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Abstract

Abstraction and refinement is a common approach used in
games to improve the speed of pathfinding by planning in an
abstract space and then refining abstract paths to traversable
paths. While there are many variants of this approach that
have been developed and studied, research on this problem
has largely ignored the problem of pathfinding with terrain
types, terrain costs, and dynamic terrain. This paper studies
the problem of pathfinding in domains with terrain costs and
proposes an abstraction approach that is built around handling
terrain costs and dynamic terrain. The resulting approach is
able to handle costs in a way that existing approaches do not,
and provides a good balance between memory usage, path
quality, and pathfinding speed.

1 Introduction and Overview
Abstraction and refinement approaches, also known as hi-
erarchical pathfinding, have a long history (Holte et al.
1996) and can be very effective. Generally speaking, ab-
straction techniques require a small amount of memory and
allow small amounts of suboptimality in exchange for large
speedups in pathfinding. This approach was applied on top
of a grid representation in Dragon Age: Origins (Sturtevant
2007), and more recently over a voxel representation in Cas-
tle Story (Alain 2018).

But, existing work has focused primarily on the prob-
lem of moving through uniform cost terrain. Although
some work has experimented with non-uniform terrain costs
(Mould and Horsch 2004; Harabor and Botea 2008), no
work has looked at the problem of hierarchical pathfind-
ing in a dynamic world with changing terrain types and
costs. Work in this area is needed, because incorporat-
ing terrain costs in search typically weakens the heuris-
tic, making the pathfinding problem more difficult, and in-
creasing the need for faster pathfinding. Terrain costs are
particularly important for making pathfinding more real-
istic by adding interesting constraints on how characters
move in the world (Kapadia et al. 2013; Sturtevant 2013;
Ninomiya et al. 2015). With terrain costs optimal pathfind-
ing is particular difficult (Mitchell and Papadimitriou 1991),
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because the optimal path should ‘refract’, in a similar man-
ner to how light refracts when it passes from air to water, as
it passes from terrain of one type to another, which motivates
the need for suboptimal approaches. Furthermore, some al-
gorithms require pre-processing (Mata and Mitchell 1997;
Aleksandrov, Maheshwari, and Sack 2000), which makes
the approaches more difficult to apply when terrain changes
dynamically at runtime.

The research in this paper was motivated by and is the
result of an ongoing collaboration between the University
of Alberta and Improbable Inc’s Canada studio. The work
represents a first approach to improving the performance
of pathfinding with weighted terrain so that significantly
different weights can be used to dynamically create novel
and unique behaviors for different character types in the
game. In this context, the paper makes the following con-
tributions. First, it describes a method of dynamically ab-
stracting a map based on terrain types, which we call a Dy-
namic Terrain Abstraction. The approach assumes that there
are a small number of terrain types in the map, each with
different cost, but the approach can be used on both grids
or triangle/polygon meshes. The paper then shows how to
perform abstract pathfinding and refinement from this repre-
sentation, describing a number of design choices that may
influence the performance of the approach. The approach
is then evaluated in comparison to algorithms such as A*,
Weighted A*, and NBS. The resulting implementation is ap-
proximately 50x faster than optimal pathfinding algorithms.
When compared to suboptimal algorithms with comparable
solution quality, the approach is still more than 10x faster.
Thus, this represents an important approach to pathfinding
with terrain costs.

2 Related Work
A* (Hart, Nilsson, and Raphael 1968) is the canonical al-
gorithm for pathfinding in games, but it is known for being
slow, as it finds optimal paths and does not take any input
besides a heuristic and the state space to search. Thus, many
papers claim to have approaches that are ‘better than A*’.
But, what is usually meant by this is that something new
has been added to the basic A* algorithm to improve its per-
formance. This includes things like better heuristics (Sturte-



vant et al. 2009), different constraints on successor genera-
tion (Harabor and Grastien 2011), or different search repre-
sentations (Botea, Müller, and Schaeffer 2004). One of the
few alternatives to unidirectional A* search is bidirectional
search. Near-Optimal Bidirectional Search (NBS) (Chen et
al. 2017) is a recent bidirectional algorithm which is guar-
anteed to do no more than twice the work of A* or any other
algorithm, but can be arbitrarily better in practice. Bidirec-
tional search is currently not used broadly in practice, but
the weakening of the heuristic that occurs from the different
terrain types can be handled by bidirectional search (Barker
and Korf 2015).

A* is commonly used as part of the abstraction/refinement
process in hierarchical pathfinding approaches including
Hierarchical Pathfinding A* (HPA*) (Botea, Müller, and
Schaeffer 2004) and Partial-Refinement A* (PRA*) (Sturte-
vant and Buro 2005). These papers describe abstraction ap-
proaches that use A* to find a path in an abstract graph be-
fore refining the path into the actual search space. The re-
finement process also uses A* (with local subgoals), the re-
sults of which can be cached. PRA* was adapted to ship in
Dragon Age: Origins using a memory-efficient abstract rep-
resentation (Sturtevant 2007). Variations on this approach
have been studied with other search techniques used at the
abstract layer (Sturtevant and Geisberger 2010). They have
also been applied to dynamic worlds (Sturtevant 2011),
adapted to work with navigation meshes (Pelechano and
Fuentes 2016), and in 3D state spaces (Wardhana, Johan, and
Seah 2013). Theoretical bounds for path quality and total
planning time have also been developed (Bulitko et al. 2007;
Sturtevant and Jansen 2007). Other work has looked at
alternate representations for planning, but not necessar-
ily using hierarchical methods (Ferguson and Stentz 2006;
Brewer 2017).

Researchers have recognized a range of scenarios which
require planning in weighted terrain (Kapadia et al. 2013;
Sturtevant 2013; Ninomiya et al. 2015). Weighted terrain
has also been explored suboptimally in Theta* (Daniel et
al. 2010) and has been used experimentally with weighted
terrain (Mould and Horsch 2004). The only work which has
modeled weighted terrain (along with variable-sized agents)
is HAA* (Harabor and Botea 2008). This is important re-
lated work, but it requires re-computing edge costs for the
entire map if the relative cost of a terrain changes at run-
time.

3 Problem Definition
Imagine a world populated by both people and deer. While
everyone is able to move through all types of terrain, each
creature type has preference for its own terrain. People pre-
fer to travel on roads, while deer prefer to travel in the woods
and off of the trails used by humans. But, outlaws may pre-
fer to avoid roads when possible. If a fire is started in the
woods, though, all creatures might then want to avoid the
fire. Speaking generally, the problem studied in this paper
is how to perform pathfinding in a world with different ter-
rain types, where each player in the game has their own dy-
namic preferences about how to travel. This problem is re-
lated work in multi-criteria objectives for pathfinding (Funke

and Storandt 2013), but with more dynamic costs.
More formally, the input to a search problem is a map

or a state space consisting of a set of primitive locations in
Euclidean space, whether grids or polygons, which can be
connected to form a graph G = {V,E}. It is assumed that
there are a finite number of discrete edges between locations,
and that general movement through free space is not consid-
ered as part of the search. Each location v ∈ V is associated
with a specific terrain type t(v) with cost tc(v). The cost of
traversing an edge e = {vi, vj} depends on the cost of the
terrain being traversed. Assuming that d(e) = d(vi, vj) is
the distance between vi and vj , the cost of this edge is de-
fined as c(e) = c(vi, vj). In grids it is assumed that half the
edge is traversed at cost tc(v1) and the other half is traversed
at cost tc(v2) so c(e) = d(e)(tc(v1) + tc(v2))/2, but other
definitions can be used in other representations. Note that,
the length of an edge, a measure of distance, is a different
measure than the cost of an edge, which measures the cost
of moving a given distance.

In addition to the search graph, a search problem is also
defined by a start state vs, a goal state vg , and a heuristic
function h(vi, vg). The heuristic is assumed to be admissi-
ble meaning that h(vi, vg) ≤ c(vi, vg). The goal is to return
a path between vs and vg . It is assumed that an algorithm
for solving search problems will be presented sequentially
with many different search problems, and between any two
problems the search graph is allowed to change. Any algo-
rithm that solves this problem must balance the total mem-
ory used, the time required to find a path, and any time for
static processing of G. There is no single correct balance
between these measures; instead there is a pareto-optimal
frontier of approaches (Sturtevant et al. 2015) which possi-
bly provide the best performance depending on the needs of
a specific application.

4 Dynamic Terrain Abstraction
This paper proposes a Dynamic Terrain Abstraction (DTA)
approach to solve dynamic terrain search problems. The ap-
proach builds most closely on the minimum memory (MM)
abstraction used for Dragon Age: Origins (Sturtevant 2007).

In the MM abstraction, the map is divided into sectors,
large grid squares of uniform size. Then, all groups of states
within a sector that form a connected component (can be
reached without leaving the sector) are abstracted into a sin-
gle region. Each region becomes a node in an abstract graph
G′. Edges are added between regions that are adjacent (have
adjacent states in G). Because all connected states within a
sector are grouped into a single region, edges in G′ are only
added between regions in different sectors.

This is illustrated in the left portion of Figure 1, with the
colors representing a variety of different terrain types and
black representing blocked terrain. The 32x32 grid is bro-
ken into 16x16 sectors. All sectors have a single region ex-
cept the lower-left region, which is split into two regions
by the obstacle. Ignoring terrain types will cause paths to
pass through regions of different cost. The middle of Figure
1 shows the HPA* representation of the same state space.
The HPA* representation is a dual representation of the MM
abstraction. In the MM abstraction, nodes represent regions
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Figure 1: The Dragon Age MM abstraction (left), an HPA*
abstraction (middle), and the dynamic terrain abstraction
(right).

of space, and edges represent transitions between those re-
gions. In the HPA* abstraction edges represent regions of
space and nodes represent the transitions between those re-
gions. HPA* can incorporate terrain costs into abstract edges
(Harabor and Botea 2008), but it does not directly reason
about regions of a given terrain type.

The DTA makes a number of changes from the basic MM
approach. First, states are only abstracted together if they
have the same terrain type t(v). As before, abstracted states
form regions, which are vertices in the abstract graph. But,
because a single sector may contain several terrain types,
a sector can also have several adjacent regions. Edges are
added to G′ if two different regions have adjacent states in
the original graph. Thus, there may now be internal edges
between regions within a single sector in addition to edges
between regions in different sectors. Each region is associ-
ated with a single representative state in the region, which is
used as the location of the region in G′ and for computing
edge and heuristic costs. The representative state is the state
closest to the average location of all states in the region.

This is illustrated on the right side of Figure 1. There is
now one vertex in G′ for each region of different cost in a
sector. Edges can be found within a sector between regions
of different costs, and between regions in different sectors.

The cost of an edge in G′ is defined in a similar manner to
the edge costs in G. The length of an edge is the distance be-
tween the two representative states, and the cost of an edge
takes into account the terrain type for the two representative
states by splitting the cost between them. This may be inac-
curate, because in G the regions may not be uniformly sized.
If this is too inaccurate, it is possible to compute edge costs
directly, something that will be discussed later in the paper.

The heuristic in G′ is the heuristic distance between the
two states, ignoring the terrain costs. This is because there
may be a very small edge between the start state and a neigh-
bor which then leads to the least-cost terrain type for the
remainder of the path. This heuristic is both simple to com-
pute, but is also the same in both the forward and backwards
directions, ensuring that bidirectional search can be used.

To facilitate changes to the terrain, the DTA stores each
sector independently, with a data structure containing the
terrain type of each state in the sector, a list of regions in the
sector, and a list of outgoing edges between sectors. When

Figure 2: The dynamic terrain abstraction on a larger map
with five different terrain types.

the map changes and the regions inside a sector are altered,
the regions in the sector must be re-computed and the edges
between neighboring regions need to be re-built.

A larger example of the DTA abstraction is shown in Fig-
ure 2. In this figure there are 8x8 sectors overlaying the map,
with different regions for each sector. There are 6 types of
terrain, each shown in a different color, with the edges in the
DTA drawn in green. Previous abstraction methods would
build the abstraction as a uniform grid, since all cells are
connected within each sector. Thus, there would be a single
region in each sector. Looking at the upper-left sector, there
are three terrain types in this sector, a road (in yellow), trees
(in green), and a valley (in black).Within the sector, there are
nodes for each of these terrain types as well as edges within
the region between the road and the trees and between the
road and the valley.

Using this abstraction, if it is desirable for a character to
walk along the road, the road can be given the default terrain
cost (1), and all other terrain can be given a higher cost. Be-
cause there are abstract regions (nodes in G′) all along the
road, it is easy to plan and stay inside these regions, some-
thing that cannot be done without explicit representation of
terrain types. Thus, even if the road takes a more circuitous
route, characters will automatically stay on the road when
planning, and not accidentally try to cut corners through bits
of forest or lakes. The exact details of how this work de-
pend on decisions of how refinement is performed, which
has been discussed elsewhere (Sturtevant 2007).

One key feature of the DTA is that no additional mem-
ory is required to support different cost functions for each
character in the game. The abstract edge costs are estimates
based on the weight of each terrain type and the length of
abstract edges. Thus, they can be dynamically modified at
runtime to achieve any desired pathfinding behavior.

4.1 Implementation
Regions are built for the abstraction by doing a breadth-first
search (BFS) from each unlabeled state in a sector. This BFS
is limited to stay within states of the same terrain type in the
sector, and states are labeled with their region id during the
BFS. After each state’s region is labeled, one further itera-
tion through the sector looks at the neighbors of each cell to



identify if they are in a different sector/region. If they are, an
edge is added between them.

When the map is changed, the low-level terrain type for
a particular cell is modified. If the modification is local,
meaning that the change is not on the edge of a sector,
and all neighbors of the changed cell are still connected
through neighbors with the same region type, then no fur-
ther work is needed. But, if the broader connectivity of a
region is changed, then the sector is rebuilt and edges are
re-computed. A sector is re-built by re-computing regions,
as described above. When a sector is rebuilt, edges are re-
computed both in that sector and in the neighboring sectors,
as their edges may be influenced by the change.

Given a pathfinding request between a start and goal state,
the DTA must first localize the start and goal state onto the
G′. This can either be done by storing the region explicitly
for each state or by doing a BFS within the region to find
the representative state which identifies the region. Once the
start and goal are localized, a search can be performed in G′
to find an abstract path between the abstract start and goal.
This path must then be refined in order to return a path be-
tween the actual start and goal states. The refinement process
uses each successive representative state as a subgoal along
the path. So, if an abstract path {v0, v1, v2, v3) is found, it
can be refined in three steps. First, by planning between start
and v1, and then by planning from v1 to v2. Finally, a path
is found from v2 to the goal. Note that the refinement pro-
cess skips the first and last states along the abstract path,
since these states are in the same regions as the start and
goal respectively. Note when using the DTA, it is possible
for an agent to start following a path as soon as the first seg-
ment has been refined, instead of waiting for a complete path
(Sturtevant and Buro 2005). This works because, when us-
ing abstraction approaches, a path in G is guaranteed to exist
once a path in G′ has been found (Bulitko et al. 2007).

4.2 Parameterizations and Performance
There are many enhancements which can be used with the
DTA and parameterizations of the search which will impact
performance. We describe some of these enhancements here.
A select subset of enhancements will be included in the ex-
perimental results.

First, many different pathfinding algorithms can be used
both in G′ and in G. Candidates we consider here include
A*, which finds optimal paths, NBS, a bidirectional algo-
rithm which finds optimal paths, and Weighted A*, which
finds paths which are w-optimal for some fixed parameter
w. These algorithms can be used for planning directly in G,
or with the DTA both for planning in G′ and for refining path
segments in G. In the experimental results we will show that
Weighted A* can find paths quickly in G, but that the qual-
ity of those paths is poor. Thus, the DTA has better overall
performance.

Second, better heuristics can be built in either G or G′.
Example approaches include compressing the full all-pairs
shortest-path data (Botea and Harabor 2013), building dif-
ferential heuristics (Sturtevant et al. 2009), or building in-
expensive Euclidean embeddings (Cohen et al. 2018) for
use as heuristics. Each of these approaches trade compu-

tation and memory for faster search. These are interesting
approaches for future work, as they can be applied to search
both in G and G′. But, until more data is available regarding
how often maps change in practice, it is difficult to evaluate
how much time it is worth spending doing pre-computation
on maps. Another factor which will determine whether it is
worth building heuristics is the number of different character
types that would need heuristics. If there are only 1-2 char-
acter types in the world, or if the majority of pathfinding re-
quests are made by a single character type, then the overhead
of building heuristics may be effectively amortized across
pathfinding requests. With more character types it could be
important to either only build heuristic for a subset of char-
acters, or share heuristics between character types (making
them less accurate) in order to reduce the precomputation
time or the memory overhead.

Third, the quality of paths can be improved by comput-
ing more accurate edge costs, and the speed of pathfinding
can be increased by caching the result of edge refinement.
The edge costs in G′ are just estimates, but they can be com-
puted exactly with a low-level search. This would improve
distance estimates when an edge is not evenly split between
two different terrain types. If paths are also stored, then the
amount of search needed to re-construct the final path can
be greatly reduced, although this information could be in-
validated when the map changes. Either of these approaches
increases the total memory needed to store the abstraction,
and, as with heuristics, may require many copies of the pre-
computed data as the number of character types increases.

More broadly, there are broad domain-specific questions
about the design of maps and weights which will influence
performance. For instance, the number of terrain types and
the relative weights of each terrain type will determine the
suitability of the DTA approach. The approach would not
be effective on a map where each cell has a random ter-
rain type, as no abstraction would actually occur in practice.
Similarly, the runtime distribution of queries will also have
a large impact on performance. If characters always walk
between terrain types that are inexpensive for their charac-
ter profiles, then the cost of pathfinding will be significantly
reduced over the case where characters must walk through
expensive terrain to reach their destinations.

5 Experimental Results
Experimental results are used to illustrate the potential of the
DTA, and to compare it to alternate approaches. The source
code and maps used for the experiments in publicly avail-
able1. Experiments were run on a laptop with a 2.3GHz Intel
Core i7 processor running macOS Mojave.

Most maps in existing benchmark sets (Sturtevant 2012)
do not have significantly different terrain types across maps.
So, new maps were needed for our testing purposes. We used
a public map generator2 to generate 20 maps. 2048x2048
screen captures of these maps were saved for use in the ex-
periments, with the intent to use pixel colors for terrain types
in an 8-connected grid map. Although maps appear to have

1https://github.com/nathansttt/hog2/
2https://www.redblobgames.com/maps/mapgen2/embed.html



Abstract Regions Edges Memory Repair Time

None - - 4,194,304 -
32 8,195 59,896 5,259,154 0.31855
16 24,112 183,132 7,541,755 0.08675
8 79,774 621,017 15,783,227 0.02345

Table 1: Memory overhead and overhead of dynamic repairs
to the DWA.

a limited number of distinct terrain types, the actual image
data was far from uniform and contained pixel-level smooth-
ing. Thus, colors were masked to create at most 64 terrain
types, but in practice less than 16 terrain types resulted from
each map. A final processing step merged regions with less
than 80 pixels in their neighbors. These were then converted
to text files and used as grid maps for experimentation. 250
random start and goal locations were chosen on each map
(5,000 problems total over 20 maps) and used for the exper-
iments reported here.

5.1 Memory Usage and Repair Cost
First, we look at the memory required to store the DTA and
to make change to the terrain at runtime. These results are
shown in Table 1. In this experiment we vary the size of
the sector, and measure the number of regions and edges in
the graph, the total memory required to store the graph, and
the average time to repair/rebuild a single sector (in ms).
To measure the repair time, we rebuilt each sector in turn
(including re-computing the edges between the neighbors),
and then divided this time by the number of sectors to get
the average repair time per sector. This is the cost of a full
rebuild, not an internal modification in a sector, which can
be much cheaper. This was repeated for each of the 20 maps.

The default map uses 1 byte per cell to store the terrain
type; on 2048x2048 maps this requires 4MB of storage. The
32x32 DTA required 5MB of memory, with approximately
1MB of overhead for the abstraction and 4MB for the map,
while the 8x8 DTA required 15MB of memory, with 11MB
for the abstraction. The advantage of the smaller sector size
is that the sector contains fewer cells and thus be repaired
more quickly when the maps change. Changes to the 8x8
DTA average 0.023ms per repair versus 0.319ms per repair
for the 32x32 DTA. Because repairing a sector is a local op-
eration, the time required is independent of the map size,
unlike rebuilding pre-computed heuristics.

5.2 Pathfinding Cost
Next we study the cost of finding partial and full paths when
solving each individual problem and look at the path qual-
ity of different algorithms. The results for these experiments
are found in Table 2. The first column is the algorithm being
tested. The second column is the total node expansions re-
quired to build a complete path. The third column is the node
expansions required to return the first segment of walkable
path. The fourth column is the average path length, and the
last column is the average time to find a complete path. In
this table, the terrain costs for each map are randomized with

Abstraction

Optimal

Weighted A*

Figure 3: The optimal path as compared to the path from the
abstraction and weighted A*.

costs between 1 and 4 at intervals of 0.2.
The first two entries in the table, A* and NBS, are find-

ing optimal paths. A* searches unidirectionally, while NBS
searches bidirectionally. NBS’s data structures are slightly
more expensive per node expansions. With the cost range we
selected, both algorithms perform similar numbers of node
expansions. If the range of costs is reduced (e.g. to a maxi-
mum of 2), then A* will outperform NBS. However, if the
range of costs is increased, A*’s performance will continue
to degrade relative to NBS. There are only 4 million states in
each map, so the optimal algorithms are searching one quar-
ter of the map per problem instance. This illustrates why
terrain costs are not often used in practice – they effectively
weaken the heuristic and increase the cost of pathfinding.

Weighted A* (WA*) can be used to find suboptimal so-
lutions and reduce the total pathfinding cost. With a weight
of 4, WA*(4) find solutions that are 37% longer than opti-
mal, while doing 238x less work than NBS. Thus, it might
seem that WA* solves the problem of using terrain costs.
However, this is not the case. In the maps used here, it is
always possible to walk straight from the start to the goal ig-
noring terrain types. It ends up that WA*, with large enough
weights, is just returning the path directly from the start to
the goal, ignoring the terrain. This is illustrated in Figure 3
where the task is to find a path from the left to the right side
of the portion of the map shown. In this example the lighter
terrain is more expensive to cross and the darker terrain is
less expensive. WA*(4) finds a path that has near-minimal
distance, but suboptimal cost. The cost of the path found
is 1879 while expanding 6657 states. NBS finds the opti-

Algorithm Nodes (all) Nodes (first) Path Len Time (ms)

A* 1,089,811 - 2,406 625.9
NBS 1,044,995 - 2,406 879.3
WA*(2) 349,865 - 2,567 180.7
WA*(3) 84,413 - 2,907 39.0
WA*(4) 4,392 - 3,298 2.6
DTA(8)[A*] 28,907 22,228 2,456 25.4
DTA(8)[NBS] 27,702 21,024 26.9
DTA(16)[A*] 19,366 7,409 2,495 11.4
DTA(16)[NBS] 18,923 6,971 2,495 10.8
DTA(32)[A*] 26,016 4,031 2,560 10.8
DTA(32)[NBS] 25,802 3,850 2,560 10.8
DTA(32)[w1.2] 21,700 3,837 2,561 9.6

Table 2: Node expansions and path quality.



Figure 4: The navmesh generated by Recast which is already
divided into large sectors (red).

mal path with cost 1136 while expanding 300k nodes, while
DTA find a path with cost 1295 while expanding 8744 nodes.
While the DTA does slightly more work than WA*(4) on this
problem, it is finding a path that does a much better job of
respecting the actual terrain costs in the map. Returning to
Table 2 we see that only WA*(2) has similar path quality to
DTA, but it expands at least 10x more nodes that the DTA
approach. Furthermore, with the DTA an agent can begin
moving once the first path segment is computed, meaning
that delays waiting for pathfinding requests can be further
reduced. Note that we didn’t experiment with previous ab-
straction techniques here, as they would either produce paths
similar to WA*(4) that ignore terrain costs or, perhaps worse,
would be forced to travel between poorly chosen region cen-
ters, resulting in equally poor quality paths.

In the bottom of Table 2 we report several variants of the
DTA approach. As we increase the sector size the number
of node expansions required before the first path segment is
complete is reduced. This is because the size of G′ is smaller,
reducing the cost of the search. But, the larger abstraction
results in slightly longer paths. The paths returned using
the 8x8 DTA are only 2% suboptimal on average, while the
32x32 DTA is 6% suboptimal. With the 8x8 and 16x16 DTA,
A* is used to find the abstract path and to refine the path seg-
ments. With the 32x32 DTA, we also consider using NBS
to find the abstract path. This results in a very small im-
provement over A*, but using a broader range of weights
would likely result in a larger performance gain for NBS.
The other modification we made was to use WA*(1.2) dur-
ing the refinement step instead of A*. This has almost no
impact on path quality, but reduced the average node expan-
sions to 21,700 for the full path and 3,837 for the partial
path. This is still more node expansions than we would pre-
fer (a few hundred would be better), but these gains make
it computationally feasible to consider a broad range terrain
costs during pathfinding. In alternate representations, such
as polygon navmeshes, there are typically vertices than what
is found in a grid map.

5.3 Unreal Implementation
Navigation meshes, commonly found in modern video
games, are well suited for use with the DTA. The Unreal En-
gine 4 uses Recast for its navigation mesh and can be easily
abstracted into dynamic regions. Recast generates a map’s
navigation mesh by creating polygons within tiles through-

out the map. This can be seen in Figure 4, where polygons
are clipped to the edge of square tiles in the map. The size
of the tiles is a user-controlled parameter.

These tiles align with the sectors used in DTA for build-
ing abstract regions. We can separate the polygons within a
tile into groups with a simple connected component labeling
algorithm. We group all connected polygons that have same
navigation type within a tile to form abstract regions. Dif-
ferent navigation types can be implemented using navmesh
modifiers which allow polygons to be marked with types
representing modified pathfinding costs. We use the mean
location of the polygons within an abstract region for its
location. After creating the abstract regions, we can check
which polygons contain neighbors to polygons in different
abstract regions allowing edges to be built between the ab-
stract regions.

Maintaining the abstract graph as the underlying naviga-
tion mesh changes is inexpensive. When a tile is updated in
the Recast navigation mesh the corresponding sector is up-
dated with the same repair operation used in grids. This is
done by discarding all the abstract nodes within that sector
and rebuilding the abstract nodes. After the abstract nodes
are rebuilt edges can again be added by checking neighbor-
ing polygons belonging to different abstract regions.

In initial experiments with DTA on a relatively simple
1km by 1km open world map with a tile size of 2000,
DTA reduced 102,193 polygons to 7,338 abstract nodes with
13,298 edges. This implementation is continuing to be de-
veloped for use in an unannounced game, with a plan to
freely release the DTA implementation. We tested our im-
plementation of the DTA on this map against Unreal Engine
4’s out of the box pathfinding by running 5,200 queries rang-
ing from 1,685 unreal units (UU) to 138,383 UU. The aver-
age time for Unreal to solve these problems was 5.64 (95%
confidence interval of ±0.12ms). With the DTA this was re-
duced to 1.68 (±0.03ms). However, DTA’s path length was
82,371 UU versus 77,722 UU for Unreal. Our initial experi-
ments with the DTA have been very promising for its use in
modern video game pathfinding.

6 Conclusions

This paper has shown how to modify abstraction techniques
to account for terrain costs. A new abstraction, DTA, is de-
signed for dynamic maps with terrain costs. The abstraction
approach significantly outperforms exiting techniques, able
to find paths that are within 2-6% of optimal on average,
while expanding far fewer nodes in practice.

Given the work in this paper that establishes the feasibil-
ity of planning with complex terrain costs, future work will
look to understand the real-world conditions under which
planning requests occur, including the magnitude and fre-
quency of changes to the terrain, the frequency of pathfind-
ing requests, the number of different creature types, the rate
at which player preferences change, and other information
that be used to tune the parameters of DTA to maximize
overall performance.
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