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Search Problem

« Given:

- Start state

« Goal state

S Successor function| — Defines implicit graph

« Cost function

» Heuristic function
* Find:
» Optimal path between start/goal
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IDA* Refresher

 IDA* does iterative deepening search on f-costs
*f(n) = g(n) + h(n)
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IDA* Refresher

 IDA* does iterative deepening search on f-costs

*1(n) = g(n) + h(n)
* Next iteration f-cost:
- Smallest unexplored from previous iteration
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- f-cost layers grow exponentially
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» What if f-cost layers grew linearly?
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* Happens with non-unit edge costs:

t+2
- STP: Cost of moving tile t: —1
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Why do we need BTS?

If the nodes in each iteration
do not grow exponentially



Getting the next bound
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Getting the next bound

- Can be conservative:
* IDA* (Korf, 1985)
- Can try to build a predictor based on past:
* IDA*cR (Sarkar et al, 1990)
* IDA*im (Burns & Ruml, 2013)
- Can model the state space growth:
« EDA* (Sharon et al, 2014)
» Want to guarantee exponential growth in expansions
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Exponential Search

* Bentley and Yao, 1976
» Algorithm for searching sorted/unbounded array
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Exponential Search

* Bentley and Yao, 1976
» Algorithm for searching sorted/unbounded array

mr 1 T

<<< < < < Binary Search >

- Running time: log(i)
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Nodes and f~costs

- Exponential Search:

* Find value in unbounded sorted array
* Tree Search:

* Find (node expansions) in (f-costs)

* Nodes expansions non-decreasing with f-cost
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Budgeted search

* Like exponential search on f-costs
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Binary Search
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Conclusions

* BTS reduces worst case of IDA*

» Same performance as IDA* if tree grows
exponentially

* IBEX solves similar problems in different contexts
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Conclusions

* BTS reduces worst case of IDA*

» Same performance as IDA* if tree grows
exponentially

* IBEX solves similar problems in different contexts
* Demos & videos online:

* https://www.movingai.com/SAS/
» https://www.movingai.com/SAS/BTS/
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