
Abstraction-Based Heuristics with True Distance Computations

Ariel Felner
Information Systems Engineering

Ben-Gurion University
Be’er-Sheva, Israel 85104

felner@bgu.ac.il

Nathan Sturtevant and Jonathan Schaeffer
Computing Science

University of Alberta
Edmonton, Alberta, Canada T6G 2E8
{nathanst, jonathan}@cs.ualberta.ca

Abstract
Pattern Databases (PDBs) are the most common form
of memory-based heuristics, and they have been widely
used in a variety of permutation puzzles and other do-
mains. We explore the true-distance heuristics (TDHs)
(also appeared in [Sturtevant et al., 2009]) which are a
different form of memory-based heuristics, designed to
work in problem states where there isn’t a fixed goal
state. Unlike PDBs, which build a heuristic based on dis-
tances in an abstract state space, TDHs store distances
which are computed in the actual state space. We look in
detail at how TDHs work, providing both theoretical and
experimental motivation for their use.

1 Introduction
In the area of heuristic search, a major research direction has
been finding optimal or suboptimal solutions in state spaces
where the number of states grows exponentially with the so-
lution depth. Examples for such exponential domains are the
different permutation puzzles (e.g., the tile puzzles, Topspin,
Pancake puzzle and Rubik’s cube) as well as other forms of
combinatorial problems (e.g. scheduling, SAT, CSP etc.).

There are, however, many problems where the number
of states grow quadratically or polynomially with the solu-
tion depth. Examples for quadratic- or polynomial domains
are two- and three-dimensional pathfinding problems or the
sequence alignment problem, where a number of DNA se-
quences must be aligned with minimum cost.

Pattern databases (PDBs), a common method for building
memory based heuristics, have shown great success in build-
ing heuristics for exponential domains but their general effec-
tiveness in polynomial domains is limited. In addition, PDBs
are goal specific and may not work if a path between any two
states is needed.

In this paper we describe a class of memory-based heuris-
tics called true distance heuristics (TDHs). They are useful in
any undirected graph, even for applications where traditional
PDBs are not efficient such as polynomial domains. Unlike
traditional PDBs, which store distances in an abstract state
space, TDHs can be seen as using abstract states but storing
information about true distances in the original state space.

A perfect heuristic for any pair of start and goal states could
be achieved by computing and storing all-pairs-shortest-path

distances (e.g., using the Floyd-Warshall algorithm). How-
ever, due to time and memory limitations this is not practical.
TDHs compute and store only a small part of this information
based on an abstraction of the state space.

We first provide a new analysis of TDHs which better re-
lates the TDH idea to previous abstraction-based work on
heuristic search such as hierarchical A* and PDBs. Based on
this we develop a theoretical explanation of why PDBs work
well in exponential domains but are not as effective in polyno-
mial domains. We then present the main forms of TDHs and
relate them to previous work on abstraction, showing why
TDHs are better-suited to polynomial domains. For exam-
ple, TDHs work well for domains such as map-based searches
(common in GPS navigation, computer games, and robotics),
where paths often must be found very quickly due to their re-
altime nature. Finally, we provide experimental results that
show the benefits of TDHs on a number of domains.

TDHs were also introduced in [Sturtevant et al., 2009] and
the two papers have some overlap for completeness. The por-
tions that overlap are clearly denoted. However, the focus of
the two papers are different as this paper aims to understand
these heuristics and their relation to abstractions and PDBs on
different domain settings. In addition, this paper introduces
the border heuristic variant of TDHs and provides new results
on the 8-puzzle and on the 4-peg Towers of Hanoi puzzle.

Forms of TDHs have already appeared before. For ex-
ample [Björnsson and Halldórsson, 2006], used the exact
distances between some of the states in the domain. Also,
[Goldberg and Harrelson, 2005] independently introduced
DH heuristics (see below). Our paper is the first to deeply
explore these heuristics and provide theoretical analysis and
thorough experimental results.

2 Background: Heuristics from Abstractions
Heuristics are naturally generated by abstracting a prob-
lem and then using the distances from the abstract space
in the original space. Early analysis on how abstractions
could be used for search [Valtorta, 1984] showed that in
some classes of problems it isn’t possible to compute an
effective abstraction-based heuristic online during search.
An example would be edge supergraphs [Gasching, 1979;
Pearl, 1984] which arise when constraints are removed from
a problem definition, resulting in more edges being added to
the graph. In such cases the size of the abstract search space

is no smaller than the size original search. Thus in general,
the cost of building the heuristic (based on the abstract graph)
will equal that of doing a brute-force search.

2.1 Homomorphic Abstractions
Homomorphic abstractions use abstract state spaces that are
much smaller than the original state space. The main idea
is to merge groups of nodes from the original graph G into
one abstract node in an abstract graph G′. There is an edge
between two different abstract nodes n1 and n2 in G′ if there
was an edge between two nodes inG that are abstracted to n1

and to n2 respectively. Homomorphic abstractions preserve
locality, so that nodes that are close to each other in G are
also close to each other in G′.

A pioneering work using homomorphic abstractions is Hi-
erarchical A* (HA*) [Holte et al., 1996b]. HA* begins with a
pre-computed hierarchy of abstract spaces. HA* performs an
A* search in the original search space. Whenever a heuristic
value is needed, it is computed recursively using A* search
in one or more abstracted state spaces. At the highest ab-
stract level, a breadth-first search is performed between the
start and the goal. The distances in these abstract graphs are
then used as heuristic estimates for distances in a less abstract
graphs or the original search space. Hierarchical A* showed
some improvement over simple breadth-first search, however
the performances gains were not significant.

Similar techniques were applied in cooperative pathfind-
ing. [Silver, 2005] abstracted away one dimension of a three-
dimensional cooperative search to build a better heuristic and
greatly improved performance. [Sturtevant and Buro, 2006]
applied homomorphic abstractions to further improve per-
formance on this domain. However, they used inadmissible
heuristics and were not looking for optimal solutions.

2.2 Explicit Homomorphic Abstractions.
There are two ways to build homomorphic abstractions - ex-
plicit and implicit. An explicit abstraction is built by com-
pletely traversing the original graph and explicitly deciding
which groups of states to merge. Explicit abstractions are
generally only used in domains that fit in memory. A large va-
riety of these abstractions have been analyzed [Sturtevant and
Jansen, 2007]. An example of a homomorphic abstraction is
the star abstraction [Holte et al., 1996a], also called a radius
abstraction, where all nodes in a fixed radius are abstracted
together. An example of explicit homomorphic abstraction is
shown in Figure 1. Part (a) shows a map from a commercial
video game. Part (b) shows a portion of the graph induced by
the map with 16,544 nodes. Part (c) shows the results of ap-
plying a homomorphic abstraction to this portion after which
there are only 5,121 nodes in the map.

2.3 Pattern Databases (PDBs)
A second way to build homomorphic abstractions is to use
general implicit rules for deciding which nodes to merge. Pat-
tern databases [Cullberson and Schaeffer, 1998] are a special
case of such implicit homomorphic abstractions. States in a
search space are often represented using a set of state vari-
ables. An implicit abstraction of the search space, called the
pattern space, can be defined by only considering a subset

(a) (b) (c)

Figure 1: Sample map abstractions.

of the state variables (called the pattern variables). A pat-
tern is a state of the pattern space which has an assignment
of values to the pattern variables while ignoring the values
of the other variables. A pattern database (PDB) stores the
distance of each pattern to the goal pattern which is a lower
bound on the corresponding distances in the original space.
Thus PDBs serve as admissible heuristics for searching in the
original search space.

Despite their large success, PDBs have some limitations.
First, PDBs are goal-specific; they only provide heuristics for
a single goal state. While some domains have properties (e.g.,
duality [Felner et al., 2005]) that allow a given PDB to be
used for many goal states, this is not a general property.

Second, PDBs store abstract distances between states. This
guarantees that the distances are lower bounds on distances in
the original domain, but if good abstractions are not available,
then the estimates will be poor. PDBs work very well for
domains where a state can be described by assigning values
to set of variables (e.g., locations to tiles, as in the sliding-
tile puzzle). Replacing some of the assignments with a don’t
care value can yield an effective abstraction. But, in map-
based pathfinding problems a state is just an x/y coordinate.
Replacing the x or y coordinate by a don’t care yields an ab-
straction that is too general to be effective. In addition, as will
be mathematically suggested in the next section, PDBs are
effective in exponential search spaces such as combinatorial
puzzles but their applicability in quadratic search spaces such
as maps is questionable. True distance heuristics (TDHs) pro-
vide alternative ways to build abstraction based heuristics.

3 Effectiveness of PDBs
Before describing TDHs in detail we first provide some in-
sights into the effectiveness of PDBs.

Let us first analyze the effectiveness of a traditional PDB
on exponential domains such as Rubik’s cube or the slid-
ing tile puzzle. This analysis is similar in nature to previ-
ous analysis [Korf, 1997]. First, assume that the maximum
solution depth in the original state space is d and that the
asymptotic branching factor is b. Then, assume that we have
memory to build a PDB which is some fraction 1/f of the
full problem size (N = bd). If we build a PDB in which
the abstract state space has the same branching factor as the
original state space, then we can approximately compute the
radius of the abstract space, w, as bw = 1/f · bd. Thus,
w · log(b) = d · log(b)− log(f) and w = d− logb(f).

The maximum heuristic value that we expect in a PDB isw.
This is smaller than the radius of the original problem. But,
with a reduction of a factor of (f) in memory over the full
problem size the distance estimates of the resulting heuris-

N entries k entries (used)

N
 e

nt
rie

s

k
en

tri
es

 (u
se

d)

k entries (used)

k
en

tri
es

 (u
se

d)

All-Pairs Shortest Path Differential Heuristic (DH) Canonical Heuristic (CH)

(a) (b) (c)

Figure 2: Types of heuristics.

tics will have an error difference of at most [logb(f)] in the
distance estimates. This implies that PDB’s are particularly
effective on exponential domains.

Next, consider polynomial domains. Special cases are
quadratic domains (such as maps) where the number of nodes
up to depth d is d2. Assume that we have a homomorphic ab-
straction that is a fraction 1/f of the full state space size.
If we build a PDB for this abstract graph (that is, store the
distances from all abstract states to the abstract goal), the ab-
stract graph will have maximum depth of w2 = 1/f · d2.
Thus, w = d/

√
f . In this case, any heuristic which is built

from an abstraction will not differ from the exact value by a
constant amount, as in exponential domains, but will be some
fraction of the true distance. In such domains the resulting
heuristic is not likely to be strong.

Note that as the size of the search space grows to d3 or
higher dimensions, a heuristic built in this way will be more
and more accurate. For a general k-dimensional problem,
w = d/(f1/k). Note also that in n-dimensional problems,
a (n− 1)-dimension version of the problem might provide an
accurate heuristic for the n-dimensional problem, but whether
this works well is domain dependent.

We give simple experimental evidence here to validate
these claims. The 15 puzzle has 1013 different states and
a maximum depth of 80. One possible (non-additive) 6-tile
PDB needs only 6MB of storage but has a maximum heuris-
tic value of 55. This is a 106 fold reduction in memory of the
abstract state space over the size of the full state space while
the heuristic error is approximately 1/3 of the true distance.

Now consider the map shown in Figure 1. The original map
has 11,614 reachable nodes in the largest connected compo-
nent. After applying one level of abstraction, there are 3,455
nodes, a 3.36 fold reduction. But, the maximum radius of
the original problem is estimated to be 157 moves, while the
maximum radius in the abstract state space is just 80 moves,
a reduction of a factor of 2. The results explains why the
original results of [Holte et al., 1996b] were not impressive
– the abstractions used were unable to provide very accurate
heuristics on all domains.

4 True Distance Heuristics (TDHs)
This section presents the different versions of TDHs. The
first two versions were also introduced in [Sturtevant et al.,
2009]. The border heuristics variant is new to this work, al-
though similar heuristics have been proposed [Björnsson and
Halldórsson, 2006].

Let N denote the number of vertices in a graph. If the

full all-pairs shortest-path database is available, then the ex-
act distance between two states, d(x, y), can be retrieved and
used as a perfect heuristic between x and y. This situation is
illustrated in Figure 2a. Each row and column corresponds to
a state in the world, and an entry in the grid is marked if the
corresponding distance is stored. Computing such a database
will require as much as O(N3) time which might not be fea-
sible (even in an offline phase). Assuming that the size of the
state space isO(N), storing this database will requireO(N2)
memory—much more than is likely available.

We propose several abstraction methods that reduce the
memory needs by using a subset of the all-pairs-shortest-path
information to compute a heuristic distance between states.

4.1 Differential Heuristics (DHs)
The first method is shown Figure 2b. In this case, lengths of
shortest paths are only stored for k of the N states (k � N).
We denote these k states as canonical states. Because the
database is symmetric around the main diagonal (the graph
is undirected), this is equivalent to retaining only k rows (or
columns) out of the full all-pairs database. If s is one of the
canonical states then d(x, s) is available for any state x. A
differential heuristic (DH) between arbitrary states a and b is:

h(a, b) = |d(a, s)− d(b, s)|
If we use k > 1 canonical states, we can take the maxi-

mum from each of the independent heuristics. A DH can be
built using k complete single-source searches. The time will
be O(kN) and the memory used is also O(kN). Placement
strategies are discussed in [Sturtevant et al., 2009]. The best
approach is to place them as far from each other as possible.

4.2 Canonical Heuristics (CHs)
Our second method uses canonical states in a different way,
illustrated in Figure 2c. Again, we first select k canonical
states. Here, the shortest path between all pairs of these k
states is stored in the database (primary data). Additionally,
for each of the N states in the world we store which canon-
ical state is closest as well as the distance to this canonical
state (secondary data). The shortest-path data (primary data)
is marked in a light-gray in Figure 2 while the secondary data
is slightly darker. Note that in a domain with regular structure
(such as the sliding-tile puzzle), it might be possible to avoid
storing the secondary data, instead computing it on demand.
We call this a Canonical Heuristic (CH). Define C(x) as the
closest canonical state to x. Then:

h(a, b) = d(C(a), C(b))− d(a,C(a))− d(b, C(b))

This can be less than 0, but in practice we always take the
max of the CH and an existing heuristic (e.g. air distance or
Manhattan distance). Let all states which share the same clos-
est canonical state C(x) be called a canonical neighborhood.
If two states are in the same canonical neighborhood then the
DH heuristic rule can be used for them instead.

Canonical states perform best if they are uniformly dis-
tributed [Sturtevant et al., 2009]. Once k canonical states
are chosen, we need to perform k complete single-source
searches. The time complexity is againO(kN). The memory
needed is O(k2) for the primary data.

When necessary (e.g., in non-regular domains) the sec-
ondary data is calculated as follows. We perform a breadth-
first search simultaneously from all the canonical states until
the entire state space is spanned. When a state s is first gener-
ated by the breadth-first search from the canonical state P , P
and d(s, P) are stored in the secondary data. The time needed
for this is O(N) and additional 2N memory might be needed
for the secondary data.

4.3 Border Heuristics
An alternate form of TDHs not described in [Sturtevant et al.,
2009] is motivated by considering how the abstract heuristics
built by Hierarchical A* might be pre-computed. Suppose
we build an abstract state space that is small enough such
that we can store all-pairs-shortest-path data between each
of the abstract nodes in the state space. But, instead of stor-
ing abstract distances, as Hierarchical A* would, we store
actual distances in the state space. As we need the heuris-
tic to be a lower bound on the cost between any two states,
the stored cost between any two abstract states A′ and B′ is
the minimum distance between all states a and b where a ab-
stracts into A′ and b abstracts into B′. This is equivalent to
computing the minimum distance between the borders of two
canonical neighborhoods. This is the main idea behind the
new TDH version which we call border heuristic (BH).

Define a border state as a state which has at least one
neighbor in another neighborhood. The border heuristic
(primary data) between any two states a and b, would be
h(a, b) = d(C(a), C(b)) where d(C(a), C(b)) is the minimal
distance between border states of the two neighborhoods.

This estimate can be improved if we know the distance
from any state to the border of its canonical neighborhood.
In that case we can add that distance to the heuristic estimate
(secondary data). If DB(x) is the distance from state x to
the border of its canonical neighborhood then the heuristic
estimate can be improved to

h(a, b) = d(C(a), C(b)) +DB(a) +DB(b)

The primary data for BHs is calculated by performing
a breadth-first search seeded with border states of a given
canonical neighborhood until all other canonical neighbor-
hoods have been reached. The final data will require O(k2)
memory and will take O(kN) time to compute. When neces-
sary (e.g., in non-regular domains) the secondary data is cal-
culated using the same multi-seed breadth-first search. When
a state s (inside the neighborhood) is first generated at depth
x we set DB(s) = x. Again, additional 2N memory might
be needed for the secondary data.

A B
d(C(a), C(b))d(a, C(a)) d(

b,
 C

(b
))

a

bCanonical Neighborhood

Figure 3: True distance heuristics.

Technique Storage Time to Build
All-Pairs Shortest Path O(N2) O(N3)

DH O(kN) O(kN)
CH(k, 1) O(k2) + 2N O(kN)

BH(k) O(k2) + 2N O(kN)
CH(k, d) O(k2) + 2dN O(kN)

Table 1: Memory and time complexity.

4.4 Comparison between CH and BH
We compare the behavior of border and canonical heuristics
with the help of Figure 3. There are two neighborhoods in
this figure with canonical statesA andB. There are two other
states a (where C(a) = A) and b (where (C(b) = B). For
the sake if the illustration we assume that all true distances are
identical to the straight lines. First, consider what will happen
if both neighborhoods are symmetric circles with radius r (as
is the case for A in the figure). In this case d(a,C(a)) =
r − DB(a) (similarly for b). Assume that shortest distances
between the borders is db. Thus d(A,B) = db + 2r. Now,
BH(a, b) = db +DB(a) +DB(b). The CH will be identical
as CH(a, b) = d(A,B) − d(a,A) − d(b, B) = db + 2r −
(r −DB(a))− (r −DB(b)) = db +DB(a) +DB(b)

However, when the neighborhoods are not symmetric cir-
cles, as is the case with neighborhood B in the figure, there
can either be a gain or loss. In the case of our figure, state b
will have a better heuristic value (between a and b) with the
border heuristic than with the canonical heuristic. However,
if the neighborhood around B is rotated 90◦, b will have a
better heuristic with the canonical heuristic.

4.5 Unified View
Table 1 summarizes the time and memory requirements for
DHs, CHs and BHs. Building any of the databases requires
k single-source searches of the entire state space. However,
for the same amount of memory (e.g. 10N), DHs will have
smaller k, so they can be built more quickly.

Differential and canonical heuristics can be viewed as op-
posite extremes of a general framework. Suppose the avail-
able memory is fixed at 10N . Memory can be filled in one of
two ways. First, 10 differential heuristics can be built, each
of which takes N memory. Alternately, k =

√
8N canonical

states can be selected for a canonical heuristic which will use
k2 = 8N memory. With the additional 2N memory for stor-
ing the secondary data, this will also require 10N memory.
Similarly for border heuristics.

Consider that instead of keeping the distance to the clos-
est canonical state (and its identity) in the secondary data,
we keep the distance to the d closest canonical states among

Total Memory
Closest States Stored Num Canonical States (2dN + k2)

d < k
d = 1 k =

√
8N 10N

d = 2 k =
√

6N 10N
d = 3 k =

√
4N 10N

d = 4 k =
√

2N 10N
d = k

d = 5 k = 5 10N
d = 10 (optimized) k = 10 10N

Table 2: Transition between DH and CH.

the k canonical states available (d < k). We denote this as
CH(d, k). The memory required is 2dN +k2. Our introduc-
tory discussion to CH implicitly used d = 1. When d = k
then every state maintains the exact distance to all k canonical
states— which is actually a differential heuristic.

The possible heuristics using 10N memory are shown in
Table 2. When d < k, both the optimal distance to the clos-
est canonical states and the identity of these canonical states
must be stored in the secondary data. When d = k (logically
a differential heuristic) the distance to all canonical states is
stored. Thus, the identity of the canonical state is not needed,
allowing twice as many canonical states to be used. Addition-
ally, when d = k the primary data of all-pairs-shortest-path
distance between the k canonical states is redundant here, as
it is already stored in the secondary data. This allows us to
reuse the space by doubling d (‘optimized’ in Figure 2).

In this unified scheme, there are many possible heuristic
lookups. For any two states a and b we need to choose two
out of d different canonical states as reference points for the
canonical heuristic; a total of d2 possible lookups. As well,
there could be as many as d valid differential lookups. Clearly
there is a tradeoff; the maximum over multiple heuristic val-
ues yields a better heuristic but at the cost of increased execu-
tion time. In addition, larger d means fewer canonical states.
The border heuristics can be similarly generalized using neg-
ative distances, but we just consider d = 1 here.

The advantage of using d > 1 is shown in Figure 4. The
search is between the start (S) and the goal (G), both of which
are canonical states. While the canonical heuristic will store
the exact distance between these states (16), it will give no
guidance to an A* search as to which nodes are on the optimal
path to G. Consider states a and b. They are equally far
from S (say, 5) so their heuristic value from G will be the
same (16− 5 = 11), they will have the same f -cost (16), and
will both be expanded. But, we can use canonical state C to
improve the heuristic estimate for b. In particular, h(b,G) =
d(C,G)− d(b, C)− d(G,G) = 32− 11 = 21. With a g-cost
of 5, b will have an f -cost of 26 and will not be expanded
(26 > 16). The second lookup can be seen as triangulating
the position of state b to improve its heuristic value.

5 Potential of CH’s in Polynomial Domains
We would like to estimate the error of a CH. Assume that
there are k canonical states which are uniformly distributed.
Thus, each has N/k different states in its neighborhood.

Exponential domains: Assume that the state space grows
exponentially in depth with branching factor b. If r is the

C S G

16

16
32

ab
11

Figure 4: Two heuristic lookups are better than one.

radius of a neighborhood we get br = N/k. Solving for r
gives r = logbN/k. If N = bd where d is the radius of
the search space we get r = logbN/k = logb b

d − logb k =
d − logb k. We chose values such as k =

√
CN where C is

a small constant so that the CH would fit in memory. In this
case r = d − logb(

√
CN) = d − 0.5(logb Cb

d) = 0.5(d −
logb C). As most states will be at the borders of the canonical
neighborhoods, the heuristic estimate between two arbitrary
states is likely to be no better than d− 2r = logb C. As C is
a small constant, this suggests that CH’s will provide no gain
for most states in an exponential domain.

Quadratic domains: Assume that the state space grows
quadratically with the depth. If we assume that r is the radius
of a neighborhood we get r2 = N/k and r =

√
N/k. But,

now N = d2, so r = d/
√
k. Again, let k =

√
CN , in which

case r = 4
√
N/C. The heuristic between two states given

that the true distance is dt can be as low as dt − 2r = dt −
2 4
√
N/C. This implies that the heuristic will be accurate for

states which are far apart, but less for states which are closer
together. In general polynomial domains, we have ri = N/k

and N = di. Thus r = i
√
N/k = 2i

√
N/C.

The outcome from our analysis is that while PDBs seem to
work best for exponential domains (as explained above), CHs
are better in polynomial domains. This analysis is specifically
for CHs, but a similar analysis exists for BHs. A detailed
analysis of DHs is an area of future research.

6 Experimental Results
We now provide experimental results on a number of do-
mains. In all experiments we use the max of an existing
heuristic (e.g. Manhattan distance, air distance etc.) with
the TDH. All times are reported in seconds. The results for
pathfinding overlap with [Sturtevant et al., 2009].

6.1 Pathfinding: Differential Heuristics
Pathfinding is an example of a domain where the entire state
space is usually kept in memory. The real-time nature of this
domain requires finding a path as quickly as possible.

Two types of maps were used which are illustrated in Fig-
ure 5: mazes (left) and rooms (right). In a simple maze there
is only one path between any two points, however we use
corridors width two, which increases the average branching
factor from two to five. The octile-distance heuristic, which
is similar to Manhattan distance except that it allows for di-
agonal moves, can be very inaccurate on mazes. Room maps
are composed of small (16×16) rooms with randomly opened
doors between rooms. Octile-distance is more accurate on
these maps. All maps used here are publicly available.

To begin, we compare the search effort required with the
full all-pairs-shortest-path data to the differential heuris-

Figure 5: Example mazes/rooms (left/right).

Heuristic Value

Nodes Expanded

Ex
pa

ns
io

ns

103

104

h-
va

lu
e

300

330

360

390

Canonical States
100 101 102 103 104 105

Figure 6: Comparison as memory usage grows.

tics. The results in Figure 6 use a 512×512 room map with
206,720 states. The number of canonical states varied from 0
to 125 by intervals of 5. Because we cannot plot ‘0’ canoni-
cal states on a log-plot, the first point denotes the results with
the default octile heuristic. The results are averaged over 640
problems with solution lengths between 256 and 512. The
all-pairs data was estimated by assuming that with a perfect
heuristic only the optimal path would be explored. We drew
a line from the 125 data point to the 206,720 data point (all
pairs) to approximate data in between.

The top of the graph shows how the average h-value grows
as the number of canonical states is increased. Note that the
x-axis is logarithmic. The optimal heuristic value is 384.59
and would require the full all-pairs data and 21 billion heuris-
tic entries. With 125 canonical states (26 million entries) we
get an average heuristic value of 382.04. With just 10 canon-
ical states (2 million entries) the heuristic value is 370.34. In
contrast, the average octile-distance heuristic is 306.83.

The number of node expansions are shown at the bottom
of Figure 6. This is a log-log graph, so the slope of the line
looks much shallower than it actually is. With octile-distance,
21,686 nodes are expanded on average. 10 canonical states
reduces this to 3,440 nodes. 125 canonical states reduces this
further to 760 nodes (29× reduction). The absolute mini-
mum, assuming a perfect heuristic would be 384.6 nodes. A
29× reduction in nodes expanded can be achieved with only
1/1000 of the total memory needed for the full all-pairs in-
formation (which will only achieve an additional reduction of
a factor of two.)

6.2 Pathfinding: Canonical Heuristics
Next, we look at the transition between canonical heuristic
parameters. We begin with the default heuristic, octile dis-
tance. Then, fixing the total memory at 10N we build a
CH(d, k) (where d = {1 . . . 5} and k =

√
(10N − 2Nd))

and a DH(k = 10). The canonical and differential heuristics

h Mazes Rooms
d k nodes h-val time nodes h-val time

Octile 7792 151 0.068 21354 309 0.296
1 1448 2377 611 0.026 8698 372 0.123
2 1254 1845 626 0.022 6011 375 0.091
3 1042 1729 627 0.021 5472 376 0.083
4 724 1776 619 0.023 5646 373 0.092
5 5 1793 610 0.026 14473 337 0.246
10 10 707 636 0.010 3479 370 0.054

Table 3: Results on maze and room maps. Memory = 10N.

were built twice: once with random and once with advanced
placement of canonical states.

We present the average number of nodes expanded by A*,
starting h-cost, and average time for the search. The results
are averaged over 640 problem instances on each of 5 maze
and room maps (3,200 total instances for each map type). All
maps are 512 × 512. Paths were evenly distributed between
lengths 256 and 512 on the room maps and between lengths
512 and 768 on the maze maps. Paths are longer on maze
maps, but fewer nodes are expanded because the search is
more restricted in the maze corridors.

The results for mazes and rooms are in Table 3. For mazes,
the average heuristic between start and goal points is 151 with
octile distance, while the optimized DH (last line) has an av-
erage heuristic value of 636. The DH expands over 11× fewer
nodes than the octile heuristic but is only 6.8× faster due to
the overhead of the heuristic lookups.

For room maps the octile heuristic is more accurate in these
maps with an average value between start and goal pairs of
309, compared to 370 with the best canonical heuristic. There
is a saddle point in the canonical results, where the best re-
sults are with d = 3 (for mazes too). The best time perfor-
mance is with the optimized DH, 5.5× faster than the octile
heuristic with 6× fewer nodes.

The average DH value between the start to the goal is 370,
lower than the CH(d = 3) (376), but fewer nodes are ex-
panded with the DH. To investigate this, we recorded the h-
value of every node expanded over 640 problems on a single
room map. A histogram of values is in Figure 7. Search-
ing with either heuristic expands the same number of nodes
with high heuristic values. But, the DH results in far fewer
nodes expansions with low heuristic values. CHs are inaccu-
rate near the borders of the canonical neighborhoods which
suggests there are enough nodes along these borders to sig-
nificantly increase the cost of search.

6.3 Experiments on the Sliding-Tile Puzzle
To test TDHs on exponential domains we implemented them
on the 8 puzzle. This puzzle has N = 181, 440 different
reachable states. 250 states were randomly generated, and
we ran an IDA* search between every pair of these states, a
total of 31,125 different searches.

We performed two sets of experiments. In the first set we
bounded the size of the memory of the databases and ran-
domly chose a given number of canonical states for the dif-
ferential and canonical heuristics. Table 4 shows the results
where the rows are ordered according to the number of nodes
generated in decreasing order. The first line used Manhattan

Canonical Heuristic

Differential Heuristic

x

no

de
s w

ith
 v

al
ue

103

0

3

6

9

12

Heuristic Value

0 100 200 300 400 500

Figure 7: Nodes expanded with CH and DH.

h d k h start nodes Mem
Manhattan - - 14.21 3000.26 -

DH 1 1 14.26 2941.35 1N
DH 5 5 14.34 2784.32 5N
DH 10 10 14.41 2570.33 10N
CH 1 1204 14.50 2376.23 10N
CH 3 852 14.44 2422.28 10N
DH 50 50 14.95 2184.43 50N
DH 200 200 16.11 832.71 200N

blank in the center
CH 1 20,160 18.55 345.95 1120N
BH - 20,160 18.92 211.31 1120N
CH 3 20,160 19.83 69.42 1120N

Table 4: Results on the 8 puzzle.

Distance (MD) as a benchmark comparison. The next lines
show results with increasing size of memory and with differ-
ent settings for d and k. The gains provided by DHs and CHs
up to 50N are modest. Only with 200N are the gains more
significant. Canonical and differential heuristics will likely
work best in domains where paths cover long distances. This
is possible in quadratic domains such as the pathfinding do-
mains above. This puzzle is an exponential domain and these
methods achieve only modest gains.

To check the limit of of this method, in the next set of ex-
periments we used as much memory as possible and took
advantage of the internal structure of this puzzle. Define a
corner state as one where the blank is in the corner. Edge
and center states are similarly defined. We divided the do-
main to neighborhoods as follows. First, all the 20,160 cen-
ter states were chosen as canonical states, each had the near-
est 4 edge states and 4 corner states in its neighborhood as
shown in Figure 8. In order to relate a corner state to a single
canonical state we ordered the operators such that left-right
moves are performed before up-down moves. Bold arrows
show moves within the same neighborhood while dashed ar-
rows are moves to another neighborhood. The only way to
exit the neighborhood is to have the blank in the rightmost or
leftmost columns and to move it either up or down. It is easy
to see that corner states are two moves away from the canon-
ical state while edge states are one step away. In addition, all
states where the blank is either in the left or the right column
are border states and all other states have a border distance of
1. Thus, secondary data need not be stored and can be easily
determined on the fly.

We then built a CH and BH databases with a table of size

7

86
573
241

86
573
241

86
573
241

876
53
241

876
53
241

876
543

21B B B

B

BB

B

B

B

1 2
3 4 5

1 2
3 4 5

6 7 8 6 8

1 4 2
3 5
6 7 8

Figure 8: Neighborhoods for the 8 puzzle

20, 160 × 20, 160 = 406, 425, 600. At one byte per entry
the total memory used was roughly 200 megabytes, very rea-
sonable on current machines. For both cases we ran 20,210
breadth-first searches, one for each neighborhood. For CH
we seeded the queue with the canonical states while for the
BH we seeded the queue with all six border states. Each time
a canonical state (for the CH) or a border state (for BH) was
first seen we updated the corresponding entry in the database.
The process of generating these databases generated roughly
3 Billion states and a database was built in about half an hour.

Both CH and BH were rather effective and reduced the
number of generated nodes by a factor of 10 compared to MD.
The best performance was achieved with CH when d = 3.
This version generated only 69 nodes which is a 43× reduc-
tion over MD. It is important to note that PDBs are not di-
rectly comparable because they are built for a given goal state
while our searches are between two arbitrary states.

6.4 Border Heuristics for Towers of Hanoi
The four-peg Towers of Hanoi problem (TOH4) is a common
testbed for search algorithms. The task is to move n discs (or-
dered by their size) from their initial stack on an initial peg
to another goal peg. Each action moves one disc from the top
of one peg to the top of another peg with the constraint that
a larger disc cannot be placed on top of a smaller disc. Al-
though theoretical results suggest that CHs won’t work well
in domains that grow exponentially, TOH is unique in that
the solutions also grow exponentially, which is differs from
our PDB analysis. TOH is also unique in that the normal do-
main abstractions for TOH only abstract nearby states, so in
this domain explicit homomorphic abstractions would closely
resemble the implicit abstractions of PDBs.

PDBs [Felner et al., 2004] and compressed PDB [Felner
et al., 2007] have been effectively applied to this problem.
In a compressed PDB several PDB entries are merged into
one entry. In order to guarantee admissibly, only the mini-
mal value among the entries of the original PDB is stored.
If merged entries are highly correlated then the loss of infor-
mation is small and in many cases only a modest increase in
the search effort is caused by the compression despite the fact
that a large reduction in memory is achieved.

A PDB for N discs contains 4N entries. Consider a spe-
cific configuration c of the largestN−K discs. There are now

simple compression simple + border
δ Mem Avg h Nodes Avg h Nodes
0 256M 87.04 36,479,151 87.04 36,479,151
1 64M 86.48 37,964,227 86.48 37,963,596
2 16M 85.67 40,055,436 85.67 38,160,236
3 4M 84.45 44,996,743 84.82 41,854,341
4 1M 82.74 45,808,328 83.49 43,918,650
5 256K 80.85 61,132,726 82.09 51,420,682
6 64K 78.54 76,121,867 80.46 57,708,367
7 16K 74.81 97,260,058 77.63 70,090,868
8 4K 68.34 164,292,964 72.28 102,829,813
9 1K 62.71 315,930,865 68.01 174,873,646

Table 5: Solving 16 discs. The 14-disc PDB was compressed

4K combinations of the K smallest discs that can be placed
on top of c. All these have a different entries in the original
PDB. In the compressed PDB the minimum among all these
configurations is stored in one entry and the size of the com-
pressed PDB is 4N−K (See [Felner et al., 2007]). Note that
each entry of the compressed PDB has a value that was taken
from a specific configuration of the K smallest discs in orig-
inal PDB (the one with the minimal value).

It turns out that this PDB is identical to a BH. Define a
neighborhood to contain all the states (in the pattern space
of N discs) where the N − K large discs are in the same
location. In the compressed PDB, the minimal distance from
all the states of the neighborhood was stored. This distance
belongs to one of the states in the neighborhood. This state
(call it X) must be on the border. That is, you can move from
another neighborhood (where the largest discs are in different
location) to this border state.

So, assume a state Y in the neighborhood of X . In the
compressed PDB we take the distance from X to the goal
as the heuristic for Y . But, we from Y we first need to go
to some border. Thus, based on the analysis behind BHs we
can also add the distance from Y to a border state. A border
state in this problem is a state where at least two pegs do not
have any of the smallest k disc on them and that one of the
large discs can move. We can build a small lookup table for
each configuration of K discs (4K) by running 4K different
breadth-first searches until a state was reached where any two
pegs are empty and thus a large disc can move.

Experimental results for this new enhancement compared
to the published results from [Felner et al., 2007] are shown
in Table 5. The problem had 16 discs and the original un-
compressed PDB contained 14 discs. Each row corresponds
to the number of discs that were compressed (the δ column).
The next three columns give the memory needed for the com-
pressed PDB, the average heuristic over a large sample of ran-
dom states and the number of nodes generated for solving ini-
tial. Similar data is then presented when we added the border
distances too (with the help of the border distance table). The
results clearly show that adding this extra knowledge reduces
the search effort by up to a factor of 2.

7 Conclusions
In the past decade, PDBs have received considerable attention
in the heuristic search literature. This paper explains the lim-

its of PDBs and introduces new memory-based heuristics that
use memory in a novel way to solve more general problems
with arbitrary start and goal states.

We provide analysis that shows that PDBs work best for
exponential domains while CHs are better for polynomial do-
mains. Experimental results showed a important performance
gains of CH for real-time pathfinding as a quadratic domains
but much more modest gains for the 8 puzzle which is an ex-
ponential domains. Considerable research remains. The best
number and location of canonical states is an open problem.
More insights are also needed into the nature of these heuris-
tics to give guidance to an application developer as to which
heuristic (and its parameters) to choose for a given problem.

References
[Björnsson and Halldórsson, 2006] Y. Björnsson and

K. Halldórsson. Improved heuristics for optimal path-finding on
game maps. In AIIDE, pages 9–14, 2006.

[Cullberson and Schaeffer, 1998] J. Cullberson and J. Schaeffer.
Pattern databases. Computational Intelligence, 14(3):318–334,
1998.

[Felner et al., 2004] A. Felner, R. E. Korf, and Sarit Hanan. Ad-
dtive pattern database heuristics. Journal of Artificial Intelligence
Research (JAIR), 22:279–318, 2004.

[Felner et al., 2005] A. Felner, U. Zahavi, R. Holte, and J. Schaef-
fer. Dual lookups in pattern databases. In IJCAI, pages 103–108,
2005.

[Felner et al., 2007] A. Felner, R. E. Korf, R. Meshulam, and R. C.
Holte. Compressed pattern databases. JAIR, 30:213–247, 2007.

[Gasching, 1979] J. Gasching. A problem similarity approach to
devising heuristics: First results. IJCAI, pages 301–307, 1979.

[Goldberg and Harrelson, 2005] Andrew V. Goldberg and Chris
Harrelson. Computing the shortest path: A* search meets graph
theory. In SODA, pages 156–165, 2005.

[Holte et al., 1996a] R. C. Holte, T. Mkadmi, R. M. Zimmer, and
A. J. MacDonald. Speeding up problem solving by abstraction:
A graph oriented approach. Artif. Intell., 85(1-2):321–361, 1996.

[Holte et al., 1996b] R. C. Holte, M. B. Perez, R. M. Zimmer, and
A. J. MacDonald. Hierarchical A*: Searching abstraction hierar-
chies efficiently. AAAI, pages 530–535, 1996.

[Korf, 1997] R. E. Korf. Finding optimal solutions to Rubik’s Cube
using pattern databases. In AAAI, pages 700–705, 1997.

[Pearl, 1984] J. Pearl. Heuristics: Intelligent Search Strategies for
Computer Problem Solving. Addison & Wesley, 1984.

[Silver, 2005] D. Silver. Cooperative pathfinding. In AIIDE, pages
117–122, 2005.

[Sturtevant and Buro, 2006] N. R. Sturtevant and M. Buro. Improv-
ing collaborative pathfinding using map abstraction. In AIIDE,
pages 80–85, 2006.

[Sturtevant and Jansen, 2007] N. R. Sturtevant and Renee Jansen.
An analysis of map-based abstraction and refinement. In SARA,
pages 344–358, 2007.

[Sturtevant et al., 2009] N. Sturtevant, A. Felner, M. Barer, J. Scha-
effer, and N. Burch. Memory-based heuristics for explicit state
spaces. Accepted for publication in IJCAI-09, To appear., 2009.

[Valtorta, 1984] M. Valtorta. A result on the computational com-
plexity of heuristic estimates for the A* algorithm. Information
Sciences, pages 47–59, 1984.

