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Abstract

Early research in heuristic search discovered that using in-
consistent heuristics in an A∗ search could result in an expo-
nential blow-up in the number of nodes expanded. As a re-
sult, the use of inconsistent heuristics has largely disappeared
from practice. However, recent research has shown that they
can yield dramatic performance improvements to an IDA∗

search using the BPMX enhancement. This paper revisits in-
consistency in A∗-like algorithms. The DELAY algorithm is
introduced which improves the worst-case complexity from
O(N2) to O(N1.5). Additional issues surrounding BPMX
and A∗ are addressed, and a variety of performance metrics
are shown across two domains.

Introduction
It is widely believed that A∗ is optimal; given the same
heuristic and tie-breaking mechanism there is no search al-
gorithm which will always have fewer distinct node expan-
sions. While this is true, it hides an important fact about
inconsistent heuristics. Early research on search algorithms
discovered that if A∗ uses an inconsistent heuristic, it may
perform an exponential number of re-expansions (Martelli
1977). From this perspective, A∗ is inferior to alternative
algorithms, which have a worst-case number of expansions
and re-expansions of O(N2). This result discouraged re-
search on inconsistent heuristics for many years, in partic-
ular since most ‘natural’ heuristics seemed to be consistent.
Recent research has shown that inconsistent heuristics are
easy to create and can be used to great advantage in an IDA∗

search (Zahavi et al. 2007; Felner et al. 2005) by using
the BPMX enhancement. Inconsistency hasn’t been a prob-
lem in IDA∗ because IDA∗ already performs many node re-
expansions and is only used in domains where the cost of
re-expansions is fully amortized over the cost of the search.

The case for using inconsistent heuristics with IDA∗ has
been made; it is time to revisit the perceptions regarding
their use with A∗. This paper makes several contributions:
• A new search algorithm, DELAY, improves the worst-

case complexity of A∗ search with inconsistent heuristics
fromO(N2) toO(N1.5). This result provides insight into
when an inconsistent heuristic will dominate a consistent
heuristic;
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Figure 1: An example where A∗ will expand O(N2) nodes.

• Bounds on the number of nodes expanded, based on
search graph properties, showing that in most graphs of
interest A∗’s worst-case will not occur;

• Several important corrections to the published literature;
• An analysis of BPMX (Felner et al. 2005) when applied

to A∗ and similar algorithms; and
• Two experimental domains that evaluate the benefits of

inconsistent heuristics.
This research revises the heuristic search literature. A∗

search with inconsistent heuristics is now practical and, for
many domains, may yield the best performance.

Background
The A∗ search algorithm assigns each search node a f-cost,
f = g + h, where the g-cost is the cost of the path from the
start node to the current node, and the h-cost is an estimate
of the cost from the current node to the goal. A heuristic
is admissible if it never over-estimates the cost to the goal.
A heuristic is consistent if for every pair of nodes F and
G, h(F ) ≤ d(F,G) + h(G), where d(F,G) is the optimal
path cost between F and G. Another definition that is often
used, |h(F ) − h(G)| ≤ d(F,G), holds only for undirected
graphs. An inconsistent heuristic can be seen in Figure 1
between nodes F and G. The value inside each node is the
heuristic value and edges are labeled with their costs. The
heuristic in this example is not consistent because h(F ) =
9 � 1 + 0 = d(F,G) + h(G).

A∗ maintains an open list of eligible nodes to expand next,
and a closed list of nodes which have already been expanded.



A∗ DELAY
Open Closed Open Closed Delay

1 A A
2 B-F A B-F A
3 C-G A, B C-G A, B
4 C-F, H A, B, G C-F, H A, B, G
5 C-F, I A, B, G, H C-F, I A, B, G, H
6 D-G, I A-C, H D-F, I A-C, H G
7 D-F, H, I A-C, G D-F, I A-C, G H
8 D-F, I A-C, G, H E, F, I A-D G, H
9 D-F, J A-C, G-I E, F, I A-D, G H

10 D-F, K A-C, G-J F, I A-E G, H
. . . . . . . . . . . . . . . . . .

Figure 2: Node expansions for Figure 1 with A∗ and DELAY.

With a consistent heuristic nodes are only moved from the
open list to the closed list. With an inconsistent heuristic,
however, closed nodes may be opened again (and return to
the open list). We illustrate this with Figure 1. Each node
is marked with its h-cost. The nodes on the open and closed
lists after each step are shown in Figure 2. The node about
to be expanded is shown in bold.

The first four steps of the algorithm are straightforward,
as A∗ expands nodes A, B, G, and H. At this point H’s only
child, I, will have a f-cost of 8 (g = 8, h = 0). So, node
C, with f-cost 7, will be expanded next. Node G will sub-
sequently be re-expanded through a lower-cost path. Each
node C-F provides a shorter path to G, but the shorter path is
not discovered before expanding an increasingly larger sub-
set of nodes G-K. Our new algorithm, DELAY, works by
reducing the number of re-expansions in nodes G-K.

Formally, a search problem is a 4-tuple (G, h, start,
goal), where G = (V,E) is a search graph and h is a heuris-
tic function. The size of the search space explored is often
measured as bd where b is the branching factor and d is the
depth of search. A different metric is used here. Let N be
the set of all nodes which have the following two properties:
1) f-cost less than or equal to hopt, the optimal distance from
start to the goal, and 2) are reachable from start along a
path for which all nodes also have f-cost less than or equal
to hopt. This is the set of nodes, modulo tie-breaking, which
will be expanded by A∗. We designate the size of N as |N |,
although we occasionally just write N when the meaning is
obvious.

Given an inconsistent heuristic, A∗ may perform up to
O(2N ) total expansions (including re-openings) (Martelli
1977). Two algorithms have been suggested that improve
this worst case. The B algorithm (Martelli 1977) ignores h-
costs when they are provably too low, which can only hap-
pen if they are inconsistent. This simple method reduces
the worst-case number of node expansions to O(N2). A
slight improvement of this algorithm, with the same worst-
case performance, was proposed in (Bagchi & Mahanti
1983). The B’ algorithm (Mero 1984) introduced pathmax
rules which propagate and update h-costs through the search
space. B’ also has a worst-case bound of O(N2) but outper-
forms algorithm B on certain special cases (O(N) compared
to O(N2)).
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Figure 3: An example of the pathmax rules.

It is important to note that different heuristics will have
different values of N . Thus, a consistent heuristic h1 will
result in at most O(Nh1) expansions while an inconsistent
heuristic h2 will result in at most O((Nh2)2) expansions.
Thus, if Nh1 > (Nh2)2 it would always be preferable to use
the inconsistent heuristic, because even in the worst case it
would still lead to fewer node expansions.

Corrections to Existing Literature
Mero (Mero 1984) introduced an example graph, similar to
Figure 1, where B, B’ and A∗ all perform O(N2) expan-
sions. This conclusion was based on analysis, not an imple-
mentation. Our implementation of these algorithms disprove
the claim. Figure 1 illustrates the fix needed to repair their
example—setting the h-cost of nodes H-L to 0. Addition-
ally, their example uses a much broader range of edge costs
to achieve the same effect seen here. Figure 1 should be
seen as a single example of a class of graphs which can be
constructed for any size of N .

The pathmax rules were also originally introduced in
(Mero 1984). Pathmax is illustrated in Figure 3. The first
rule propagates the heuristic from a parent p to a child ci
by the rule h(ci) ← max(h(ci), h(p) − d(p, ci)). The sec-
ond pathmax rule was originally stated as: “Let ci be the
son of p for which h(p) + d(p, ci) = hc(p) is minimal. If
hc(p) > h(p) then set h(p) ← hc(p).”1 If applied to the
first example in Figure 3, it may result in an inadmissible
heuristic. The intention of this rule is to propagate values
from the successor of a node to its parent and should read
h(p)← min

i
(h(ci) +d(p, ci)). This rule is illustrated in the

right-hand-side of Figure 3.

DELAY Algorithm
In this section the DELAY algorithm is introduced, which
improves the best-known worst-case performance from
O(N2) to O(N1.5). Analysis of Figure 1 reveals that
O(N2) nodes are expanded when nodes G-K (total O(N))
are re-expanded O(N) times for O(N2) total expansions. If
the number of re-expansions in nodes G-K can be limited,
then the worst case can be reduced.

DELAY imposes a limit on the maximum number of nodes
that can be sequentially re-expanded. The algorithm takes
a parameter k and requires that for every k re-expansions,
there must be at least one new expansion. Pseudo-code for
DELAY is found in Figure 4, and is very similar to A∗; the
differences are marked with a ‘*’. A∗ normally has an open
list (a priority queue sorted by f-cost) and a list for closed

1The variable names have been changed for consistency.



nodes. The DELAY algorithm adds one additional list, the
delay list, which is sorted by minimal g-cost. If a node is
ever taken off the closed list, only possible if the heuristic
is inconsistent, then it is placed on the delay list for special
processing. DELAY uses the pathmax rules and a few other
minor details that are not described here.

The DELAY algorithm with k = 1 is compared to A∗ in
Figures 1 and 2. The right-hand-side of Figure 2 shows the
order of node expansions for DELAY. This is the same as
A∗ until node C is expanded, when A∗ puts G back on the
open list while DELAY puts it on the delay list. G will be
expanded off the delay list, but because k = 1, H cannot
be subsequently expanded until a new node is expanded—
so H is left on the delay list. This delay in expanding H
forces D to be expanded in step 8, and E to be expanded
in step 10. Continuing this example will demonstrate that
DELAY is much more efficient than A∗ for this example. In
Figures 1 k = 1 is optimal and will result in only O(N)
total expansions. Unfortunately, Figure 1 is not a worst-case
example for DELAY.

We assume that the cost to the goal is not known a priori.
If it was, an algorithm like Breadth-First Heuristic Search
(BFHS) (Zhou & Hansen 2004) could be used to find the
goal with only O(N) expansions. If the goal cost is not
known, an iterative deepening version of BFHS could be
used, which is equivalent to the B algorithm. If the search
space is a graph G = (V,E), and |V | = O(N), Dijk-
stra’s algorithm (Dijkstra 1959) would also expand O(N)
nodes (in Figure 1, for instance). We additionally assume
that N � |V |. Algorithms B and B’ are guaranteed not to
expand any nodes outside of the set N , and this is where
the DELAY algorithm makes its gains. DELAY may expand
nodes outside of the set N , but the number of such nodes is
tightly bounded.

Worst-Case Performance of DELAY

To prove the worst-case performance of DELAY we use the
following procedure. The nodes expanded by DELAY are di-
vided into two sets. The first set is N , as defined previously.
The second set, A, contains those nodes that DELAY ex-
pands outside of N . Note that A begins as an empty set, and
grows during the execution of DELAY. The DELAY algo-
rithm has a parameter k which controls the number of nodes
that can be re-expanded after each new expansion. We show
that the total expansions resulting from new expansions in
N is limited to O(|N |k). We then show that if we choose
k =

√
2N that A is limited to size O(

√
N). Additionally,

once O(
√
N) nodes are expanded in A we are guaranteed

that we have the shortest path to every node inside N .
We do not have a priori knowledge of which nodes are in

N and which are in A, but these sets are well defined. We
assume that N is finite. With a consistent heuristic, nodes
which are closed will never be opened or expanded again.
But, with an inconsistent heuristic, this isn’t the case. Thus,
it is useful to make a distinction between nodes which are
closed, but may subsequently be re-opened, and those which
are closed and cannot be reopened. When a node is closed
for the last time we consider it to be finished.

// DELAY is sorted by g-cost
// OPEN is sorted by f-cost
Delay(start, goal, k)

1 push start onto OPEN
2 while (true)
3∗ while ((OPEN.top() = goal) AND

(DELAY.top().gcost < OPEN.top().gcost))
4∗ Reexpand(1)
5 next← open.pop()
6 if (next == goal)
7 return path from start to goal
8 else
9 Expand(next)
10∗ Reexpand(k)
11 end while

Expand(node)
1 foreach child ci of node
2 if ci on OPEN, update cost(ci)
3∗ else if ci on DELAY, update cost(ci)
4 else if ci on CLOSED and (can update cost)
5 update cost (ci)
6∗ add (ci) to DELAY
7 remove (ci) from CLOSED
8 else add (ci) to OPEN
9 add node to CLOSED

* Re-expand(k)
1 for i = 1 . . . k
2 if (delay.empty()) return
3 Expand(delay.pop())

Figure 4: The DELAY algorithm.

The entire proof is quite lengthy. Due to space constraints
we highlight a few aspects of the proof here, but we are un-
able to present the proof in its entirety. The proof that DE-
LAY finds an optimal solution is almost identical to the proof
for A∗, so we omit that portion of the proof as well.

First, we bound the work due to new expansions inside N
and new expansions inside A.

Lemma 1 At most O(|N |k) expansions (including re-
expansions) will result from new node expansions in N .
Proof. After each expansion in N , DELAY is only allowed
to re-expand k nodes. There are exactly |N | nodes in N ,
so in the process of expanding these nodes there cannot be
more than |N |k re-expansions. This results inO(|N |k) total
expansions. �

Lemma 2 If the size of A is bounded to be no larger
than Amax, at most O(kAmax) expansions (including re-
expansions) will result from new node expansions in A.
Proof. After each expansion in A, DELAY is only allowed
to re-expand k nodes. Each node in A can only be expanded
as a new node once. SinceA is bounded, at mostO(kAmax)
expansions result from new node expansions in A. �

These lemmas tell us the total size of our search once we
choose an appropriate value of k.

Lemma 3 During search, all nodes outside N (in A) will
have f-cost > hopt.
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Figure 5: Overview of proof argument.

Proof. All nodes bordering N in A must have f-cost > hopt

by definition. Using the first pathmax rule we are guaranteed
that the f-cost along a path will be non-decreasing. Thus,
during search, all nodes in A will have f-cost > hopt. �

This lemma shows that if we have an optimal path to a
node inN on the open list, it will always be expanded before
a node in A.

If all nodes in the open list have suboptimal g-cost, then
there must be a node in the delay list with optimal g-cost
but blocked by the requirement for a new expansion per k
re-expansions. The top node in the delay list has optimal
g-cost as well, since no other node in this list can provide it
with a smaller g-cost.

Lemma 4 Between each new expansion in A, at least k −
|A| nodes in N are finished.

This lemma is illustrated in Figure 5, but the proof is too
long to present here. The size of A is growing, but only
by 1 for every new expansion in A. So, as more nodes are
expanded inA, progressively fewer nodes will be finished in
N . Once |A| ≥ k it is possible that all progress in N will
end. This can happen after k new expansions in A. Thus,
for any value of k, the total number of nodes guaranteed to
be finished in N is:

k+ (k− 1) + (k− 2) + · · ·+ 2 + 1 = k2/2 + k/2 ≈ k2/2

If we let k =
√

2|N |, then k2/2 = |N |. This choice of k is
sufficiently large so that all nodes in N are finished before
|A| grows larger than k. Otherwise we could spend all our
time re-expanding nodes in A instead of finishing nodes in
N .

Theorem 1 The total number of expansions (including re-
expansions) by DELAY when k =

√
2|N | is bounded by

O(|N |k) = O(|N |1.5).
Proof. By lemma 1, each expansion in N will be followed
by at most

√
2N re-expansions, for O(|N |1.5) expansions.

If k =
√

2N , the total number of expansions resulting from
new nodes in A is O(N), by lemma 2. Once we expand
k =

√
2N nodes in A all nodes in N are guaranteed to be

finished. So, DELAY is limited to no more than O(|N |1.5)
total expansions for k =

√
2|N |. �

Theorem 2 In DELAY, k = O(
√
|N |) is optimal.

While we do not show it here, it is possible to construct
an example for which k ≤

√
|N | results in an unbounded

number of expansions in A but k ≥
√

2|N | does not. This

implies that, given no other assumptions about edge costs,
k = O(

√
|N |) is optimal.

The one caveat to this analysis is that we assume N is
known a priori, when in fact this is not true. But, there
has been a lot of work on predicting the size of search trees
(Korf, Reid, & Edelkamp 2001; Kilby et al. 2006), so this
might be used to estimate N . Another, simpler approach
is to estimate N as the number of unique nodes expanded
during search, in which case the estimate will grow with the
search. This is acceptable, because the worst-case occurs
when all nodes inside N are expanded once, and then need
to be re-expanded again. In this case we will have a very
accurate estimate of N .

If we choose k =
√

2N , the asymptotic running time is
O(N1.5) in the worst case. This result suggests we should
always use an inconsistent heuristic hi instead of consistent
heuristic hc if we expect that hi will reduce the size of Nhc

to Nhi = N
2/3
hc . Otherwise, some measure of inconsistency

is needed to determine whether or not the inconsistency in a
heuristic is likely to produce the worst-case performance. In
the next section we discuss how bounding the range of edge
values in a graph can bound the worst-case performance for
an inconsistent heuristic.

Tighter Bounds for A* Expansions

Previous research (Martelli 1977; Mero 1984) demonstrated
cases in which A∗ performs an exponential number of ex-
pansions, but B and B’ only perform a quadratic number of
expansions. If the heuristic values, solution cost, or edge
costs in a domain have certain properties, A∗’s worst-case
performance cannot occur.

We define δ as the minimum possible amount by which
the g-value of a node can change. For instance, if all edges
have cost either 2 or 3 then δ = 1. If edge costs are 1.0, 1.6,
1.8, then δ = 0.2.

First, we show that the value of δ implies a lower bound
on the maximum heuristic value of a node expanded during
a search.

Theorem 3 If A∗ performs φ(N) node expansions, then
there must be a node with h-cost at leastO(δ ·φ(N)/N), and
the path to the goal must have cost at least O(δ · φ(N)/N).

Proof. If there are φ(N) total expansions in a graph of
size |N |, by the pigeon-hole principle there must be a node,
v1, with at least (φ(N) − N)/N re-expansions. Each re-
expansion must decrease the g-cost of v1 by at least δ, so
after this process the g-cost of v1 has been reduced by at
least δ(φ(N)−N)/N .

We will now show, using Figure 6, that this implies
that there must exist a node (B in Figure 6) with h-cost
≥ δ(φ(N) − N)/N . Suppose the optimal path from A to
v1 is via the path A → B → v1, with first expansion of
v1 occurring along the path L. If L is not an optimal path,
exploring L before B requires that f(B) > fL(v1), where
fL(v1) is the f-cost of v1 when explored through the path L.
Thus:



f(B) ≥ fL(v1)
h(B) ≥ gL(v1) + h(v1)− g(B)
h(B) ≥ gL(v1) + h(v1)− g(v1) [g(B) < g(v1)]
h(B) ≥ gL(v1)− g(v1)
h(B) ≥ δ · (φ(N)−N)/N

Therefore h(B) is at least O(δ · (φ(N)/N)). If we expand
a node with h-cost O(δ(φ(N)/N)), then the cost of the op-
timal path must also be at least O(δ(φ(N)/N)). �

(A)

(B)

(v1)

gL(v1)
L

Figure 6: Two paths from A to v1.

For A∗ to expand φ(N) = 2N nodes, there must be a
node with h-cost at least O((δ·2N )/N). For A∗ to expand
φ(N) = N2 nodes, there must be a node with h-cost at least
O(δ·N). In many search problems edge costs are constant
and we consider the depth of the solution to be d and the
nodes expanded, N = bd. In this case, d = lg(N)/lg(b),
which is the maximum heuristic value during search, so the
worst-case complexity is expected to be O(Nlg(N)/lg(b)).
These results imply that A∗’s worst-case performance will
not occur on many graphs of interest. They also suggest that
we may be able to use a lower value of k for the DELAY
algorithm in some domains.

Next, we use this result to show that if there is an upper
bound on the edge weights in a problem, there is also an
upper bound on the worst case runtime complexity. This
bound is for A∗, not for DELAY, which has a better worst-
case bound.
Theorem 4 If the edge weights are constant-bounded (do
not grow with problem size), then the total number of node
expansions by A∗ is at most O(N2/δ).
Proof. Since the edge weights are constant-bounded, the
cost of any path from any node inN to goal is at mostO(N).
Thus, this is an upper bound on the admissible h-cost of any
node in N. Using the result of the previous lemma,

O(δ ∗ φ(N)/N) ≤ O(N)

φ(N) ≤ O((N2)/δ)
�

These results have implications for DELAY. Primarily,
they serve to limit the number of re-expansions that can oc-
cur inA, and can reduce the worst-case bound. For instance,
in a domain where the optimal solution cost is O(lg(N))
and δ is constant-bounded, no node can be re-expanded
more than O(lg(N)) times. As a result, DELAY can use
k = lg(N) instead of k =

√
N , and reduce its overhead.
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BPMX and A∗

Bidirectional pathmax (BPMX) (Felner et al. 2005) is an
extension of pathmax to graphs with undirected edges. We
illustrate BPMX in Figure 7. The heuristic value of the left
child is used to update the heuristic values of the parent and
the right child.

In IDA∗ the heuristic updates from BPMX are not stored,
but just propagated during search. This isn’t a problem be-
cause IDA∗ can easily perform the propagation step at no
cost as it searches the tree. However, in a best-first search
this isn’t always the case. After an inconsistent heuristic
value is found, it can be propagated one or more steps, with
variable cost. This raises the issue of how far to propagate
a heuristic update when one is found. We demonstrate here
that there is no single optimal policy. We give one exam-
ple where propagating values as far as possible will result
in O(N2) BPMX propagation steps, and another example
where propagating values will result in arbitrarily large sav-
ings in node expansions.

In the example at the top of Figure 8, the heuristic val-
ues gradually increase from nodes A to G. When node B is
reached, the heuristic can be propagated back to node A, in-
creasing the heuristic value to 1. When node C is reached,
the heuristic update can again be propagated back to node
(A), increasing the heuristic value to 2. With each new ex-
pansion, O(N) propagations will occur, for O(N2) total
propagation steps with no savings in node expansions.

In the bottom portion of Figure 8, the opposite happens.
The start node is (A). The search proceeds to node (B) where
a heuristic value of 100 is found. If the BPMX propaga-
tion is limited, B will remain on the open list with f-cost
102 while all the children of C are expanded. The possible
BPMX updates are shown in the dark ovals. Here, BPMX
can update C’s h-cost to 97 and f-cost to 100. After this
update the direct edge from A to the goal will be expanded
and the search will terminate before expanding any of C’s
children.

0 2 4 61 1 1
(B) (C) (D)(A)

06
(G)

0 0

0 100

2

1

1

(A)

0100

0 1

Goal

1
… [99]

[98][97]

(B)

(C) 100

Figure 8: Bad and good examples for BPMX propagation.



These examples demonstrate that there cannot be a fixed
propagation policy which is optimal for all graphs. In the ex-
perimental results we show that the best propagation policy
is domain dependent.

Experimental Results
We present experimental results in two domains, the topspin
puzzle and pathfinding.

Top Spin
Top Spin is a combinatorial puzzle in which the goal is to
arrange the tokens in increasing order. The (T,K)-TopSpin
puzzle has T tokens arranged in a ring. An action in this
space corresponds to flipping (reversing) any set of K con-
secutive tokens.

This domain is tricky to implement for algorithms such
as IDA∗, as there are a large number of transpositions in
the state space. For IDA∗ to solve this puzzle efficiently,
as many of these transpositions as possible must be detected
and removed. However, using A∗, we can detect the trans-
positions to avoid re-expanding states.

The state-of-the-art heuristic for this domain is a pattern
database (PDB) with dual lookups (Felner et al. 2005). The
dual of a state will have a different heuristic value from the
regular state, and is often much better than a regular heuris-
tic lookup. Even if a PDB is consistent with respect to reg-
ular lookups, it will not be consistent when used for dual
lookups, because the dual of two adjacent states may not
necessarily be dual.

We tested a variety of algorithms in TopSpin over a vari-
ety of problem sizes. We generated 1000 random problems
of the (T,K)-TopSpin puzzle for K = 4 and T = 9 . . . 14.
For each puzzle, we built a PDB of size bT/2c. We re-
port comprehensive results in Table 1 for (14,4)-TopSpin,
although the average over all problems is nearly identical.
When BPMX is used, it is parameterized by the depth of the
BPMX propagation. DELAY is parameterized by k.

All algorithms are using inconsistent heuristics except A*
in the last line, which is using the normal consistent lookup

Algorithm Nodes Expanded
Delay(log)+BPMX(∞) 24952
Delay(2)+BPMX(∞) 24956
Delay(2)+BPMX(1) 25132
Delay(log)+BPMX(1) 25147
A∗ +BPMX(2) 30190
A∗ +BPMX(∞) 30212
A∗ +BPMX(1) 30213
A∗ +BPMX(3) 30215
B’ 40528
A∗ 40559
B 40634
Delay(log) 40800
Delay(2) 40804
A∗ (normal lookup) 71999

Table 1: Average nodes expanded in (14,4)-TopSpin.
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Figure 9: Nodes expanded based on solution depth.

in the PDB. Using dual lookups, there are three distinct
classes of algorithms. DELAY with BPMX has the best re-
sults, averaging around 25k expansions, about three times
fewer than A∗. The next class of algorithms are A∗ with
BPMX2. The amount of propagation does not make a sig-
nificant difference in the number of nodes expanded in this
domain. The last class of algorithms are those which do not
use BPMX and all have similar performance. Each of these
groupings is statistically significant.

In Figure 9, we plot results over all instances solved. The
x-axis is the solution depth and the y-axis is the average
number of nodes expanded for all instances (regardless of
the number of tokens) which had that solution depth. Note
that the y-axis is a log plot, so all algorithms are growing
exponentially in the solution depth. This means that in Top-
Spin DELAY is effective, but it is not improving the asymp-
totic complexity.

Pathfinding
In the pathfinding domain, an agent must find the shortest
path between two points in a map. Both cardinal moves (cost
1) and diagonal moves (cost

√
2) are allowed. The natural

heuristic in this domain is octile distance. The octile dis-
tance between to points is

√
2 ·min(∆x,∆y) + |∆x−∆y|.

While octile distance is a perfect heuristic on a blank map,
it will often lead agents into dead-ends in the search space.
Memory-based heuristics can be used on top of the octile-
distance to speed up the search. A perfect heuristic can
be obtained by solving the all-pairs-shortest-path problem,
however this can be expensive. If the size of the map is
O(M), this will take memory O(M2) and time O(M3). In
many domains this isn’t feasible. Modern computer games,
for instance, have tight memory budgets for pathfinding,
meaning that there isn’t O(M2) memory available.

2Analysis after submitting this paper has shown that the differ-
ence between the first and second set of algorithms can be com-
pletely attributed to BPMX implementation details, hence the con-
stant difference in performance. Our original implementation ex-
panded a node completely, and then performed a BPMX update.
An implementation which performs a BPMX update as soon as it
is possible to perform one saves work and equals the performances
of DELAY.



Instead of storing the shortest distance from all points
on the map, choose t points on a map and build a table
with the single-source shortest path from each t to all other
nodes. Each of these t tables can then generate an admis-
sible heuristic between any nodes a and b by computing
h(a, b) = |d(a, t)−d(b, t)|. The effectiveness of this heuris-
tic will depend on the heuristic being queried. The more
tables that are built, the better chance that one of the heuris-
tics will give good results. To further reduce memory costs,
the tables can be compressed, eliminating a fraction of the
entries.

We used this method to generate an inconsistent heuristic
for pathfinding problems. For these experiments we take
the max of the octile distance and one of 10 possible table-
based heuristics, which results in an inconsistent heuristic.
The table-based heuristic lookup is chosen based on a hash
function of the current state. For our experiments, we didn’t
need to compress our heuristic, but if we did, we wouldn’t be
able to lookup every heuristic from every state. This allows
us to compare the maximum possible gain from looking up
and taking the max of all 10 heuristics, versus the gains from
using the inconsistent heuristic.

Our experiments are performed on computers with Intel
P4 3.4GHz CPUs, and 1GB of RAM. We perform experi-
ments on a collection of 116 game maps, all of which are
scaled to 512x512. There are 1200 problem instances on
each map, ranging from easy (solution length ≤ 2) to hard
(solution length ≥ 500).

We summarize the results of these experiments in Fig-
ures 10 and Figure 11. These graphs show the average num-
ber of nodes needed to solve one problem in the problem
set. The x-axis is the path length. Results were averaged in
buckets of size 4, so the last point on the curve is the aver-
age number of nodes expanded on paths with length between
508 and 512.

In Figure 10 we show the results for DELAY, B, B’ and A∗.
A∗ was tested with both the consistent octile-distance heuris-
tic and the inconsistent heuristic described above. None of
these algorithms use BPMX. Although B’ was proven the-
oretically to be no worse than B, in practice it ends up be-
ing significantly worse than B, because it isn’t possible to
maintain consistent tie-breaking between B and B’ after B’
applies the pathmax rules. DELAY with k = 2 has better
performance than all of these algorithms, however, they all
have performance worse than A∗ with octile distance.

This result is significant – the inconsistent heuristic used
in these experiments dominates the consistent heuristic, in
that it always provides the same or a better value. Yet, de-
spite a more informed heuristic, it still leads to more node
expansions as a results of the inconsistency. This means that
the original concerns about inconsistency were not unwar-
ranted, as we have shown that in practice a more informed
inconsistent heuristic leads to worse performance than a less
informed consistent heuristic.

This is not the complete story. The results with BPMX
are shown in Figure 11 (note the change in the y-axis). The
top line in this graph is the same line as the bottom line in
Figure 10. Here we plot A∗ with BPMX propagation of 1,
2, and∞, DELAY with BPMX, and A∗ using the max of all
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Figure 10: Search tree size for A∗ and DELAY.

the heuristic tables, which is a consistent heuristic. This last
line is provided as a best-case reference, in that this heuristic
could not always be stored in domains with tight memory
constraints.

Using BPMX, the inconsistent heuristic is now better than
the octile-distance heuristic. In this domain, with this heuris-
tic, a propagation distance of 1 is best. Given the way
the heuristic is built, this makes sense because the different
heuristic values are laid out in a uniform manner, meaning
that good heuristic values will always be nearby. DELAY is
competitive with BPMX, however it expands slightly more
nodes than BPMX. When we timed the experiments, DELAY
did slightly better than BPMX(1), depending on the hard-
ware used to run the experiments.

The problem being tested here is a realistic one, using a
realistic heuristic. In these experiments, like with TopSpin,
BPMX has a significant effect on the number of nodes ex-
panded. Unlike TopSpin, however, DELAY is not as effec-
tive. This is a result of the heuristic being used in each do-
main. In TopSpin, the dual lookup gives a larger range of
values that will not be predictable from state to state. But
in this pathfinding setup, after doing a BPMX propagation,
the heuristic will often be consistent, or only slightly incon-
sistent. Thus, nodes will not be re-expanded a large number
of times, and DELAY is less effective. We are able to set
up problems in the pathfinding domain where there is sig-
nificantly more inconsistency. In these contrived examples,
DELAY is much more effective.

Conclusions
Inconsistent heuristics have had a negative connotation in
the literature. In part it comes from the very name, “incon-
sistent”, and in part comes from the early heuristic search
publications which demonstrated a pathological worst case
for A∗. Recent research has shown that inconsistent heuris-
tics are not only practical for IDA∗, they often can be
quite powerful. This paper provides the algorithmic insight
needed to complete the resurrection of inconsistent heuris-
tics: the problems with A∗ have been resolved. This research
presents the first evidence that the benefits of inconsistency
that have been so beneficial to IDA∗ search applications can
also apply to A∗. In effect, there is no longer any reason to
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Figure 11: Search tree size for A∗ and DELAY with BPMX.

assign a negative attribute to inconsistent heuristics.
However, there are still open issues to be solved. We are

working to come up with precise metrics that will help pre-
dict how far BPMX propagations should be performed, as
well as predicting what value of k should be used for DE-
LAY.

Regardless, we have made progress in understanding the
issues surrounding inconsistent heuristics. In addition to im-
proving the worst-case performance when using inconsistent
heuristics, we have improved the understanding of BPMX in
algorithms besides IDA∗, and shown the effectiveness of in-
consistent heuristics in practice.
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