 0 oth-
erwise. For instance, the assignemgnt — true, as —
false,as — true,aqs — true} of the four variables of a
numbera corresponds to value+ 0 + 4 + 8 = 13. This
encoding requireflog, (K)] variables.

The constraintu + b = ¢ requiresflog,(K)] — 1 in-
termediate variables; representing the carry numbers
in the addition, and is modeled bylag,(K) clauses
representing the following Boolean constraints; «
(aj A bj) V (Zj_l N (aj vV bj)) andcj —a; Db Dzj_1.

Unary Encoding This encoding was proposed by Bailleux
and Boufkhad (2003). Leiy,...,a; be the set of vari-
ables used to model the integerval(a) > p iff a, is set
totrue. For instance, the assignemént — true, as —
true,az — true,aqy — false} of the four variables of a
numbera corresponds to valug This encoding requires
K variables.

The additioms 4+ b = ¢ is modeled based on the following
properties:(a > p) A (b > q) = (¢ > p+ ¢q) and
(a<p+1)Ab<qg+1)=(c<p+qg+1). The
encoding of these properties requil€s ternary clauses
plus K2 binary clauses but no additional variables.

Diagnosis by SAT
This study takes place in the contextdifcrete-event sys-
tem(DES) diagnosis (Lamperti & Zanella 2003). We briefly
present the diagnosis problem and show how it is related to
cardinality constraint in SAT encoding.
We consider a plant modeled by a DES, which is basically

at timestep. The model of the system and the observations
define constraints on the variables, which are encoded into
CNF clauses.

Let {f1,..., fm} be the set oin faulty events that can
possibly happen on the system. The approach consists in
finding a trajectory that minimizes the numbkrof oc-
currences of faulty events. This cardinality constraint de
notedQue,, is expressed by ensuring that exadtlyariables
are set tatrue in F = {f1,..., fm} x {1,...,n} where

(fi,J) = ff In this paper, we focus on the various encod-
ings of the constraint.

New Encodings of Cardinality Constraints

We claim in this paper that the encoding of a totalizer re-
quires two parameters. The first parameter corresponds to
the node encoding. The second one, which to our best
knowledge was not clearly identified in the literature, is th
addition ordering: whether we should spedify+ b) + (c+

d) = kor((a+c)+d)+b= k. We present several variants

of encodings based on the combination of these parameters.
We also propose two hybrid encodings.

The Three Node Encodings

The node encoding is the representation of the integer value
associated with each node of the totalizer. For the purpse o
this encoding, we use the binary (denoBdand the unary
(denotedJ) encodings presented above. Moreover, we pro-
pose a new unary-based encoding of the propestyb = ¢
(denotedA). In this encoding, each variable of b is in-
terpreted as a number that equald tif the variable is set

to true and 0 otherwise; the value df is the sum of these
numbers. Rather than computing directly= a + b, we
computec = ((a + by) + b2) + - -+ + bg. Letc’, encoded

by variables:i, ci, . . ., denote the number corresponding to
the addition of first variables ob to a. Thus,c® = a. Since
4+ by = L thenc}“ — c; \Y; (c;'-fl A biy1) where

ci = truefor all i. This is described in Figure 1, where each

a finite automaton where transitions are labeled by the svent box corresponds to a propositional variable. This figure rep
that occur when the transition is triggered. The automaton resents the addition of a numhem [0, .. ., 5] with a num-

is represented in a symbolic manner: a state is modeled by berb in [0,...,3]. Sinceb; — b;_1, the property! = ¢!

the assignment cftate variablegnd the transitions are de- stands forj > i; thus, the variables represented in grey color
scribed byrulesthat indicate (i) what precondition the state in the figure can be removed. If the maximum vakiés the

must satisfy to enable the transition; (ii) what effect ttaat same for each number, this encoding requffé%ffl) in-

sition has on the valuation of the state variables; and (i) {ermediate variables anfd? ternary clauses plus? binary
which events are associated with the transition. A sequence (|5, ses.

of states and transitions on the DES is called a trajectory; i
models a behavior of the plant.

Some events are observable which means that an obser-
vation is emitted when they occur, for instance an alarm to
the supervisor. The supervisor compares the model with the
sequence of observations to retrieve what happened on the
plant, such as which parts of the system are broken.

Grastienet al. (2007) proposed to solve this problem us-
ing SAT algorithms. Basically, given a maximum length
for the trajectory that models what actually happened on the
plant, propositional variables’ (resp. e’ andr*) are cre-
ated to represent the valuatien= true of state variables
(resp. the occurrence of evenand the triggering of rule)

,,,,,,,,,,,,,,,,,,,,,,,,,,

Figure 1: TheA modeling of the addition for unary encoding

S o -7 S o - S < - ~ -=" ~ -

c. Ordering based on variable groupi@gvith tree shapé (Cl). —
Each dashed line groups variables of the same component.

— _ - N —~

~ - ~ _ -

d. Ordering based on variable groupi@gvith tree shap& (CG).
Each dashed line groups variables of the same component.

Figure 2: Examples of addition ordering in the totalizerffee events and three timesteps

The Seven Addition Orderings

Given the setS of CNF variables for which the constraint
must be enforced, we now design a tree (the totalizer) where
every variable ofS is assigned to exactly one leaf. We pro-
pose7 addition orderings We illustrate 4 out of the 7 order-
ings in Figure 2, by using a diagnosis problem with= 5
faulty events{d, e, f, g, h}, andn = 3 timesteps1, 2, 3}.

3= R C T

al F TG | F [T] G

B ||BR|BCF|BCI|BCG|BIF|BTI| BTG
U ||UR|UCF|UCI|UCG|UTF|UTI| UTG
A | AR| ACF|ACI| ACG| ATF| ATI| ATG
hybrid || UCI—UTI(UCTI) | UCG—ACG(UACG)

A balanced tree is generated with leaves assigned ran- Table 1: List of the23 encodings of cardinality constraint

domly by CNF variables; this ordering is denotBdand
sketched in Figure 2a. The other six addition orderings are
defined as the combination of twariable groupingsand
threetree shapes

The variable grouping tends to assign the variables in the
tree in such a way as to put together the variables with close
semantic. Variables in the diagnosis problem have two pa-
rameters: on which component the event occurred and at

which timestep. We group the variables based on the same

componentC, Figures 2b—d) or the same timestay).(
The tree shape indicates how the tree is built, given the
variable grouping. The three shapes we considered are:
F a balanced tree where the leaves dlied according to
the grouping method chosen (Figure 2b);

I incremental addition of subtrees, where each subtree cor-
responds to one group (Figure 2c);

G a balanced tree of subtrees, where each subtree corre-

sponds to onergup (Figure 2d).

The Two Hybrid Modelings

In a sub-problem and for a given SAT solver, an encoding
Que;. of the cardinality constraint may be easier to solve
than another encodin@ue?, and conversely for another
sub-problem. Thus, the diagnosis problem can be mod-
eled by using several encodings of the cardinality constrai
Quey U --- U Que}. In case the SAT solver is able to de-
termine, thanks to its own heuristics, whicpue;, encod-

ing is the most efficient, the SAT solver may reason only on
this encoding; when this constraint is solved, the varilrie

the other encoding will be automatically fixed through unit
propagation. Such an approach would potentially take bene-
fit from both encodings. In this study, we present the hybrid
modelingsUCI—UTI (UCTI), andUCG—ACG (UACGQG)

that vary only one parameter of the encoding. In our initial
experiments, the other hybrid modelings showed the same
performance as the ones studied here.

The New Encodings

Table 1 lists the new encodings proposed in the study, where
« andg represent the node encoding and the addition order-
ing respectively. We define2l combinations of three node
encodings B, U and A) with seven addition ordering$R(

CF, CI, CG, TF, Tl andTG). We also defined two hybrid
modelings UCTI andUACG).

Empirical Validation
Generating Various CNF-encoded Instances

problems examined in (Grastiehal. 2007):

o satisfiable problemgimed-hard-stotal-medium-stotal-
hard-s partial-medium-gpartial-hard-s

e unsatisfiable problems:timed-medium-u timed-hard-
u, total-easy-uy total-medium-u total-hard-u partial-
medium-ypartial-hard-u

For each problem, we generate 20 instances corresponding
to a number of faults ranging fromto 20. The number of
variables, on which the cardinality constraint is defined, i
about 300 times the number of faults.

Variable Numbering based Encodings The CNF file that
encodes the SAT problem represents each variable by an in-
teger. We considered that a SAT solver may be influenced
by these numbers,g, a SAT solver may branch on the vari-
ables with a small number first. Thus, we proposed two
numberings of the variables: in the first case (denat&y,

the first numbers are given for timestépthen for timestep

1, etc. In the second case (denot&d), the first numbers
are given for the first component, then for the second com-
ponent, etc.

Hyper-resolution in Modeling We extend the encoding

of the diagnosis problem with hyper-resolution rule. This
extension, denoted +H, generates additional binary ctause
and appears when all the rules associated with a specific
event have the same effeet Formally, we have the fol-
lowing clauses:—e V r; V --- V1 andVi € {1,...,k},

—-r; V a, which implies—e V a. This feature has a very little
cost and increases the number of clauses by about 1%.

SAT Solver Selection

From a number of state-of-the-art SAT solvers, we selected
R+DDFWT (Ishtaiwiet al. 2006) and MNISAT v2 (Eén &
Sorensson 2004) to represent stochastic local search (SLS
and DPLL-based systematic search, respectively. The idea
behind choosing both solvers is to observe whether they be-
have asymmetrically with respect to the various encodings.
DDFWT is a clause weighting algorithm, which adapts
clause weights according to the degree of stagnation in the
search. The R+DDFW solver is an enhanced version of
DDFW by incorporating a resolution-based preprocessing,
which adds resolvents of length 3 into the original for-
mula and then applies unit propagation to the formula. We
selected R+DDFW for its excellent performances shown
in (Ishtaiwiet al. 2006), where it outperforms the other best

We evaluated the 23 encodings presented in Table 1 on the SLS solvers over a range of random and structured bench-

hardest satisfiable and unsatisfiable CNF-encoded diagnosi

mark problems.

Clause learning DPLL solvers are reputable in solving [Sover [Heuristc]] nT] nC][__nI+H] __ nC+H]

. . . . BR (23)42960] (17)39471]] (15)26248] (15)25435

CNF-encoded industrial pr(_)blems, which can be Ia_rge in BCG (23)43448| (18)37881| (14)25982| (13)23805

number of clauses and variables, and contain certain hard Bl 83 aoot 82; 40038 823 20073 88 20860

structures. In this category, IMI SAT is well-known as one BTG (20)40383| (19)37174|| (16)25643| (16)26 355

i BTI (33)53574| (32)54793|| (21)35902| (18)35024

of the best SOI.VerS' Therefo.re.' In .Our StUdy’.We .U_S“NM BTF (18)37732| (21)38722|| (18)27072| (13)24751

ISAT v2 featuring variable elimination style simplification, TotalB || (158) 300 934| (142) 287 217|| (116) 193 490| (108) 187973

i i H i R+DDFW [UR (1) 14 311 (3) 14 144 7643 7151

as it outperforms the other versions infMSAT family. RO | oes Dotz o127es 100ts| (1) 9300

i Win100 | UCF @173%0| (214970 (100s| (1) 9661

witl

Results and AnaIySIS instances uTG (1) 11 208 11 050 (1) 9916 (2) 10 245

i uTl (1) 14 813 (2) 15 267 (2) 11 478 (1) 10 453

The experiments were.conducted ona c;luster of 16 Intel Duo o O iress Digaer poiy I s

Core processors running at 2.4 GHz with 4 GB of RAM, as TotalU (098832 (11)92910][(567391 (9)67834

we had to run 31280 processes, which were allowed to use R G178 (yisem| @isc0s| isasr

1200 seconds each. In Table 2, we present the general total ACI (4)18341| (2)16952|| (4)14831| (213204

of solvers runtime per modeling heuristic on all satisfiaile e Dol Vet Pl Girews

all unsatisfiable problem instances. We then zoom in some AT 8 24930 g 23903 g; 15492 8 locol

selected results in Figure 3 and Tables 3—4. In Tables 2—4, Total A (23) 130555 (13) 121181 (18)92472] (14)92547

i i i ic indi- UcCTl @) 19267 (2) 15518 2)12578 10 151

the nu_mber of instances on which eac_h solver failed is indi e B 2aos0| ozaim| Diraesl @ 1eroe

cated in brackets before the total runtime. Each unsolvable = GBI 65229 G2 6T || (50) 65518 (50)67963

instance contributes 1200 seconds to the total runtime. BCG (15)25312| (16)24319|| (16)24884| (14)24039

scr || (nzsas| (nzsore|| (9)2009| (16)25574

. - : BTG (24)32910 (23)31875|| (24)33742| (23)32936

From the Point of View of CNF EnCOdmgS BTI (23)31460| (23)32128|| (23)32155| (23)31865

BTF (24)33489| (25)32371|| (26)33402| (24)32232

Total B (172) 242007| (172) 237 827|| (175) 241 320| (164) 237 557|

On Node Encodings Table 2 confirms the results pre- Miisar - [OR (3(33 s1T08 (‘g; s (‘ggg oIS (‘Eg s

sented in (Bailleux & Boufkhad 2003) that, while the binary | grobiems | uci (m13980| (9) 15002 (9)15620 (8)15303

i * H with 100 UCF (9) 16 186 (9) 15534 (8) 15 228 (7) 15 361

encoding B)_ creates fewer variables and clal_Jses than the | Wit | HeE (820309 (22049 (920113 (920018

unary encodingsl{* and A*), the latter are easier to solve. uTl (17)24595| (15)24507|| (15)24163| (15)23228

The runtime of R+DDFW increases by about 30% when TotaIT— || I08) Le6 OTH| (T11) 163 677 TL10} 167 T30| (T08) 167 664

using A* encodings rather thab* encodings, while MN- = (052 218 (A2 53 6B | (30) A 63T {40y 52262

ISAT has almost the same performances on both encodings. ACI ({11 16624 Egg 15588 (1(0; 16370 ({Og 15814

on Additi Orderi Both Table 2 dFi 3 sh ACF (9)17098| (10)16989|| (10)17561| (10)17943

n ition Oraerings 0 aple 2 an igure 3 show ATG (17) 25235 (13) 24188 (17)24 247 (14) 21654

. . sece ATI (16) 23522 (15)24393|| (16)23931| (17)24891

that the randorr_l ordering R)_ls more difficult _for MIN- ATF (16)23962| (16)23999|| (1724972 (18)24 407

ISAT to solve. Figure 3a confirms that the runtime ofNvl Total A |[(T18) I74 865[(113) 174 714 (T15) T71 749/ (118) 1727795

. X . UCTI (A1) 18835 (11)17239|| (10)17474 9 17495

ISAT is improved at least by two orders of magnitude in UACG ©) 17143 (10)16454|| (9)17499| (8) 16559

some cases, when comparibiiR encoding with the other BR (66)87 739] (67)87505]] (65)86273] (65) 86 500

U* ones. Our additional tests also show thatNVBAT can- Bes e Gaoremll G 2aes] Go2aee

not solve most of thé&JR-encodedpartial-medium-uprob- BCF (15)24867| (14)23638(| (14)24889| (12)23492

. X . BTG (26)34367| (25)33285|| (26)33947| (26)34635

lem instances when allowed five hours per instance. A fur- BTI (26)34257| (23)32920|| (26)33740| (23)33034

i BTF (26)34458| (27)35374|| (27)35979| (26)34910

Fher analysis of_the results shows that the clauses Iegrnt du e e e T o i e

ing the search in case &fR are approximately two times MINISAT [UR (60) 79666 (59) 79510 (59) 79 204 (59) 79 900

* ; on 7 UNSAT | UCG (8) 13234 (8) 13698 (7) 13693 (6) 13331

Ionger than for the othdyg encodlngs._ problems | UCI (8) 14 818 (7) 13376 (7) 14551 (8) 13844

It also clearly appears that the variable orde@{r C*) wih140 | UCE (g)) 14401 (i?s)) 14349 (g; 14960 (ig)) 15086

H instances

makes the problem easier foriM SAT (see Table 4). Our oTl (15)24327| (1724731 (17)24650| (15)23 238

explanation is that the solver benefits from the fact that the uTF (16)25234] (19)26699|| (19)27011) (17) 25436

. Total U (130) 194 539| (135) 195 769|| (133) 198 502 (130) 193 864

intermediate variables in the encoding of cardinality con- AR (6282713 (64)82574]|" (62) 82885 (60) BT 965

i i i i i _ ACG (9) 15358 (8) 15 200 (8) 15574 (8) 14 356

straints have usgful semantics. Ind_egad in a diagnosis prob e ot Sl Divel Giise

lem at some point of the search, it is often known that a ACF (9)17206| (8)15786|| (9)16635| (9)16508

; P : ; . _ ATG (19) 27189 (19)26035|| (17)26177| (18)28117

given fault f did not occur between tlmest.emnd 7. Cpn E (18)26578| (17)25343|| (1825089 (17) 24842

sider that fault did not occur: the node,, in the totalizer ATF (18) 27965 (19)27088|| (18)26738| (20)27913

of Figure 2d, can be automatically assignedaiseby unit T e e e

propagation; while with the random totalizer, nothing can UACG (n15527| (8)14368|| (7)14651| (9)15638
be propagated. We observe that the improvement achieved ,)
i i * Table 2: Summary of SAT solvers’ performance, after vari-

by the DPLL solver from the variable orderingRto *CG y p

is more important than the improvement achieved from the OUS modeling, on diagnosis problems. Each data represents
encoding of numberB* to U* or A*. the total runtime (in seconds) of 100 runs for satisfiable

On the other hand, as shown in Figure 3b, R+DDFW problems or of 140 runs for unsatisfiable problenistal

performs almost equally for most of the encodings. There is @ represents the general total of runtime, per node encoding
however an interesting counter example il *Using tree « and per variable numbering encodingl(, nC, n'7+H or

shapel can generate long chains of dependencies. This ?C+H). The bestresult based anis represented in bold.

UR
ucg
ucl
UCF
UTG|
uTl
UTF

5
vhrme

runtime in seconds
X
runtime in seconds

=
S
irae

0 #

10° F

H
S

H
N

runtime in seconds

»—\
<

107

Eg L L L L L L L L L L
10 12 14 16 18 20 4 6 8 10
instances

8

a. MINISAT ontotal-hard-safterU* (nC+H)

instances

b. R+DDFW* on partial-medium-safterU* (nT)

¥

10 12 14 16 18 20
instances

c. R+DDFW* ontotal-hard-safterU* (nC)

12 14 16 8

Figure 3: SAT solvers’ runtime on selected diagnosis proisleafter variout)* encoding

is not the case for Gl as the number of components is
only 20: the size of the chain is 20. However, fofl¥

the length of the chain is the number of timesteps, which
reaches up to 30@(faults x ~ 8 observations/fault 2
timesteps/observation) in the worst cases of the instances
(see Figure 2c). This corroborates Wei and Selman (2002),
and Prestwich (2007) conjectures that long chains make the
SAT problem hard for SLS.

On Variable Numbering: Timestep vs Component
Without considering hyper-resolution during modeling,
timestep-based variable numbering approach is slightly be
ter than the component-based variable numbering approach.

But, the reverse phenomenon is shown when we run hyper- Table 3: Solvers’ runtime comparison when problem hard-

R+DDFWT is better on thepartial-* problems. We observe
that MINISAT’s runtime evolves more quickly than that of
R+DDFW™". With certain encodings, R+DDFWis even

able to solve the hardest satisfiable problems.

Problem MINISAT R+DDFW
UCI(nT) | UTF(n7 +H) || UCI(nT) | UTF(n7 +H)
timed-hard-s 105 95 1117 178
total-medium-s 42 59 1253 881
total-hard-s 139 121 2868 581
partial-medium-s| 2792 (7) 10 142 3500 2991
partial-hard-s (7) 10902| (10) 13 601|| (1)5427 3520

resolution during modeling. Variable numbering has little N€SS INCreases

impact on the performances of the SAT solvers in general.

On the Impact of Hyper-resolution in Modeling The
additional clauses generated by the hyper-resolution rule
about 1% of original problem, do not impact the perfor-
mance of MNISAT, but they contribute to an important re-
duction of about 30% of the R+DDFWSsolver's runtime.
The results can be explained as following. The simple res-
olution preprocessor integrated in R+DDFWeduces the
size of the original problem by 30% in average case, as the
effect of running hyper-resolution when modeling. While
the preprocessor integrated inMSAT gives almost no re-
action to the additional clauses, as shown by the results
presented in Table 2. Figure 3c shows the performance of
R+DDFW?" ontotal-hard-sproblem, which are encoded us-
ing URandUCG, with or without hyper-resolution.

On Hybrid Modeling We expected the hybrid modeling
instances to be easier to solve than the best original one.
However, in general our experiments show the opposite ten-
dency, except for R+DDFW solver onUCTI(nC+H) en-
coding.

From the Point of View of SAT Solving

On Solvers’ Performance Table 3 presents the runtime of
MINISAT and R+DDFW on various satisfiable problems.
The results show that MISAT has a better performance
than R+DDFW on thetimed-*andtotal-* problems, while

Problem UR(NT)||UCG(nT)|UCF(nT)||UTGnT)|UTF(nT)
timed-medium-u|| (2) 3990 30 30 34 36
timed-hard-u (7) 10075 100 85 115 149
total-easy-u (4) 5891 18 22 24 22
total-medium-u (4) 6 542 50 51 57 59
total-hard-u (11) 14 155 117 133 172 185
partial-medium-y| (16) 19 354 2019 2086|| (7) 10 465 (7) 12 269
partial-hard-u || (16) 19 659| (8) 10900 (7) 11 994/ (9) 11 992 (9) 12 514

Table 4: MNISAT runtime on unsatisfiable problem, based
on someJ* encodings

On Solving Unsatisfiable Problems Table 4 presents
MINISAT’s runtime on unsatisfiable problems based on
some selected encodings. The results show the same evo-
lution as for the satisfiable problems wh&y€* and UT*
encoded instances are significantly easier thattRenes.
With some encodings, MISAT is now able to prove the
unsatisfiability of most problems except the hargestial-
hard-u problem instances. The results also show that the
main difference betwedd C* and UT* encodings for MN-

ISAT appears in theartial-medium-uproblem instances,
which are difficult under the latter encoding.

On Solving the Hardest Problem Instances We now
present the results of solving the hardest instancpartifal-
hard-sandpartial-hard-uproblems under somég* encod-
ings. We allocate 5 hours for solving each instance by a

given solver. Table 5 presents solvers’ runtime (in secpnds
underUCG on partial-hard-sfor the highest values of,
which are the hardest satisfiable problem instances in the
study. The results show that both solvers are able to solve
these instances and the solver R+DDFérsists when the
hardness of problem instance increases.

Instance MINISAT R+DDFWH
UCG(nC) | UCG(nC+H) || UCG(nC) | UCG(nC+H)
18 faults 5773 4118 1439 1799
19 faults 7790 8078 984 690
20 faults 13542 7 465 1936 819

Table 5: Solvers’ runtime opartial-hard-sproblems for a
given number of faults, using CG encoding

Instance UR(nC) UCG(nC)
#Vars/#Cls Time #Vars/#Cls | Time
13 faults 164326/803514| >180 000 164354/803598 918
14 faults 180345/890920| >180 000 180351/890938| 4 201
15 faults 178170/889037| >180 000 178194/889109| 1625
16 faults || 209887/1057748| >180000 || 209889/1057754| 1706
17 faults || 220554/1122352| >180000 || 220554/1122352| 3352
18 faults 235147/1208987| >180 000 235153/1209005| 2 686
19 faults || 254060/1319555| >180000 || 254086/1319633| 4574
20 faults 265910/1394987| >180 000 265949/1395104| 4 369

Table 6: Runtime of NNISAT on partial-hard-uproblems
for a given number of faults, usingR andUCG encodings

Table 6 compares M SAT’s runtime (in seconds) under
UR andUCG encodings orpartial-hard-u problem for the
highest values of, which are the hardest unsatisfiable prob-
lem instances. M1 SAT was given 50 hours for solving
each problem instance. The results show that the instances
of UR encoding are significantly harder foriM SAT than
the ones ofJCG, despite the fact that their sizes are almost

the same. We observe that the hardness comes from the na-

ture of the problem, where the length of the clauses learnt
underUR encoding increases faster than that il G en-
coding, which usually differenciates the random from the
structured SAT problems solving by clause learning SAT
solvers. The results also confirm the importance of con-
sidering problem semantic in CNF encoding of cardinality
constraints, particularly for the clause learning SAT sodv

Solver partial-medium-s total-hard-s
UR(nT) | UCG(nT) UR(nT) | UCG(nT)
MINISAT (12) 46 034 3909 || (6) 29561 90
RSat (5) 21 361 5996 1454 184
marchks (18) 64 817 (10) 43160|| (15) 54 541 9118
R+DDFWt 3022 5336 1914 2072
R+RSAPS || (15) 54529 (16) 57 606|| (15) 54 029| (14) 50 860

Table 7: Runtime of DPLL and SLS solvers on satisfiable
problems in comparing R(n7) to UCG(n7) encodings

On Encodings versus Solvers In order to show the benefit
of the semantic-based encoding, we run more experiments

Solver partial-medium-u total-hard-u
UR(nT) | UCG(nT) UR(nT) | UCG(nT)
MINISAT || (16) 57 939 2608|| (9)33354 131
RSat (15) 57 490 6781|| (8)33286 207
marchks || (17)61305| (8)48402|| (14) 51131 8372

Table 8: Runtime of DPLL solvers on unsatisfiable problems
in comparingdR(n7) to UCG(n7) encodings

on partial-mediumand total-hard problems withUR(n7)

and UCG(n7) encodings, by using DPLL (RSat (Pi-
patsrisawat & Darwiche 2007) and mark#') and SLS
(R+RSAPS and R+adaptg2wsatpsolvers. We allocate
one hour (3600 seconds) for solving each instance by a given
solver. MINI SAT and R+DDFW were re-run with this time
limit. Tables 7 and 8 present the results, where the number
of unsolvable instances is indicated in brackets.

The RSat solver was run without the SatElite simplifier.
With the simplifier, the performance of RSat degrades on
total-hard-sproblem withUR(n7") encoding, where it can-
not solve one of the instances in the given time limit. The
partial-medium-sandtotal-hard-sproblems are very chal-
lenging for R+adaptg2wsat0 solver, which cannot solve any
instance of the problems. In general, the results in aver-
age case show that DPLL solvers significantly benefit from
the present of semantic-based encoding, which gives only a
small impact to the SLS solvers.

8
210"
8

E 1

10

mtotal-hard-s
10 20 30 40 50 60 70 80 90 10
instances

u
10 20 30 4050 60 70 80 90 100
instances

a. MINISAT’s performance b. R+DDFW’s performance
Figure 4: SAT solvers’ runtime when the hardness increases
on a given problem, usingd CG(nC+H) encoding

On Problem Hardness by Increasing Number of Faults
Figure 4 shows that the difficulty of solving the problem in-
stances between 1 fault and 20 faults increases drastically
Here, we study the difficulty of solving problem instances
encoded byJCG, when the number of faults increases one
by one until 100 faults. We present the results of running
MINISAT on timed-hard-s total-hard-sand timed-hard-u
problems in Figure 4a. We also present the results of run-
ning R+DDFW" ontimed-hard-sandtotal-hard-sproblems

in Figure 4b. The results show that after 20 faults, the diffi-

culty of solving a problem instance increases linearly.

Available from http://www.st.ewi.tudelft.nl/sat/dowodd.php

2RSAPS is part of UBCSAT 1.1, which is available from
http://www.satlib.org/ubcsat/

Sadaptg2wsat0 is available
picardie.fr~cli/EnglishPage.html

from http://www.laria.u-

Summary The new variants of encoding enable DPLL
and SLS algorithms to solve better most of the diagnosis

straints, such as in classical planning and circuit verifica
tion problems. They can also be extended to more general

problems. The results demonstrate that the best encoding ofarithmetic constraints. In general, our results emphdkite

cardinality constraint is based on the unary represemtatio
(U* and A*). SLS algorithms may use any variable ordering
in the totalizer as long as it does not generate a long chain
of variable dependencies, while th€& or *CF orderings
should be used for DPLL algorithms. We propose to use the
UCG encoding as it suits well the SAT algorithms. More
generally we stressed, based on the solvers’ runtime, that
the addition ordering in cardinality constraints is im@mtt

Application to Other Problem Domains

Semantic-based CNF encodings of cardinality constraints
have a significantimpact on the time spent to solve diagnosis
problems. The results presented in this paper show several
orders of magnitude of improvement. A legitimate question
is whether equivalent results can be obtained for other-prob
lems that require cardinality constraints. We presentrsgéve
such problems in the following.

The resolution of Pseudo-Boolean (PB) constraints with
a SAT approach is presented among many others in (Eén &
Sdrensson 2006). In general, this problem does not provide
the semantics of the variables: the PB constraints input sim
ply declares the variables by a charactefollowed by a
number. Still, it might be more efficient to group variables
that appear together in many constraints.

Bailleux & Boufkhad (2003) used the discrete tomogra-
phy problem to validate the unary encoding of numbers.
Here the semantics attached to each variable is known but
there is no other constraint apart from the cardinality con-
straints. Moreover, no two variables appear together twice

in the same constraint. Thus, using semantic-based encod-

ing of the constraint seems to have little impact.

The cardinality constraint can also appear in SAT-
planning (Buttner & Rintanen 2005) and SAT-scheduling
problems. As for diagnosis, the goal of the problems is to
find a minimal sequence of actions/events. We speculate that

our approach on these problems can have the same benefit

as the diagnosis problem studied in this paper.

Conclusion and Perspective

We presented several variants of semantic-based CNF en-

codings of cardinality constraints, based on the totaliAér

then examined how the encoding of each node and the addi-
tion ordering impact the runtime of the DPLL and the SLS
SAT algorithms. The results demonstrate that the problem
is easier to solve when using an unary encoding. On the one
hand the performance of the enhanced DPLL algorithms is

encoding a problem is as critical as solving the problem.

Finally, this study can also be a complementary to the
study realized by Marques-Silva and Lynce (2007) in terms
of using semantical knowledge of a problem for better
choosing decision variables in SAT solving.

Acknowledgments

NICTA is funded by the Australian Government as repre-
sented by the Department of Broadband, Communications
and the Digital Economy and the Australian Research Coun-
cil through the ICT Centre of Excellence program.

References

Bailleux, O., and Boufkhad, Y. 2003. Efficient CNF En-
coding of Boolean Cardinality Constraints. Pmoc. of the
9th CP, 108-122.

Buttner, M., and Rintanen, J. 2005. Satisfiability plamnin
with constraints on the number of actions. Rroc. of the
15th ICAP$292-299.

Eén, N., and Sorensson, N. 2004. An Extensible SAT-
solver. InProc. of 6th SATvolume LNCS 2919, 502-518.

Eén, N., and Sorensson, N. 2006. Translating Pseudo-
Boolean Constraints into SATJournal on Satisfiability,
Boolean Modeling and Computation (JSAT)—26.

Ernst, M.; Millstein, T.; and Weld, D. 1997. Automatic
SAT-Compilation of Planning Problems. Froc. of the
15th IJCA| 1169-1177.

Grastien, A.; Anbulagan; Rintanen, J.; and Kelareva, E.
2007. Diagnosis of Discrete-Event Systems using Satisfia-
bility Algorithms. InProc. of the 22nd AAAB05-310.

Ishtaiwi, A.; Thornton, J.; Anbulagan; Sattar, A.; and
Pham, D. N. 2006. Adaptive Clause Weight Redistribu-
tion. In Proc. of the 12th CP229-243.

Lamperti, G., and Zanella, M. 200Diagnosis of Active
SystemsKluwer Academic Publishers.

Marques-Silva, J., and Lynce, |. 2007. Towards Robust
CNF Encodings of Cardinality Constraints. Pmoc. of the
13th CR, 483-497.

Pipatsrisawat, K., and Darwiche, A. 2007. Rsat 2.0: Sat
solver description. Technical Report D-153, Automated
Reasoning Group, Computer Science Department, UCLA.

Prestwich, S. 2007. Variable Dependency in Local Search:
Prevention is Better than Cure. Rroc. of the 10th SAT
volume LNCS 4501, 107-120.

boosted when the variables are adequately grouped; our case Sinz, C. 2005. Towards an Optimal CNF Encoding of

study on diagnosis of discrete-event systems shows more
than two orders of magnitude improvement when ordering
the variables by component compared to a random ordering.
On the other hand the SLS algorithm runtime is reduced by
ensuring a balanced tree while the order of the variable has
no impact.

The encodings proposed in this study can be applied
to other domains’ problems that contain cardinality con-

Boolean Cardinality Constraints. Proc. of the 11th CP
827-831.

Warners, J. 1998. A Linear-time Transformation of Linear
Inequalities into Conjunctive Normal Forminformation
Processing Letter68:63-69.

Wei, W., and Selman, B. 2002. Accelerating Random
Walks. InProc. of the 8th CP216-232.

