A Guide to
Budgeted Tree Search

Nathan R. Sturtevant

University of Alberta
Amii Fellow, CIFAR Chair

Malte Helmert
Universitat Basel

XL "

/_/\|<,_:>|<_: Basel NCEEZ ALBE RTA

Talk Overview

- Budgeted Tree Search (BTS) is a new algorithm with
better worst-case guarantees than IDA*

A Guide to Budgeted Tree Search

Talk Overview

- Budgeted Tree Search (BTS) is a new algorithm with
better worst-case guarantees than IDA*

- Companion work to original paper on IBEX

(Helmert, Lattimore, Lelis, Orseau, Sturtevant,
IJCAI 2019)

A Guide to Budgeted Tree Search

Talk Overview

- Budgeted Tree Search (BTS) is a new algorithm with
better worst-case guarantees than IDA*

- Companion work to original paper on IBEX

(Helmert, Lattimore, Lelis, Orseau, Sturtevant,
IJCAI 2019)

- Why do we need BTS?

A Guide to Budgeted Tree Search

Talk Overview

- Budgeted Tree Search (BTS) is a new algorithm with
better worst-case guarantees than IDA*

- Companion work to original paper on IBEX

(Helmert, Lattimore, Lelis, Orseau, Sturtevant,
IJCAI 2019)

- Why do we need BTS?
 How does BTS work?

A Guide to Budgeted Tree Search

Start

Start

-

Goal

Goal

Search Problem

« Given:

A Guide to Budgeted Tree Search

Search Problem

* Given:
 Start state

A Guide to Budgeted Tree Search

Search Problem

* Given:
 Start state
« Goal state

A Guide to Budgeted Tree Search

Search Problem

- Given:

- Start state

- Goal state

» Successor function

A Guide to Budgeted Tree Search

Search Problem

- Given:
- Start state
- Goal state
» Successor function
- Cost function

A Guide to Budgeted Tree Search

Search Problem

« Given:

- Start state

« Goal state

S Successor function| — Defines implicit graph

« Cost function

A Guide to Budgeted Tree Search

Search Problem

« Given:

- Start state

« Goal state

S Successor function| — Defines implicit graph

« Cost function

« Heuristic function

A Guide to Budgeted Tree Search

Search Problem

« Given:

- Start state

« Goal state

S Successor function| — Defines implicit graph

« Cost function

« Heuristic function
* Find:

A Guide to Budgeted Tree Search

Search Problem

« Given:

- Start state

« Goal state

S Successor function| — Defines implicit graph

« Cost function

» Heuristic function
* Find:
» Optimal path between start/goal

A Guide to Budgeted Tree Search

Why do we need BTS?

IDA* Refresher

 IDA* does iterative deepening search on f-costs
*f(n) = g(n) + h(n)

A Guide to Budgeted Tree Search

IDA* Refresher

 IDA* does iterative deepening search on f-costs

*1(n) = g(n) + h(n)
* Next iteration f-cost:
- Smallest unexplored from previous iteration

A Guide to Budgeted Tree Search

IDA* - Unit Costs

IDA* - Unit Costs

f-cost 11
=

7N RN |
| / |

g

f-cost 11

2 States
-cost 13
16 States AN 7N |

| /N |

i AR S

2 States
X8
16 States

X5
/79 States

f-cost 11

f-cost 15

IDA* Worst Case

A Guide to Budgeted Tree Search

IDA* Worst Case

- f-cost layers grow exponentially

A Guide to Budgeted Tree Search

IDA* Worst Case

- f-cost layers grow exponentially
.1

A Guide to Budgeted Tree Search

IDA* Worst Case

- f-cost layers grow exponentially
A +b+b*+b°+ ... + b~ b

A Guide to Budgeted Tree Search

IDA* Worst Case

- f-cost layers grow exponentially
A +b+b*+b°+ ... + b~ b
» What if f-cost layers grew linearly?

A Guide to Budgeted Tree Search

IDA* Worst Case

- f-cost layers grow exponentially

A +b+b*+b°+ ... + b~ b
» What if f-cost layers grew linearly?
.1

A Guide to Budgeted Tree Search

IDA* Worst Case

- f-cost layers grow exponentially

A +b+b*+b°+ ... + b~ b
» What if f-cost layers grew linearly?
A+2+3+4+... +b%x (b’

A Guide to Budgeted Tree Search

IDA* Worst Case

- f-cost layers grow exponentially

A +b+b*+b°+ ... + b~ b
» What if f-cost layers grew linearly?
A+2+3+4+... +b%x (b’

* Happens with non-unit edge costs:

42
« STP: Cost of moving tile t: ——
t+ 1

A Guide to Budgeted Tree Search

IDA* Worst Case

- f-cost layers grow exponentially
A+b+b*+b3+...+b?x b?
» What if f-cost layers grew linearly?
A+2+3+4+... +b%x (b’

* Happens with non-unit edge costs:

t+2
- STP: Cost of moving tile t: —1
l- - -

A Guide to Budgeted Tree Search

f-cost 11

f-cost 11

f-cost 11

f-cost 11

f-cost 11

f-cost 11

f-cost 11

f-cost 11

Why do we need BTS?

If the nodes in each iteration
do not grow exponentially

Getting the next bound

A Guide to Budgeted Tree Search

13

Getting the next bound

« Can be conservative:
 IDA* (Korf, 1985)

A Guide to Budgeted Tree Search

13

Getting the next bound

« Can be conservative:

- IDA* (Korf, 1985)

- Can try to build a predictor based on past:

* IDA*cR (Sarkar et al, 1990)
* IDA*im (Burns & Ruml, 2013)

A Guide to Budgeted Tree Search

13

Getting the next bound

« Can be conservative:

- IDA* (Korf, 1985)

- Can try to build a predictor based on past:

* IDA*cR (Sarkar et al, 1990)
* IDA*im (Burns & Ruml, 2013)

- Can model the state space growth:

- EDA* (Sharon et al, 2014)

A Guide to Budgeted Tree Search

13

Getting the next bound

- Can be conservative:
* IDA* (Korf, 1985)
- Can try to build a predictor based on past:
* IDA*cR (Sarkar et al, 1990)
* IDA*im (Burns & Ruml, 2013)
- Can model the state space growth:
« EDA* (Sharon et al, 2014)
» Want to guarantee exponential growth in expansions

A Guide to Budgeted Tree Search

11111

—®—_o o @

f=11

1 node
[2, 8]

f=11.25
2 nhodes

f=11.25
o 2 nhodes

[4, 16]

f=13.97
11 nodes

f=13.97

11 nodes
[22, 88]

f=17.17
47 nodes

f=17.17
47 nodes

[94, 376]

f=18.32
99 nodes

f=18.32
99 nodes

[198, 495]

f=19.35
117 nodes

20

Exponential Search

* Bentley and Yao, 1976
» Algorithm for searching sorted/unbounded array

A Guide to Budgeted Tree Search

20

Exponential Search

* Bentley and Yao, 1976
» Algorithm for searching sorted/unbounded array

A Guide to Budgeted Tree Search

20

Exponential Search

* Bentley and Yao, 1976
» Algorithm for searching sorted/unbounded array

A Guide to Budgeted Tree Search

20

Exponential Search

* Bentley and Yao, 1976
» Algorithm for searching sorted/unbounded array

|

A Guide to Budgeted Tree Search

20

Exponential Search

* Bentley and Yao, 1976
» Algorithm for searching sorted/unbounded array

|

<<

A Guide to Budgeted Tree Search

20

Exponential Search

* Bentley and Yao, 1976
» Algorithm for searching sorted/unbounded array

i

<< <

A Guide to Budgeted Tree Search

20

Exponential Search

* Bentley and Yao, 1976
» Algorithm for searching sorted/unbounded array

M1

<< < <

A Guide to Budgeted Tree Search

20

Exponential Search

* Bentley and Yao, 1976
» Algorithm for searching sorted/unbounded array

mi 1

<< < < <

A Guide to Budgeted Tree Search

20

Exponential Search

* Bentley and Yao, 1976
» Algorithm for searching sorted/unbounded array

mir 1

<< < < < <

A Guide to Budgeted Tree Search

20

Exponential Search

* Bentley and Yao, 1976
» Algorithm for searching sorted/unbounded array

mir 1 T

<< < < < < >

A Guide to Budgeted Tree Search

20

Exponential Search

* Bentley and Yao, 1976
» Algorithm for searching sorted/unbounded array

mr 1 T

<< < < < < >

A Guide to Budgeted Tree Search

20

Exponential Search

* Bentley and Yao, 1976
» Algorithm for searching sorted/unbounded array

mr 1 T

<<< < < < Binary Search >

A Guide to Budgeted Tree Search

20

Exponential Search

* Bentley and Yao, 1976
» Algorithm for searching sorted/unbounded array

mr 1 T

<<< < < < Binary Search >

- Running time: log(i)

A Guide to Budgeted Tree Search

21

Nodes and f~costs

- Exponential Search:

* Find value in unbounded sorted array
* Tree Search:

* Find (node expansions) in (f-costs)

* Nodes expansions non-decreasing with f-cost

A Guide to Budgeted Tree Search

How does BTS work?

23

Budgeted search

* Like exponential search on f-costs

A Guide to Budgeted Tree Search

23

Budgeted search

* Like exponential search on f-costs

10 =00

A Guide to Budgeted Tree Search

23

Budgeted search

* Like exponential search on f-costs

=272 (2X) f=30.7 (8%X)
10 Jf=o00

A Guide to Budgeted Tree Search

Budgeted search

* Like exponential search on f-costs

=272 (2X) f=30.7 (8%X)
f= 10 Jf=o00

n; = 100

A Guide to Budgeted Tree Search

23

Budgeted search

* Like exponential search on f-costs

=272 (2X) f=30.7 (8%X)
f= 10 Jf=o00

n, = 100 200

A Guide to Budgeted Tree Search

23

Budgeted search

* Like exponential search on f-costs

=272 (2X) f=30.7 (8%X)
f= 10 Jf=o00

n, = 100 200 800

A Guide to Budgeted Tree Search

23

Budgeted search

* Like exponential search on f-costs

=272 (2X) f=30.7 (8%X)
f = 10 Jf=o00
' <200
n, = 100 200 800

A Guide to Budgeted Tree Search

23

23

Budgeted search

* Like exponential search on f-costs

=272 (2X) f=30.7 (8%)

n; = 100 200 800

A Guide to Budgeted Tree Search

Budgeted search

* Like exponential search on f-costs

=272 (2X) f=30.7 (8X)
n, = 100 200 800
Budget:

Stop when exceeded

A Guide to Budgeted Tree Search

23

Budgeted search

* Like exponential search on f-costs

=272 (2X) f=30.7 (8%)

i o

n. = 100 200 800 /V

Budget:
Stop when exceeded

23 A Guide to Budgeted Tree Search

24

Budgeted search

* Like exponential search on f-costs

A Guide to Budgeted Tree Search

24

Budgeted search

* Like exponential search on f-costs

10

A Guide to Budgeted Tree Search

24

Budgeted search

* Like exponential search on f-costs

10

A Guide to Budgeted Tree Search

24

Budgeted search

* Like exponential search on f-costs

10 =00

A Guide to Budgeted Tree Search

24

Budgeted search

* Like exponential search on f-costs

=272 (2X) f=30.7 (8%X)
10 f=o00

A Guide to Budgeted Tree Search

Budgeted search

* Like exponential search on f-costs

=272 (2X) f=30.7 (8%)

A Guide to Budgeted Tree Search

24

Budgeted search

* Like exponential search on f-costs

=272 (2X) f=30.7 (8%)

A Guide to Budgeted Tree Search

24

Budgeted search

* Like exponential search on f-costs

=272 (2X) f=30.7 (8%)

f=10 =00

Il

111214
< < <

A Guide to Budgeted Tree Search

24

Budgeted search

* Like exponential search on f-costs

=272 (2%) f=30.7 (8X)
f=10 f=o
1112 14 18
< < < <

A Guide to Budgeted Tree Search

24

Budgeted search

* Like exponential search on f-costs

=272 (2%) f=30.7 (8X)
f=10 f=o
1112 14 18 26
< < < < <

A Guide to Budgeted Tree Search

24

Budgeted search

* Like exponential search on f-costs

=272 (2%) f=30.7 (8X)
f=10 f=o
1112 14 18 26 42
< < < < < >

A Guide to Budgeted Tree Search

24

Budgeted search

* Like exponential search on f-costs

=272 (2%) f=30.7 (8X)
f=10 f=o
1112 14 18 26 34 42
< < < < < > >

A Guide to Budgeted Tree Search

24

Budgeted search

* Like exponential search on f-costs

=272 (2X) f=30.7 (8%X)
f=10 J =00
1112 14 18 26 30 34 42
< < < < < = > >

A Guide to Budgeted Tree Search

24

Budgeted search

* Like exponential search on f-costs

f=127.2 (2x) f=130.7 (8x)
f=10 f=o
1112 14 18 26 30 34 42
< < < < < = > >
nlog(f)

A Guide to Budgeted Tree Search

24

Budgeted search

* Like exponential search on f-costs

f=27.2 (2x) f=30.7 (8x)
f=10 f=o
1112 14 18 26 30 34 42
< < < < < = > >
2 nlog(f)

0

A Guide to Budgeted Tree Search

24

Budgeted search

* Like exponential search on f-costs

=272 (2X) f=30.7 (8%X)
f=10 J =00
1112 14 18 26 30 34 42
< < < < < = > >

Y nlog(f) < (Y n)log(C*) & N log(C*)
0

0

A Guide to Budgeted Tree Search

24

25

BTS Phases

Find next ~cost bound:

A Guide to Budgeted Tree Search

25

BTS Phases

Find next f-cost bound:
1. Search with conservative 1, © budget (IDA*)

A Guide to Budgeted Tree Search

25

BTS Phases

Find next f-cost bound:
1. Search with conservative f, « budget (IDA*)
2. Grow fexponentially, constant budget

A Guide to Budgeted Tree Search

25

BTS Phases

Find next f~cost bound:

1. Search with conservative f, « budget (IDA*)
2. Grow fexponentially, constant budget

3. Do binary search on f, constant budget

A Guide to Budgeted Tree Search

25

BTS Phases

Find next f-cost bound:

1. Search with conservative f, « budget (IDA*)
2. Grow fexponentially, constant budget

3. Do binary search on f, constant budget

A Guide to Budgeted Tree Search

f-limit: (13.50+14.45)/2=13.97 Previous lteration

nodes: [4,16]
expand: 11

f-limit: (13.50+14.45)/2=13.97 Previous lteration

nodes: [4,16]
expand: 11

f-limit: (13.50+14.45)/2=13.97 Previous lteration

nodes: [4,16]
expand: 11

f-limit: 14.20+2A0=15.20
nodes: [22,88]
expand: 0

EXP

f-limit: 14.20+2A0=15.20
nodes: [22,88]
expand: 0

EXP

f-limit: 14.20+2A0=15.20
nodes: [22,88]
expand: 0

EXP

f-limit: 14.20+2A0=15.20
nodes: [22,88]
expand: 0

EXP

f-limit: 14.20+2A0=15.20
nodes: [22,88]
expand: 0

EXP

f-Ii:ﬂt:-F EXP

expand: 0

EXP

f-limit: 16.20+221=18.20
nodes: [22,88]
expand: 0

BIN

f-limit: (16.20+18.15)/2=17.17
nodes: [22,88]
expand: 0

BIN

f-limit: (16.20+18.15)/2=17.17
nodes: [22,88] —
expand: 0

BIN

f-limit: (16.20+18.15)/2=17.17
nodes: [22,88]
expand: 0

How does BTS work?

IDA*
Exponential Search

With budget { _
Binary Search

IDA" BTS*

IDA" BTS*

33

Conclusions

* BTS reduces worst case of IDA*

» Same performance as IDA* if tree grows
exponentially

* IBEX solves similar problems in different contexts

A Guide to Budgeted Tree Search

33

Conclusions

* BTS reduces worst case of IDA*

» Same performance as IDA* if tree grows
exponentially

* IBEX solves similar problems in different contexts
* Demos & videos online:

* https://www.movingai.com/SAS/
» https://www.movingai.com/SAS/BTS/

A Guide to Budgeted Tree Search

