
Exhaustive and Semi-Exhaustive Procedural Content Generation

Nathan R. Sturtevant
Department of Computing Science

University of Alberta
Edmonton, Alberta, Canada
nathanst@ualberta.ca

Matheus Jun Ota
Institute of Computing
University of Campinas

São Paulo, Brazil
matheusota@gmail.com

Abstract
Within the area of procedural content generation (PCG) there
are a wide range of techniques that have been used to gen-
erate content. Many of these techniques use traditional ar-
tificial intelligence approaches, such as genetic algorithms,
planning, and answer-set programming. One area that has not
been widely explored is straightforward combinatorial search
– exhaustive enumeration of the entire design space or a sig-
nificant subset thereof. This paper synthesizes literature from
mathematics and other subfields of Artificial Intelligence to
provide reference for the algorithms needed when approach-
ing exhaustive procedural content generation. It builds on this
with algorithms for exhaustive search and complete examples
how they can be applied in practice.

Introduction and Related Work
There are many high-level approaches to procedural con-
tent generation (PCG); these approaches are often reflective
of the broader techniques used in the Artificial and Com-
putational Intelligence. Evolutionary algorithms (Eiben and
Smith 2003; Mitchell 1998), for instance, were widely used
for optimization long before they were applied to PCG for
games (Frade, de Vega, and Cotta 2010; Togelius et al. 2010;
Shaker et al. 2012). Similarly, languages like STRIPS (Fikes
and Nilsson 1971) and PDDL (McDermott et al. 1998) were
developed for other planning tasks before being adapted
for procedurally generating narrative in games (Riedl and
Young 2010). This trend is also seen in work on answer set
programming (ASP) with early work in the field (Dimopou-
los, Nebel, and Koehler 1997) occurring far before its use in
games (Smith and Mateas 2011). Similarly, machine learn-
ing (ML) has also been widely studied prior to more for-
mally defining the use of ML for PCG as PCGML (Sum-
merville et al. 2017).

A recent book (Togelius, Shaker, and Nelson 2016) pro-
vides a taxonomy of PCG methods, including search-based
approaches to PCG, also called SBPCG (Togelius et al.
2011). These are divided into two parts, evolutionary search
algorithms (§2.1) and everything else (§2.2.1), which in-
cludes exhaustive search, random search, and solver-based
approaches such as ASP. Exhaustive search methods apply
when the state space is small enough to enumerate. There

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

is relatively little work in this area and the book doesn’t go
into any deeper detail on the algorithms or representations
needed for exhaustive search. Thus, the field currently lacks
a clear starting point for those wanting to use this approach.

This paper remedies the issue by studying the problem
of exhaustive procedural content generation (EPCG). EPCG
approaches use a generator that models the problem and
can systematically generate all content for the model. Then,
there are many algorithms that can be placed on top of a
generator to efficiently evaluate and select content. EPCG as
a broad approach is particularly useful when the domain is
not amenable to gradient methods or local search techniques.
EPCG can also be more efficient than generic solvers (e.g.
SAT or ASP) when constraints cannot be naturally encoded
or when problem-specific optimizations are possible.

The primary contributions of this paper are (1) to syn-
thesize work from mathematics and other subfields of AI
regarding the exhaustive generation of content with respect
to the state or content representation. Simple algorithms for
generating all combinations and permutations are described,
with suggestions of how the approaches can be further op-
timized. Additionally, the paper (2) describes several high-
level algorithms that can be used for selecting content. Fi-
nally, the paper (3) provides examples of evaluation func-
tions that are applied with these algorithms to determine the
final content that is generated. Put together, this (4) provides
a reference for EPCG that encourages future scholarship.

Sample Domains
This paper uses two domains as examples, Fling! and The
Witnes. Our problems in these domains are small enough for
exhaustive enumeration. The paper will discuss techniques
for scaling to larger domains in the conclusions, but it should
be clear that there are some problems representations where
EPCG will have little benefit. Consider, for instance, terrain
generation. Suppose that we need to generate a 1024x768
2D terrain. For each x-value in the terrain we would need
to generate a single height. Thus, with no other restrictions,
there are 7681024 possible terrains. Most of these terrains
are meaninglessly random, but even if we restrict the height
at each location to be within one of the neighboring cell,
ensuring that the terrain is smooth, there are 768 ∗ 31023
possible terrains – still prohibitively large. But, more im-
portantly, there are still large numbers of terrain with little



2 4

1

5

7

2 4

1

5

7

(a) (b) (c)

Figure 1: Movement in the game Fling!

practical difference between them. Puzzle domains tend to
be more focused and more amenable to exhaustive genera-
tion because they operate at a higher level of abstraction.

Example Domain: Fling!
Our first domain is the game Fling! (Sturtevant 2013). In
this game the goal is to fling all the pieces off of a 7x8
game board. This is done by flinging one piece into another
as illustrated in Figure 1. In part (a) there are two possible
moves. Either the top piece can be flung down to hit the bot-
tom piece, or the bottom piece can be flung up to hit the top
piece. The solution requires the top piece to be flung down,
as indicated by the arrow. Part (b) shows the result of mov-
ing the top piece down. After the collision the top piece stops
just above the bottom piece, leaving two pieces side-by-side.
The piece that was at the bottom continues off the bottom of
the board. At this point either piece can be flung into the
other piece resulting in a single piece left on the board. In
order to initially fling a piece into another, there must be a
gap of at least one space between the two pieces. If a piece
is flung into a line of other pieces, there is a perfect transfer
of momentum from one piece to the next until the last piece
in the row/column is flung off the board.

Valid boards have only a single solution – that is, there is
only one sequence of moves (excepting the last move) that
leads to a solution. Of the 35.6 billion boards with 10 pieces,
only 15 million (0.04%) have this property. Thus, the fitness
landscape will likely be too sparse for evolutionary opera-
tions like crossover to produce valid boards. While solver-
based methods could be used, generic solvers will not be
able to match the efficiency of retrograde analysis discussed
later in the paper.

Example Domain: The Witness
The Witness is a 2016 game by Jonathan Blow and Thekla,
Inc. in which the player traverses a world solving a num-
ber of puzzle panels that appear in the world. These panels
are solved by a self avoiding walk (Knuth 1976) from the
start (typically the lower-left corner) to the goal (typically
the upper right corner) within a grid according to the par-
ticular constraints of the puzzle. Each portion of the game
introduces different constraints that are then combined and
explored together in joint areas later in the game.

In this paper we select one type of panel and solution con-
straint to explore. This panel type is shown in Figure 2; it is
necessary to explain the constraints for this panel here in

(a) (b) (c)

Figure 2: (a) A sample puzzle in The Witness; (b) a virtual lay-
out for which no path can be drawn and (c) a virtual layout and
corresponding path that solves the panel.

order to motivate our approach, although these are not ex-
plained in the game. Figure 2(a) shows the basic puzzle.1 We
refer to the three tetris-like pieces as piece constraints. With-
out the piece constraints the solution is any path on the grid
from the start (bottom-left corner) to the goal (top-right cor-
ner) such that the line does not intersect itself. What makes
the panel interesting are the piece constraints.

In solving this puzzle, each of the pieces must be virtually
placed on the board so that they do not overlap with each
other and do not extend past the edges of the board. Fig-
ure 2(b) shows one possible placement of the virtual pieces
as black lines. However, there are additional constraints. The
line that is drawn between the start and the goal must divide
the board into one or more regions, where each region only
contains virtual pieces, or only contains empty space. No re-
gion can contain both a virtual piece and empty space. Thus,
Figure 2(b) is not a valid layout of the pieces because there
is no path from the start to the goal that does not cross itself
and also separates the virtual pieces from the empty space.
Two additional constraints are that (1) the path from the start
to the goal may not divide a virtual piece into two parts and
that (2) each virtual piece must be placed in the same region
as the piece constraint from the game board (although the
locations do not have to overlap). This is illustrated in Fig-
ure 2(c). There are two regions in the panel. The left region
contains all three piece constraints on the board, and all three
pieces can be virtually placed in this region without overlap
or rotation. The right region is entirely blank, and the path
between the start and the goal separates these regions.

These puzzle panels are an instance of a constraint sat-
isfaction problem (CSP) (Russell and Norvig 2009), except
that the spatial constraints in these puzzles are not found in
typical CSP solvers. But, we are not interested in just solving
the problems, but also in generating new content, which is
more complex than standard CSP or ASP problems (Smith,
Butler, and Popovic 2013). Taken together, this makes this
problem well suited for exhaustive generation.

Exhaustive PCG
We begin with a definition of EPCG, which has not appeared
previously in the literature.

Definition 1 Exhaustive Procedural Content Generation
(EPCG) describes approaches for generating procedural

1http://the-witness.net/news/2016/02/printable-panels/



Algorithm 1: Basic puzzle generator
Input: Generator: G, Evaluator: E
Output: best puzzle b

1 b←G.unrank(0)
2 for i ∈ {1, ...,G.maxRank − 1} do
3 t← G.unrank(i)
4 if E(t) > E(b) then
5 b = t

6 return b

content where all possible content is methodically generated
and evaluated.

The key to this definition is the methodical generation.
That is, the content is generated in some well-understood or-
der without repetition. This excludes randomized algorithms
that, in the limit, would generate all content, but not without
repetition. Note that in some problems, the fully exhaustive
nature of the generation is not necessary. For instance, con-
tent can be pruned when it is shown to be sub-par, or when
time or memory constraints limit the ability to enumerate all
content. Algorithms that are capable of methodically gener-
ating all content, but that choose to to skip some content
are semi-exhaustive. Algorithms underlying many generic
solvers, such as the DPLL algorithm (Davis, Logemann, and
Loveland 1962), are often semi-exhaustive in nature, but are
not designed particularly for PCG.

A simple EPCG algorithm is shown in Algorithm 1. This
procedure takes in an evaluator, which provides a numerical
score to a state, and a generator, which we define below. The
generator is the key to the procedure.

In order to methodically generate content, an algorithm
must know how much content there is to generate and be
able to generate this content. This usually requires some sort
of combinatorial analysis of how content can be arranged,
as well as functions to convert integers into content (an un-
ranking function) and content back into integers (a ranking
function) (Myrvold and Ruskey 2001). One could view the
rank as an index into an implicit database of content from a
given generator. In GAs, search occurs directly in the state
representation, and the state representation is usually chosen
to be amenable to GA operations like crossover. In EPCG
the state representation is usually an array of piece locations
which is amenable to ranking and unranking operations.

In EPCG we define a content generator, G, as a set of
functions which must include maxRank and unrank, and op-
tionally includes rank and increment. The maxRank function
returns the total number of states that can be generated. The
unrank function converts a index {0 . . .maxRank−1} into
a state. The optional rank function covers a state back into
an index, and the optimal increment function takes a state
and directly computes the state with the next rank, without
the full unranking process. We give examples of these in the
next section.

Table 1: The first and last combinatorial ranks for n = 20, k = 4

Rank State
0 0 1 2 3
1 0 1 2 4
2 0 1 2 5
...

Rank State
4841 15 16 17 19
4842 15 16 18 19
4843 15 17 18 19
4844 16 17 18 19

Algorithm 2: Unranking a combination into an array
Input: rank, board[], numPieces, boardLeft, offset,

boardSize
Output: populated board array with positions of

pieces for given rank
1 if numPieces > 0 then
2 b←

(
boardLeft−1
numPieces−1

)
3 if rank ≥ b then
4 unrank(rank−b, board, numPieces, boardLeft−1,

offset)
5 else
6 board[offset]← boardSize - boardLeft
7 unrank(rank, board, numPieces−1, boardLeft−1,

offset+1)

Ranking and Unranking functions
In this section we demonstrate the functions for a content
generator over the Fling! state space, which is described
by combinations. The full explanation of the combinatorics
is outside the scope of this paper, but can be found in
mathematical references (Mazur 2010). Then we provide an
overview of how other state spaces can be enumerated.

Consider placing pieces on a Fling! board with n board
positions and k pieces. The first piece can be in any of n
positions, and the second piece can be in n − 1, etc. But,
because the pieces are not distinct, there are k! symmetric
orderings. Thus, the state space contains maxRank(n, k) =(
n
k

)
= n!

(n−k)!k! unique states. The initial and final states in
the ranking for n = 20 and k = 4 are found in Table 1. This
is a lexicographical ordering, as the digits are incremented
in sorted order. The values are interpreted as the location of
pieces, as opposed to representing the full board explicitly.

An unrank function is found in Algorithm 2. Initially rank
is the value that is being unranked, boardLeft is the board
size that hasn’t yet been analyzed (initialized to boardSize).
Offset is the offset in the board array for the next piece. The
main loop of this function is testing to see if the next piece
can go in the next location. The piece is placed in this po-
sition (line 6) if, after the piece is placed, the rank will be
smaller than the number of combinations for the remaining
pieces. This means that the sub-problem of placing the re-
maining pieces is well-formed. Otherwise the next location
is skipped, and the rank is decreased by the corresponding
number of combinations that were skipped. After returning
from the function, the board array is populated with the loca-
tions of each of the pieces. This function runs in time linear
in the size of the board; faster implementations can be writ-
ten by pre-caching the computations.



Algorithm 3: Incrementing an array to the next com-
bination. Piece i is in location i in the array. Assumes
pieces are sorted with smallest piece in first location

Input: board[], numPieces, boardSize, currPiece
Output: populated board array with positions of

pieces for next rank
1 currPieceLocation← board[numPieces-currPiece-1];
2 if currPieceLocation == boardSize-1-currPiece then
3 newPieceLocation← IncrementRank(board,

numPieces, boardSize, currPiece+1)+1;
4 else
5 newPieceLocation← currPieceLocation+1;

6 board[numPieces-currPiece-1] = newPieceLocation;
7 return newPieceLocation;

Algorithm 4: Ranking a board array into a combi-
nation

Input: board, numPieces, boardLeft, loc, offset
Output: rank of board

1 if numPieces == 0 then
2 return 0

3 if board[offset]-loc = 0 then
4 return rank(board, numPieces-1, boardLeft-1, loc+1,

offset+1)

5 b←
(

boardLeft−1
numPieces−1

)
6 return b + rank(board, numPieces, spaces-1, loc+1, offset)

It is often the case that algorithms iterate through the
ranks in order. In such cases, one can compute the state with
next higher rank directly at significantly lower cost. This
procedure is shown in Algorithm 3. This procedure attempts
to move the last piece to the next position. If this piece is al-
ready in the last position (line 2), the previous piece is incre-
mented, and then the piece is placed just after the previous
piece. When using the incremental procedure, Algorithm 1
has line 3 replaced with a call to the incremental procedure
in Algorithm 3. Our tests suggest that this is 10-20 times
faster than the full unrank procedure, although the savings
depend on the cost of the evaluation function.

The final piece of a generator is the rank function, found
in Algorithm 4, which takes a state and returns the rank. This
isn’t used in the simple pseudo-code of Algorithm 1, but we
will demonstrate its use in the next section.

This section provides pseudo-code for gen-
erating states represented by combinations of
pieces; C code for these procedures is available at
https://www.movingai.com/. Other common
states that are found in puzzle games are permutations,
where a fixed set of elements are permuted in an array,
k−permutations, where k elements from a permutation
are permuted, and the remaining locations are blank.
Bonet (2008) presents efficient algorithms for ranking and
unranking permutations, including incremental approaches.
Finally, multisets are used when there are a fixed number of
different piece types that can appear in a puzzle. Multisets
are written

((
m
k

))
where there are m types of items, k

total items will be chosen, and order does not matter. In
practice multisets are related to combinations where

((
m
k

))
=

(
m+k−1

k

)
.

In The Witness puzzles, the locations of the pieces are
determined by the same combinatorial approach as in Fling!
Because the order of placement within the puzzle matters,
the types of the pieces is determined by simpler counting
rules. If there are p types of pieces and k locations, then
there are pk ways of arranging the difference piece types in
the locations. The total number of locations is the product of
the number of locations of the pieces and the arrangement of
the piece types.

The basic approach naively generates all possible content,
and does not take into account any constraints that might
exist within a problem. For combinatorial puzzles, it will
perform O(

(
n
k

)
) solving and evaluation operations, but only

requires constant space. The approach can be easily paral-
lelized by distributing the for loop across multiple threads.

To summarize this section, one key task in EPCG is break-
ing down the combinatorics of the problem being studied.
Problems where identical pieces are placed across a board
use the combinatorial algorithms in this section to gener-
ate content. Problems with different types of pieces, where
order does not matter, are defined by multisets, and can
also use these algorithms. Problems where unique pieces are
ordered require permutations (Myrvold and Ruskey 2001).
Other problems will require custom analysis.

Given this foundation, we now provide two alternate algo-
rithms which build upon the ideas here to efficiently generate
exhaustive content.

EPCG Algorithms
In this section we consider two algorithms, retrograde analy-
sis and branch and bound search, that are more complex than
the simple puzzle generator in Algorithm 1. We additionally
give examples of the more complicated evaluators that can
be used in EPCG along with these approaches.

Solving Large Game Boards
Suppose that, in the game Fling!, we want to find all boards
that are uniquely solvable. There are 35.6 billion boards with
10 pieces on them (assuming a 7x8 grid), but only 15 million
of these are uniquely solvable (0.04%).

We could directly use Algorithm 1 for these puzzles, but
this approach would be inefficient due to the structure of the
puzzles. Consider if we are solving boards with 6 pieces, of
which there are 32.5 million possible boards. Assuming that
on average there are 6 moves on each board (in practice this
is higher), when solving all 32.5 million boards, there would
be 195 million boards generated with 5 pieces on them dur-
ing the solving process. However, there are only 3.8 million
unique boards with 5 pieces, meaning that each board would
be generated 51 times on average. By pre-computing infor-
mation about all the boards with 5 pieces we can then effi-
ciently re-use the information when solving the boards with
6 pieces. This retrograde or dynamic programming approach
has been used to build endgames databases for two-player
games (Schaeffer et al. 2004). In this case it can be used for



Algorithm 5: Retrograde analysis: Finding states
with unique solutions

Input: depth
Output: bit arrays single and solvable

1 for i ∈ {0, ...,maxRank − 1} do
2 for each successor s of parent do
3 r ←rank(s)
4 sc, ss← 0
5 if solvable[depth− 1][r] then
6 sc++

7 if single[depth− 1][r] then
8 ss++

9 if sc > 1 then
10 break;

11 if sc == 1 && ss == 1 then
12 single[depth][i] = true;

13 if sc > 0 then
14 solvable[depth][i] = true;

a single-agent puzzles, with special enhancements for find-
ing the puzzles that have a single unique solution.

In Algorithm 5 we show the pseudo-code for this process.
The input to the procedure is the current number of pieces
on the board. After running, the solvable array has one bit
set for every board that is solvable, and the single array has
one bit set for every board that is uniquely solvable. When
running with depth d it is assumed that the array has already
been filled in for depth d − 1. While this code is tailored to
finding unique solutions, the main computation (lines 4–10
and 11–14) can easily be altered for other retrograde compu-
tations. This is particularly useful when there are very long
solutions, such as when every action does not remove a piece
from the board.

One interesting feature of this algorithm is how the
uniquely solvable boards are computed. Doing this at depth
d requires both the array of solvable boards at depth d − 1
and the array of uniquely solvable boards at depth d − 1.
A board is uniquely solvable at depth d if exactly one child
is solvable, and this child is also uniquely solvable. Thus,
to identify a uniquely solvable state we need to keep both
arrays in memory for the shallower depths.

A small optimization to this approach is found in line 9.
If more than one solution to a board has been found, then
we know that the board is not uniquely solvable, so we can
stop analyzing the successors of the current board. The time
to find boards with unique solutions among all 148.9 bil-
lion boards with 11 pieces required 8 hours and 29 minutes
without this optimization and 4 hours and 13 minutes with
it. These types of domain-specific optimizations can signif-
icantly scale the size of problem that is solvable, something
that is lost when a generic solver-based approach is used.
External-memory approaches (Zhou and Hansen 2004; Jab-
bar and Edelkamp 2006; Sturtevant and Rutherford 2013),
where most data is stored on disk, have the potential to fur-
ther scale this work.

This approach to retrograde analysis requires the ranking

function (Algorithm 4), because we must look up the stored
value of the successors of the current state being analyzed.
The ranking function described in the previous section runs
in time linear in the size of the board, but with simple pre-
computation it can be optimized to run in time linear in the
number of pieces being ranked.

Evaluating selected boards The retrograde analysis pro-
cedure efficiently computes the puzzles that have exactly
one solution, but we would still like to select content from
among the puzzles that have a single solution. In particular,
we would like to select the content that maximizes the abil-
ity for an expert player to use their expert knowledge when
solving puzzles.

If there is a unique solution to a particular puzzle, each
action will depend on the previous action in some way. If an
action does not depend on the previous action, then that ac-
tion could have been performed prior to the previous action,
and there would be more than one unique solution to the
board. For instance, in Figure 1(c), many of the pieces can
be flung vertically into another piece. If two consecutive ver-
tical actions were part of the final solution, the board could
still be solved if the actions were performed in the opposite
order, and thus there would be more than one solution. An
expert with this knowledge can consider fewer possibilities.

Our evaluation function compares the size of the brute-
force search tree with the size of the constrained tree that an
expert would search, and selects the puzzles with the largest
ratio. After all puzzles with unique solutions are found, the
evaluator runs only on these puzzles and selects the puzzle
with highest ratio between the brute force and constrained
tree sizes. Figure 1(c) shows one puzzle that maximizes this
metric. The pieces are labeled with their first move time in
the final solution.

The approach uses the basic EPCG algorithm in Algo-
rithm 1, except that we discard states that do not have a sin-
gle unique solution. As a result, it is not efficient to use the
incremental unranking function, because most states can be
discarded without unranking.

Branch and Bound Search
With some content, the value of the content can be measured
before it is complete. Thus, as content is incrementally gen-
erated, we can rule out content that is already shown to have
a worse evaluation than our best content so far. We demon-
strate this semi-exhaustive approach in The Witness where
sets of joint puzzles are incrementally generated.

This work borrows a concept in the game which had been
introduced, but not explored completely. The idea in these
puzzles is to build a panel which contains p sub-panels
which must be solved jointly. We illustrate one example for
p = 3 in Figure 3. Although there are many solutions for
each of the three individual sub-panels, there is only one so-
lution that will jointly solve all three sub-panels (and thus
the whole panel).

Our approach to these panels treats them like a secret shar-
ing algorithm (Shamir 1979). The idea is that looking at any
single sub-panel, or any subset of the sub-panels, should pro-
vide little or no information for solving the complete panel.



Figure 3: A panel with three sub-panels which must be jointly
solved. All three sub-panels can be solved by the action sequence
URDRUURU.

Only when all sub-panels are considered together can the
user find solution to the panel.

Again, we could use an approach like Algorithm 1 to gen-
erate and evaluate all possible content. The evaluation of a
set of panels is the minimum number of joint solutions for
any subset of sub-panels. But, let us consider the combina-
torics of this approach.

Our search begins with a library of 24 piece types. On
the 3x3 sub-panels we restrict there to be only three pieces
per sub-panel. Thus, there are

(
9
3

)
= 84 ways to place three

pieces on a sub-panel and 243 = 13, 824 ways to choose the
types of the three pieces, for a total of 1,161,216 possible
sub-panel configurations. We are placing three sub-panels in
a row, so there are 1.6× 1018 possible panels to consider.

Exploring this many combinations exhaustively is pro-
hibitively expensive, but finding the best combination is not,
because many of them can be pruned away. The key feature
of a branch and bound algorithm is the ability to evaluate a
partial solution. In this case, the evaluation function can be
applied to a set of sub-panels which is smaller than the full
set. The result will be an upper bound on the evaluation of
any full set that can be constructed by completing the par-
tial set. Thus, if the partial evaluation is worse than the best
solution, we don’t need to further enumerate solutions.

This is illustrated in Algorithm 6, a recursive procedure
for branch and bound search. When a complete set of boards
is found, the best set is updated (line 1) if a better solution
is found. If a partial set is worse than the current best solu-
tion (line 4), the search prunes the current branch as it will
be suboptimal. Otherwise, the possible subpanels are recur-
sively generated and added them to the current set. Although
we have provided this code for the particular problem we are
solving, the approach is more general and can be adapted to
other combinatorial settings where incremental evaluation is
an upper bound on the total evaluation.

Note that most of the sub-panels we can enumerate are not
actually solvable. These evaluate to 0 and would be imme-
diately rejected, but it is slightly more efficient to eliminate
these a priori, which reduces the number of sub-panels to
from 1,161,216 to 113,296. Taken together we can quickly
find the optimal solution shown in Figure 3.

Further analysis demonstrated that our first puzzle was too
easy to solve, because all of the virtual pieces are placed in
the same region. We then repeated the process with the fur-
ther restriction that the virtual pieces be in different regions
in the final solution. This constraint gave us the panel in Fig-
ure 4(top), which is a significantly more complex puzzle. We

Algorithm 6: Branch and bound search
Input: numBoards, S,E
Output: best set of boards B

1 if numBoards = 0 && E(S) > E(B) then
2 B ← S
3 return
4 else if E(S) < E(B) then
5 return
6 else
7 for i ∈ {0, ...,maxRank − 1} do
8 s←unrank(i)
9 BB(numBoards− 1, S ∪ s, E)

Figure 4: New panels with the evaluation constraint that the vir-
tual pieces must be placed in different regions in the solution. The
solution(s) are left as an exercise for the reader.

were also able to generate larger boards such as the puzzle
in Figure 4(bottom) by more efficient parallelization of the
solving process and by restricting to a smaller set of candi-
date boards. This is an example of semi-exhaustive search
because we are using both the branch and bound constraints
as well as artificially limiting the search space to find the best
puzzles more quickly. Many people familiar with the game
have had difficulty solving this puzzle because it explores
the game in new ways.

Discussion and Future Work
This paper has provided a framework for exhaustive PCG,
with examples of the ranking and unranking functions used
in these frameworks. We demonstrate how these concepts
can be used with retrograde analysis in Fling! and with
branch and bound search in The Witness. Together, these ex-
amples of exhaustive and semi-exhaustive PCG form a foun-
dation that will enable other researchers to build on these
techniques for new applications.

As with all PCG, evaluating the quality of PCG content is
extremely important (Shaker, Smith, and Yannakakis 2016).
For the specific EPCG domains studied here, future work
will perform user studies to measure the effectiveness of dif-
ferent evaluators in keeping players engaged and learning
while they play the puzzles that are produced.

A broader question for future work is how to scale EPCG
methods to different types of problems. For instance, it is not
feasible to exhaustively generate all possible 200x14 Super



Mario levels. As with the previously discussed terrain ex-
ample, most levels will be meaningless variations and will
be mostly unsolvable. But, it would be feasible to define a
library of 20x14 level segments that are semi-exhaustively
chained together into full levels. Similarly, it also would
be possible to semi-exhaustively generate 20x14 level seg-
ments for the library. As another example, we have been
able to build a graph-based representation of some levels
in the game Braid that could be exhaustively enumerated.
But, significantly more work is needed to take these con-
cepts and turn them into useful systems for generating con-
tent. Broadly speaking, in addition to more example appli-
cations of EPCG, there are also significant opportunities for
research that abstracts game components so that EPCG ap-
proaches can be applied to the abstract space.

References
Bonet, B. 2008. Efficient algorithms to rank and unrank
permutations in lexicographic order. In AAAI-Workshop on
Search in AI and Robotics, 142–151.
Davis, M.; Logemann, G.; and Loveland, D. 1962. A
machine program for theorem-proving. Commun. ACM
5(7):394–397.
Dimopoulos, Y.; Nebel, B.; and Koehler, J. 1997. Encod-
ing planning problems in nonmonotonic logic programs. In
Steel, S., and Alami, R., eds., Recent Advances in AI Plan-
ning, 169–181. Berlin, Heidelberg: Springer Berlin Heidel-
berg.
Eiben, A. E., and Smith, J. E. 2003. Introduction to evolu-
tionary computing, volume 53. Springer.
Fikes, R. E., and Nilsson, N. J. 1971. Strips: A new approach
to the application of theorem proving to problem solving.
Artificial intelligence 2(3-4):189–208.
Frade, M.; de Vega, F.; and Cotta, C. 2010. Evolution of
artificial terrains for video games based on accessibility. In
Applications of Evolutionary Computation, 90–99. Springer
Berlin/Heidelberg.
Jabbar, S., and Edelkamp, S. 2006. Parallel external di-
rected model checking with linear i/o. In Emerson, E. A.,
and Namjoshi, K. S., eds., VMCAI, volume 3855 of Lecture
Notes in Computer Science, 237–251. Springer.
Knuth, D. E. 1976. Mathematics and computer science:
Coping with finiteness. Science 194(4271):1235–1242.
Mazur, D. R. 2010. Combinatorics: a guided tour. MAA.
McDermott, D.; Ghallab, M.; Howe, A.; Knoblock, C.; Ram,
A.; Veloso, M.; Weld, D.; and Wilkins, D. 1998. Pddl-the
planning domain definition language.
Mitchell, M. 1998. An Introduction to Genetic Algorithms.
Cambridge, MA, USA: MIT Press.
Myrvold, W., and Ruskey, F. 2001. Ranking and unranking
permutations in linear time. Information Processing Letters
79:281–284.
Riedl, M. O., and Young, R. M. 2010. Narrative planning:
Balancing plot and character. Journal of Artificial Intelli-
gence Research.

Russell, S. J., and Norvig, P. 2009. Artificial intelligence: a
modern approach (3rd edition).
Schaeffer, J.; Björnsson, Y.; Burch, N.; Lake, R.; Lu, P.; and
Sutphen, S. 2004. Building the checkers 10-piece endgame
databases. In Advances in Computer Games. Springer US.
193–210.
Shaker, N.; Nicolau, M.; Yannakakis, G. N.; Togelius, J.;
and O’Neill, M. 2012. Evolving levels for super mario
bros using grammatical evolution. In Computational Intel-
ligence and Games (CIG), 2012 IEEE Conference on, 304–
311. IEEE.
Shaker, N.; Smith, G.; and Yannakakis, G. N. 2016. Evaluat-
ing content generators. In Shaker, N.; Togelius, J.; and Nel-
son, M. J., eds., Procedural Content Generation in Games:
A Textbook and an Overview of Current Research. Springer.
215–224.
Shamir, A. 1979. How to share a secret. Commun. ACM
22(11):612–613.
Smith, A. M., and Mateas, M. 2011. Answer set program-
ming for procedural content generation: A design space ap-
proach. IEEE Transactions on Computational Intelligence
and AI in Games 3(3):187–200.
Smith, A. M.; Butler, E.; and Popovic, Z. 2013. Quantify-
ing over play: Constraining undesirable solutions in puzzle
design. In International Conference on the Foundations of
Digital Games.
Sturtevant, N. R., and Rutherford, M. J. 2013. Minimiz-
ing writes in parallel external memory search. International
Joint Conference on Artificial Intelligence (IJCAI).
Sturtevant, N. 2013. An argument for large-scale breadth-
first search for game design and content generation via a
case study of fling! In AI in the Game Design Process (AI-
IDE workshop), 28–33.
Summerville, A.; Snodgrass, S.; Guzdial, M.; Holmgård, C.;
Hoover, A. K.; Isaksen, A.; Nealen, A.; and Togelius, J.
2017. Procedural content generation via machine learning
(PCGML). CoRR abs/1702.00539.
Togelius, J.; Preuss, M.; Beume, N.; Wessing, S.;
Hagelbäck, J.; and Yannakakis, G. N. 2010. Multiobjective
exploration of the starcraft map space. In Computational
Intelligence and Games (CIG), 2010 IEEE Symposium on,
265–272. IEEE.
Togelius, J.; Yannakakis, G. N.; Stanley, K. O.; and Browne,
C. 2011. Search-based procedural content generation: A
taxonomy and survey. IEEE Trans. Comput. Intellig. and AI
in Games 3(3):172–186.
Togelius, J.; Shaker, N.; and Nelson, M. J. 2016. Introduc-
tion. In Shaker, N.; Togelius, J.; and Nelson, M. J., eds.,
Procedural Content Generation in Games: A Textbook and
an Overview of Current Research. Springer. 1–15.
Zhou, R., and Hansen, E. 2004. Structured duplicate detec-
tion in external-memory graph search. In National Confer-
ence on Artificial Intelligence (AAAI-04), 683–689.


