
A Study of Forward versus Backwards Endgame
Solvers with Results in Chinese Checkers

Nathan R. Sturtevant1 and Abdallah Saffidine2

1 Department of Computer Science
University of Denver

Denver, CO, USA
sturtevant@cs.du.edu

2 School of Computer Science and Engineering
University of New South Wales

Sydney, Australia
abdallahs@cse.unsw.edu.au

Abstract. When writing an endgame solver that uses retrograde anal-
ysis, there are many significant choices that can be made about how to
implement the solver. While significant work has been done on building
solvers for many games, including Chess and Checkers, we were surprised
to find that there has not been a comprehensive study identifying the
choice of solver enhancements. This paper represents preliminary work in
this direction, exploring several types of forward and backwards solvers,
and reporting preliminary results on small versions of Chinese Checkers.

1 Introduction

Endgame databases have been a key component of game-playing programs in
games like Checkers [6, 1] and Chess [8, 5], where they contain precise information
that is easier to pre-compute than it is to summarize in heuristics or machine-
tuned evaluation functions. Despite extensive literature on specific endgames,
there is no definitive work describing the different ways that endgame solvers
can be built with the trade-offs associated with each of these solvers.

Thus, the goal of this paper is to describe a variety of techniques that can be
used to build end-game databases. We look at techniques that work backwards
from proven positions, techniques that search forward from unproven positions
(looking for proven positions), and hybrid approaches. We discuss the trade-offs
of each approach theoretically and then validate these results on a small game
of Chinese Checkers.

We assume that we are attempting to prove all states in the state space in-
stead of finding small proof trees [4, 2]. For simplicity, we also do not consider
the impact of external memory during search. Endgame databases are typi-
cally larger than available RAM and must be built and accessed on disk. In
this way, there is significant overlap between external-memory techniques used
for breadth-first search [3, 9, 7] and the types of techniques necessary to build
endgame databases in memory. Given this complexity, this is left for future work.

2 Background

There are three primary approaches that can be used to build an endgame
solver. We roughly classify these into backwards solvers, forward solvers, and
hybrid approaches.

2.1 Informal Description

The primary operation in retrograde search is to expand states and propagate
proven values (wins and losses) throughout the state space. We classify ap-
proaches according to the choice of states that are expanded. A backwards solver
is one that expands and finds the predecessors of proven states, checking to see
if the parents of these states can be proven [8]. A forward solver is one that
expands unproven states, checking to see if the state can be proven given its
current children. We can also consider a hybrid variant of the forward solver,
combining ideas of the two approaches. A hybrid solver can, for instance, use
the general forward approach in most cases, but immediately propagate wins (at
min nodes) or losses (at max nodes) backwards [6].

2.2 Model

Definition 1. A two-player normal-play game is a tuple 〈Σ,→, τ〉 where Σ is
a set of states, →⊆ Σ × Σ is a transition relation, and τ : Σ → {max,min} is
a turn function.

For any pair of states s, s′, we write s→ s′ to indicate that there is transition
from s to s′. We partition the set of states according to whose turn it is Σmax =
{s ∈ Σ, τ(s) = max} and Σmin = {s ∈ Σ, τ(s) = min}.

The expression normal-play refers to the understanding that a player loses
when it is their turn but they do not have any possible transition. This assump-
tion is very common in Combinatorial Game Theory and often allows for more
elegant formal treatments. Keeping in mind that the transition function of other
game representations can easily be adapted to fit this formalism, we will also
adopt this convention.

The game-theoretic outcome of a state can then be defined as the least fix-
point of the following relations. A max state is won if it has a won successor
and a min state is won if all its successors are won. Similarly, a max state is
lost if all its successors are lost and a min state is lost if it has a lost successor.
We call drawn states, states that are neither lost nor won. We use the mapping
ν : Σ → {win, loss,draw} to denote the outcome of states. The height or distance
to mate is δ : Σ → N ∪ {∞} with N being the set of non-negative integers. We
have δ(s) = ∞ exactly when ν(s) = draw. These notions can be formalized as
follows.

Definition 2. The set of winning states W ⊆ Σ, the set of losing states L ⊆ Σ,
and the height δ are defined through the following equations.

W−1 = L−1 = ∅ (1)

Wi+1 ={s ∈ Σmax,∃s→ s′, s′ ∈ Wi} ∪
{s ∈ Σmin,∀s→ s′, s′ ∈Wi ∧ ∃s→ s′, s′ ∈ Wi} (2)

Li+1 ={s ∈ Σmax,∀s→ s′, s′ ∈ Li ∧ ∃s→ s′, s′ ∈ Li} ∪
{s ∈ Σmin,∃s→ s′, s′ ∈ Li} (3)

Wi =

i⋃
0

Wi (4)

Li =

i⋃
0

Li (5)

W =
⋃
i

Wi (6)

L =
⋃
i

Li (7)

δ(s) =

{
min{i, s ∈ Wi ∪ Li} if s ∈W ∪ L
∞ otherwise

(8)

In this formalism, drawn states are only possible if the state space is infinite
or admits cycles. Here the set Wi (resp. Li) contains the states that can force
a win (resp. loss) in exactly i moves, while the set Wi (resp. Li) contains the
states in which max (resp. min) can force a win (resp. loss) in i moves or fewer.
Note that this definition restricts a state to only be in Wi for the single lowest
value of i. We write this restriction explicitly in Equations 2 and 3, later we will
assume this without writing it explicitly.

In practice, ν and δ are initially unknown and the goal of this paper is to
propose and compare algorithms to compute them. Our comparison will be in
terms of theoretical complexity and experimentally with the Chinese Checkers
domain.

2.3 Metrics

As usual in search problems, the relative performance of solving algorithms varies
from one domain to the next. We will therefore characterize the worst-case com-
plexity of the algorithms we consider in terms of state space features such as the
number of states or the branching factor. Besides the state space features, the
relative cost of algorithmic atomic operations such as applying a move or gener-
ating the list of legal transitions may also depend on the domain. For example,
applying a move in a specialized implementation of Hex is typically easier than
checking for termination whereas computing the next state in General Game
Playing is harder than determining if a state is terminal.

In addition to the number of states |Σ|, the maximum height δmax, we will
also use the number of winning states |W |, the number of losing states |L|, as
well as the following branching factor quantities.

Definition 3. For each state s, we call forward branching factor the number of
outgoing transitions: f(s) = |{s′, s → s′}| and the backward branching factor
the number of incoming transitions: b(s) = |{s′, s′ → s}|. The average forward

branching factor of a game is then favg =
∑
s∈Σ f(s)

|Σ| and the maximal branching

factor is fmax = maxs∈Σ f(s). The average and maximal backward branching
factors bavg and bmax are defined by replacing f(s) with b(s).

The maximum forward and backward branching factors can often be com-
puted exactly or at least they can be upper-bounded with a domain-specific
analysis. In Hex on size n × n, for instance, the maximum forward branching
factor is reached in the initial state where each cell of the board is empty, so
fmax = n2. The maximum backward branching factor is reached when the board
is full and the last move could have been placing any piece of the non-turn player,

so bmax = n2

2 . The average branching factor, on the other hand, usually needs
to be estimated empirically.

While our formal model does not need to represent actions, a fine-grained
analysis of algorithm performances can take advantage of distinguishing between
the computation of the legal transitions, the state expansion, and computing the
state corresponding to a given transition, the action application. Formally, we
will consider the following atomic operations in our analysis.

Definition 4. On the one hand, a forward expansion (resp. backward expan-
sion) consists in generating a list of actions from (resp. to) a given state. That is
a list of implicit representations of each possible transition. On the other hand,
applying or doing (resp. undoing) an action consists in computing explicitly the
state resulting (resp. originating) from the specific transition. We denote the
number of atomic forward expansions, backward expansions, action doings, and
action undoings, by respectively aforw, aback, ado, and aundo.

2.4 Naive Retrograde Analysis

Indeed, an easy observation is that for all i, we have Wi ⊆Wi+1 and Li ⊆ Li+1.
This means that as soon as the state space Σ is assumed to be finite, there exists
a finite rank δmax such that W = Wδmax and L = Lδmax . The notation for this
rank is justified as we can take δmax = max{δ(s), s ∈W ∪ L}.

These observations give rise to a simple backward induction algorithm to
compute the outcome of each state. Algorithm 1 is a direct implementation of
lines 2 and 3 of Definition 2 and can be run to determine which states are
winning, its dual tells us which states are losing, and the remaining states are
drawn.

Algorithm 1: Pseudo code for the Naive solving algorithm

1 naive-check(state s, int i)
2 foreach forward action m do
3 s′ ← do(s,m)
4 if τ(s) = max ∧ s′ ∈Wi then return >
5 if τ(s) = min ∧ s′ /∈Wi then return ⊥
6 return τ(s) 6= max

7 naive()

8 i← −1
9 W−1 ← ∅

10 repeat
11 i← i+ 1
12 Wi ← ∅
13 foreach s ∈ Σ do
14 if naive-check(s, i− 1) then Wi ← {s} ∪Wi

15 until Wi = Wi−1

Proposition 1. If the state space is finite and δmax is the highest height, then
the complexity of Algorithm 1 in terms of state expansions and action appli-
cations is in the best case (δmax + 1)|Σ|(aforw + ado) and in the worst case
(δmax + 1)|Σ|(aforw + favgado).

2.5 Model Refinements

In practice, we may not require the exact distance to a win; we may just want
to prove the wins (and potentially the losses) as quickly as possible. In this
formulation the order in which states are considered matters. We enumerate all
states in order ≺. For each state, we can compute the current turn player, the
list of legal actions, and the list of actions that could have led to this state.

Definition 5. For a given total ordering on states ≺, the ≺-height is defined
through the following equations.

W≺−1 = L≺−1 = ∅ (9)

W≺i+1 =

{
s ∈ Σmax, ∃s→ s′, s′ ∈ W≺i ∨ (s′ ∈ W≺i+1 ∧ s′ ≺ s)
s ∈ Σmin, ∀s→ s′, s′ ∈ W≺i ∨ (s′ ∈ W≺i+1 ∧ s′ ≺ s)

}
(10)

L≺i+1 =

{
s ∈ Σmax, ∀s→ s′, s′ ∈ L≺i ∨ (s′ ∈ L≺i+1 ∧ s′ ≺ s)
s ∈ Σmin, ∃s→ s′, s′ ∈ L≺i ∨ (s′ ∈ L≺i+1 ∧ s′ ≺ s)

}
(11)

W≺i =

i⋃
0

W≺i (12)

L≺i =

i⋃
0

L≺i (13)

δ≺(s) =

{
min{i, s ∈ W≺i ∪ L≺i } if s ∈W ∪ L
∞ otherwise

(14)

Note that Equation (10) and Equation (11) are recursive but not circular
because ≺ is total ordering. It is indeed possible to determine whether a state
s belongs to W≺i+1 solely based on W≺i and on which states smaller than s
according to ≺ belong to W≺i+1. Additionally note that we assume a state only
appears in the first possible W≺i or L≺i respectively, but for clarity in seeing the
nature of the total ordering we omit the additional logic required to specify this
precisely.

The next proposition shows how the ≺-height and the sets W≺i L≺i can be
formally compared to the ordering-independent versions. The result is proved by
induction on i.

Proposition 2. For any ordering ≺, for any height i, we have Wi ⊆ W≺i and
Li ⊆ L≺i , and for any state s ∈ Σ, we have δ≺(s) ≤ δ(s).

An ordering ≺ is perfect if any state has ≺-height 0. This means that a
single-pass run of the forward search algorithm is sufficient to make all possible
deductions.

Proposition 3. If an ordering ≺ is consistent with the height, then it is perfect.
That is, if for each transition s → s′ we have ν(s) = ν(s′) ∧ δ(s′) < δ(s) =⇒
s′ ≺ s, then ∀s, δ≺(s) = 0.

To the standard metrics given in Definition 3, we add

Definition 6. For a given heuristic state ordering ≺, we will also use the max-
imum ≺-height, δ≺max = max{δ≺(s), s ∈W ∪ L}.

As we will see later, the maximum ≺-height quantifies the quality of the state
ordering and orderings with smaller maximum height are to be preferred.

3 Algorithms and Variants

In the following pseudo-code we assume that each state has a number of other
properties associated with it that provide meta-information about the solving.
For instance, s.solved, indicates that a state has been completely solved, s.recent
means that it has been set in the current iteration, s.depth is the distance to win
or loss, and s.visited is used to indicate whether the backwards check procedure
has already been performed on a state. These and other properties are described
in the following sections.

3.1 One-step Forward Check

We first describe the forward-check procedure given in Algorithm 2. It acts as a
subroutine for both the forward and backward search algorithms. forward-check
take a state s as argument and determines whether it can be solved based on the
current information we have on the children of s. The recent property indicates
whether the state was changed in the current iteration. The subroutine also uses
two meta-parameters, win-only and layered. When the parameter win-only

is set, forward-check only attempts to prove that s is a max win. Setting the
layered parameter indicates that we desire accurate distance-to-mate informa-
tion.

Algorithm 2: Pseudo code for the Forward check procedure

1 forward-check(state s)
2 d← 0
3 foreach s→ s′ do
4 // Cannot prove win at min node if one child unknown
5 if win-only ∧¬s′.solved ∧ ¬s.maxturn then return
6 // One child unsolved or changed in current iteration
7 if ¬s′.solved ∨ (layered ∧ s′.recent) then d←∞
8 else if s.maxturn∧¬s′.win∧¬win-only then d←max(d, 1+s′.depth)
9 else if ¬s.maxturn ∧ s′.win then d←max(d, 1+s′.depth)

10 else
11 // proven outcome for current player
12 s.solved ← >
13 s.win ← s.maxturn
14 s.depth ← 1 + s′.depth
15 return

16 if d <∞ ∧ (¬win-only ∨ ¬s.maxturn) then
17 s.solved ← >
18 s.win ← ¬s.maxturn
19 s.depth ← d

To do so, we use an auxiliary variable d to represent to represent the distance-
to-mate in case s is not a win for τ(s). The value d =∞ indicates that at least

one child of s is not known to be losing for τ(s). The algorithm traverses every
child s′ of s (Line 3) and tests if the information contained in s′ is helpful to
settle s. In the win-only case, if it is min’s turn in s and s′ is not proven to be a
max win, then we will not be able to prove a max win in s (Line 5). Else, if s′ is
not solved yet, or if the distance-to-mate information is unreliable, then we will
not be to prove a τ(s) loss in this call to forward-check (Line 7). Otherwise,
if s′ is a proven loss for τ(s), we can update the auxiliary variable d (Lines 8
and 9). In the remaining case, s′ is a proven win for τ(s) with accurate-enough
distance-to-mate information and the call to forward-check is completed. If the
subroutine has not been exited before each child has of s been visited, then we
might have been able to prove that s was a τ(s) loss (Line 16).

For each solved state s, we use the s.win bit field to record if s is a max win.
If the win-only parameter is set, that is, we do not intended on discriminating
between draws and losses, then the .win field can be discarded and Algorithm 2
can be simplified to omit Lines 13 and 18. Similarly, accurate distance-to-mate
information is only recorded if layered is set. If it is not, then the .depth field
can be discarded and we can omit Lines 14 and 19.

3.2 Direct Backward Propagation

Looking at Equations (2) and (3), we see that there are two different conduits
for the outcome of a specific state to be settled. The universal condition requires
all children state to be proven loss to allow an inference on the current state,
the existential condition, on the other hand, is met as soon as any child state
is a proven win. The dual to this observation is that solving a state might in
some cases allow an immediate solving of the parent states. This idea leads to
a variant of retrograde analysis where as soon as a state s is solved, the parents
of the state are checked to see if an immediate solution can be deduced from s.

The quick-check(s) procedure in Algorithm 3 takes a solved state s as
input and implements this idea. Any unsolved parent s′ of s such that player
τ(s′) wins in s can be updated as solved without checking its other children. In
practice, if the domain has strict turn alternation, then the turn check in Line 3
can be factored out of the loop.

Algorithm 3: Pseudo code for the Quick check algorithm

1 quick-check(state s)
2 foreach s′ → s do
3 if s′.maxturn = (win-only ∨ s.win) then
4 if ¬s′.solved then
5 s′.solved ← >
6 s′.win ← s.win
7 s′.depth ← 1 + s.depth
8 s′.recent ← >

Again, depending on the value of the meta-parameters win-only and layered,
the fields .win, .depth and .recent can be discarded, and Lines 6 to 8 can be
omitted.

3.3 Forward Search

We can now define a forward search method building on Algorithm 2 and 3. It
consists of the pseudo-code given in Algorithm 4. The main loop (Line 3) is run
until a fixpoint is reached, which we detect by tracking changes in iterations in
the auxiliary variable c. For each pass of the main loop, we traverse all unsolved
states s and attempt to settle them by using the forward-check subroutine.
If the solving status of s changes, then we can also attempt to directly solve
parents of s using the quick-check subroutine.

Algorithm 4: Pseudo code for the Forward search algorithm

1 forward()

2 c← >
3 while c do
4 c← ⊥
5 foreach s ∈ Σ do
6 s.recent ← ⊥
7 if not s.solved then
8 forward-check(s)
9 if s.solved then

10 c← >
11 s.recent ← >
12 if direct then quick-check(s)

The call to the latter subroutine is only enabled when the direct parameter
is set. Just as in the previous algorithms, if layered is not set, we can discard
the s.recent field and omit Lines 6 and 11.

3.4 Backward Search

The backward search algorithm can also be decomposed into a subroutine,
backward-check (Algorithm 5), which is built on forward-check, and main
loop, Algorithm 6.

The backward-check procedure takes a solved state s as input and attempts
to solve the parents of s. To do so, for unsolved parent s′, we first check whether
the solution to s can be directly use to settle s′ in a similar fashion to the
quick-check procedure (Line 4). If not, then a full verification via the siblings
of s is required, and a called to forward-check performs it (Line 9. If any
parent s′ is thus solved, the information is recorded and passed back to the

Algorithm 5: Pseudo code for the Backward check procedure

1 backward-check(state s, bool c)
2 foreach s′ → s do
3 if ¬s′.solved then
4 if s′.maxturn = (s.win ∨ win-only) then
5 s′.solved ← >
6 s′.win ← s.win
7 s′.depth ← 1 + s.depth

8 else
9 forward-check(s′)

10 if s′.solved then
11 c← >
12 if direct then quick-check(s′)

caller via variable c (Line 11), and we have the possibility to attempt a direct
backpropagation to the parents of s′ (Line 12).

If the distinction between max losses and draws is not made or the distance-
to-mate information is not preserved, then Lines 5 and 6 can be omitted respec-
tively.

The backward search method is explicitly in Algorithm 6. Similar to the for-
ward search method, it involves a fixpoint computation (Line 8) and a called to
the corresponding subroutine backward-check on each relevant state (Line 12).
However, the states on which we call backward-check are the solved ones,
whereas the forward search method needed to call forward-check one states yet
to be solved. A possible optimization of this approach is to only call backward-check
a single time per state, and to do so when the state is solved for the first time.
In that case, the parameter no-dup is set and the bit field s.visited captures
whether backward-check has already been called on s (Line 13). Another dif-
ference between the two search methods is that backward first needs to identify
and solve the terminal states (Lines 2 to 6).

The main body of the algorithm is two nested loop that roughly correspond to
those of naive. The first difference between naive and forward is that the latter
only calls the embedded subroutine if the current state is not solved (Line 7). The
second difference is that while naive-check was explicitly using the previous
layer of solved states, forward-check can take advantage of states solved in
much earlier iterations without recomputing them and can also use states already
solved in the current iteration.

4 Theoretical Analysis

The memory needed for these algorithms depends on which parameterization of
the algorithms we need and kind of state-information we would like to preserve.
Two bits per state are needed when computing the outcome class whereas a single
bit is sufficient when we only compute the winning states, so win-only saves a

Algorithm 6: Pseudo code for the Backward search algorithm

1 backward()

2 foreach state s ∈ Σ do
3 if s is terminal then
4 s.solved ← >
5 s.win ← ¬s.maxturn
6 s.depth ← 0

7 c← >
8 while c do
9 c← ⊥

10 foreach s ∈ Σ do
11 if s.solved ∧ (¬no-dup ∨ ¬s.visited) then
12 backward-check(s, c)
13 s.visited ← >

bit per state. If the height of the game can be bounded by δmax < 2d, then storing
the distance-to-mate information requires at most d bits per state. Finally, the
forward algorithm needs a bit per state for the layered parameterization, so
as to distinguish states solved in the current iteration from states solved in
previous iterations, and the backward algorithm needs a bit per state for the
no-dup parameterization.

The time complexity of the algorithm also depends on the parameterization.
In general, forward-check takes at most favg steps. As for the number of calls
to forward-check, a rough approximation is that for each iteration of the main
loop (Line 3 to Line 11), we will at most call the subroutine |Σ| times, giving
an overall complexity estimate of |Σ|δmaxfavg.

However, since we are not attempting to re-solve states previously solved
(Line 7), more refined estimates of the number of subroutine calls are possible.
In turn, this provides us with a better estimate of the number of forward and
backward expansions as shown in Table 1. If we make the simplifying assumption
that the forward branching factor is uniform across the different layers, then
Table 1 provides us with recommendation as to which parameterization to use.
The formulas show that if enough memory is available to add a bit per state,
then using unsetting win-only is always preferable. Together with Prop. 2, we
can see that unsetting layered also improves the complexity. In conclusion, if
computing distance-to-mate is not required and enough memory is available to
store two bits per states, then the best approach is to compute win and loss
outcomes in a non-layered manner.

Intuitively, enabling direct allows earlier proofs of some states at the expense
of additional backward expansion. Unfortunately, our formalization is not refined
enough to provide an improved bound on the number of forward expansions in
that case, and so Table 1 does not reflect our intuition.

A similar analysis reveals loose upper bounds on the number forward and
backward expansion in the Backward search algorithm, Tables 2 and 3. Indeed,

Table 1. Upper bounds on the number of forward and backward expansions in Algo-
rithm 4 depending on the parameterization.

l
a
y
e
r
e
d

d
i
r
e
c
t

w
i
n
-
o
n
l
y Expansions

Forward Backward

Iteration i Overall (NS: loose) Iteration i Overall

Yes No Yes |Σ| − |Wi| δmax|Σ| − |W |
Yes No No |Σ| − |Wi ∪ Li| δmax|Σ| − |W ∪ L|
No No Yes |Σ| − |W≺i | δ≺max|Σ| − |W |
No No No |Σ| − |W≺i ∪ L≺i | δ≺max|Σ| − |W ∪ L|
No Yes Yes |Σ| − |W≺i | δ≺max|Σ| − |W | |W≺i+1| − |W≺i | |W |
No Yes No |Σ| − |W≺i ∪ L≺i | δ≺max|Σ| − |W ∪ L| |W≺i+1 ∪ L≺i+1|− |W ∪ L|

|W≺i ∪ L≺i |

each call to backward-check results in a backward expansion of the argument
state. Additionally, each such call can result in multiple calls to forward-check

in the parents of the argument state. The number of calls to forward-check can
be upper-bounded bounded by the number of parents, which averages to bavg.

Table 2. Upper bounds on the number of forward expansions in Algorithm 6 depending
on the parameterization.

no
-d
up

di
re
ct

wi
n-
on
ly Forward Expansions

Iteration i Overall

Yes No Yes bavg|Wi| |Σ|+ bavg|W |
Yes No No bavg|Wi ∪ Li| |Σ|+ bavg|W ∪ L|
Yes Yes Yes bavg|W≺i | |Σ|+ bavg|W |
Yes Yes No bavg|W≺i ∪ L≺i | |Σ|+ bavg|W ∪ L|
No No Yes bavg

∑i
j=0 |Wj | |Σ|+ bavgδ|W |

No No No bavg
∑i

j=0 |Wj ∪ Lj | |Σ|+ bavgδ|W ∪ L|
No Yes Yes bavg

∑i
j=0 |W

≺
j | |Σ|+ bavgδ|W |

No Yes No bavg
∑i

j=0 |W
≺
j ∪ L≺j | |Σ|+ bavgδ|W ∪ L|

5 Experimental Results

We validate the theoretical analysis of the forward and backward solvers with
an empirical study on a small-enough-sized variant of Chinese Checkers. This
variant of Chinese Checkers involves two players with either 2 or 3 pieces each
and competing on a 7 × 7 board. We report results on both a single-threaded
and multi-threaded implementations of the algorithms described in this paper.
The experiments are run on a 4-core machine with hyperthreading.

Table 3. Upper bounds on the number of backward expansions in Algorithm 6 de-
pending on the parameterization.

no
-d
up

di
re
ct

wi
n-
on
ly Backward Expansions

Iteration i Overall (loose)

Yes No Yes |Wi| |W |
Yes No No |Wi ∪ Li| |W ∪ L|
Yes Yes Yes |Wi|+ bavg|Wi+1| (1 + bavg)|W |
Yes Yes No |Wi ∪ Li|+ bavg|Wi+1 ∪ Li+1| (1 + bavg)|W ∪ L|
No No Yes |Wi| δ|W |
No No No |Wi ∪ Li| δ|W ∪ L|
No Yes Yes |Wi|+ bavg|Wi+1| (1 + bavg)δ|W |
No Yes No |Wi ∪ Li|+ bavg|Wi+1 ∪ Li+1| (1 + bavg)δ|W ∪ L|

We also have a space-optimized implementation using no more than 2 bits
per state. Although we do not report detailed results for the sake of space and
clarity, we have observed that the space-optimized version runs about three times
faster than the default implementation, and we conjecture that the time savings
are mostly due to better memory locality and fewer runtime options.

5.1 Impact of the Algorithm Parameterization

We start by examining the performance of both algorithmic approaches on 7×7
Chinese Checkers with 2 pieces each. We report the number of forward and
backward expansions, the number of iterations of the fixpoint loops appearing
in both algorithms, as well as the global time spent.

The performance of Algorithm 4 is given in Table 4. The number of forward
expansions is positively correlated by the total time needed by the algorithm.
The performance decreases when we only compute wins as opposed to wins and
losses, and the performance improves when we drop the layer constraint. This
match perfectly the theoretical understanding in Section 4.

Table 4. Forward Search performance on Chinese Checkers size 7 × 7 with 2 pieces
each and 1 thread.

Parameters Expansions Iterations Time (s)

layered direct win-only Forward Backward

Yes No Yes 67,248,898 37 562.3
Yes No No 38,293,120 37 344.5
No No Yes 55,444,443 29 467.0
No No No 27,112,140 29 250.9
No Yes Yes 32,592,724 549,791 17 281.5
No Yes No 14,017,955 1,099,582 17 145.0

The performance of Algorithm 6 is given in Table 5. Again, we see that the
number of expansions is positively correlated by the total time needed by the
algorithm. Note that the direct setting does not incur an increase in the number
of backward expansion, unlike predicted by the general model of Table 3, because
the turn order in Chinese Checkers is strictly alternating and it allows for further
domain-specific implementation optimizations. Unlike the forward approach, the
time performance of Algorithm 6 improves when we only attempt to identify
positions winning for max. This matches indeed the model in Table 2 and 3.
On the other hand, the direct setting does lead to fewer forward expansions
and faster overall time. This was not shown in the worst-case analysis of the
previous section but it matches the intuition and points to possible refinements
of the formal framework so as to better capture this phenomenon.

Table 5. Backward Search performance on Chinese Checkers size 7× 7 with 2 pieces
each and 1 thread.

Parameters Expansions Iterations Time (s)

no-dup direct win-only Forward Backward

Yes No Yes 4,090,505 1,271,256 37 50.8
Yes No No 5,780,926 2,542,512 37 67.0
Yes Yes Yes 3,374,445 1,271,256 37 48.6
Yes Yes No 4,348,806 2,542,512 37 61.9

5.2 Scalability

We did not describe in pseudo-code how to parallelize Algorithm 4 and 6 for the
sake of simplicity. Still, we implemented multi-threaded versions in a relatively
direct fashion and we can observe the performance of both algorithms and their
parameterization as a function of the number of threads available for computa-
tion. Specifically, Table 6 reports solving time for the sequential and the 8-thread
versions.

From these preliminary results, we extract that although all algorithm pa-
rameterizations seem to benefit from increased computational power in the form
of threads, it seems that the forward approach scales better than the backward
approach. We conjecture that this behavior can be traced back to the fact that
it would be easier to split Line 5 in Algorithm 4 across multiple threads in a fair
way than splitting Line 10 in Algorithm 6.

The results in Table 6 indicate that both approaches perform at a comparable
level with 8 threads as long as the right parameters are chosen. We now attempt
to solve a larger domain with similar properties: 7 × 7 Chinese Checkers with
3 pieces each. For Algorithm 4, we set layered to false, direct to true, and
win-only to false, consistently with the seemingly best approach according to
intuition and to Table 6. The total time needed for solving this larger domain

Table 6. Solving time for Forward and Backward Search with varying number of
threads on Chinese Checkers size 7× 7 with 2 pieces each.

Search Parameters Solving time (s)

layered direct win-only 1 thread 8 threads

F
o
rw

a
rd

Yes No Yes 562.3 125.4
Yes No No 344.5 72.9
No No Yes 467.0 93.7
No No No 250.9 45.7
No Yes Yes 281.5 64.3
No Yes No 145.0 31.4

no-dup direct win-only 1 thread 8 threads

B
a
ck

w
a
rd Yes No Yes 50.8 33.1

Yes No No 67.0 48.5
Yes Yes Yes 48.6 32.6
Yes Yes No 61.9 47.7

is 14,555s. Similarly, for Algorithm 6, we set no-dup to true, direct to true,
and win-only to true. The total solving time for the backward approach is then
14,322s.

According to these results, both approaches seem to scale in a consistent
manner with the domain size. The solving times are remarkably close for Chinese
Checkers, but one may still prefer an approach over the other depending on the
experimental resources and needs: the backward approach uses only half as much
memory whereas the forward approach distinguishes between draws and losing
positions.

6 Conclusion

We have investigated different approaches to endgame solvers based on retro-
grade analysis and described a couple natural optimizations. A formal model
of the state space allowed us to quantify the impact of these optimizations on
the worst-case complexity of the solving algorithms. We managed through our
theoretical analysis to formally justify some of our intuitions as to which set of
optimizations was most beneficial, but the model was not rich enough to provide
a complete picture. To complement the theoretical examination, we performed
an empirical study on the Chinese Checkers domain. We used a small-size variant
to compare all parameter settings and obtained results that match the intuition
and the theoretical analysis. We also investigated the extent to which the al-
gorithms could scale with additional resources in the form of a multi-threaded
implementation and scale to a medium-size variant of Chinese Checkers.

In conclusion, our results shed light on the forward and the backward ap-
proach for endgame solving and demonstrate that both have merits, even in the
specific case of Chinese Checkers.

References

1. Björnsson, Y., Schaeffer, J., Sturtevant, N.R.: Partial information endgame
databases. In: van den Herik, H.J., Hsu, S., Hsu, T., Donkers, H.H.L.M. (eds.) 11th
International Conference on Advances in Computer Games, (ACG) 2005. Revised
Papers. Lecture Notes in Computer Science, vol. 4250, pp. 11–22. Springer, Taipei,
Taiwan (2006)

2. Buro, M., Long, J.R., Furtak, T., Sturtevant, N.R.: Improving state evaluation,
inference, and search in trick-based card games. In: IJCAI 2009, Proceedings of the
21st International Joint Conference on Artificial Intelligence, Pasadena, California,
USA, July 11-17, 2009. pp. 1407–1413 (2009)

3. Korf, R.E.: Best-first frontier search with delayed duplicate detection. In: McGuin-
ness, D.L., Ferguson, G. (eds.) Nineteenth National Conference on Artificial Intel-
ligence, Sixteenth Conference on Innovative Applications of Artificial Intelligence
(AAAI). pp. 650–657. AAAI Press / The MIT Press, San Jose, California, USA
(2004)

4. Moldenhauer, C., Sturtevant, N.: Optimal solutions for moving target search. In:
Autonomous Agents and Multiagent Systems (AAMAS). pp. 1249–1250. Interna-
tional Foundation for Autonomous Agents and Multiagent Systems (2009)

5. Nalimov, E., Haworth, G.M., Heinz, E.A.: Space-efficient indexing of endgame tables
for chess. ICGA Journal 23(3), 148–162 (2000)

6. Schaeffer, J., Björnsson, Y., Burch, N., Lake, R., Lu, P., Sutphen, S.: Building the
checkers 10-piece endgame databases. Advances in Computer Games 10, 193–210
(2003)

7. Sturtevant, N., Rutherford, M.: Minimizing writes in parallel external memory
search. International Joint Conference on Artificial Intelligence (IJCAI) (2013)

8. Thompson, K.: Retrograde analysis of certain endgames. ICCA Journal 9(3), 131–
139 (1986)

9. Zhou, R., Hansen, E.A.: Parallel structured duplicate detection. In: Twenty-Second
AAAI Conference on Artificial Intelligence (AAAI). pp. 1217–1224. AAAI Press,
Vancouver, British Columbia, Canada (2007)

