
Generalized Entropy and Solution Information for Measuring Puzzle Difficulty

Junwen Shen1, Nathan R. Sturtevant1,2

1University of Alberta, Department of Computing Science
2Alberta Machine Intelligence Institute (Amii)

{junwen5, nathanst}@ualberta.ca

Abstract

Metrics for problem difficulty are used by many puzzle gener-
ation algorithms, as well as by adaptive algorithms that want
to provide players with the puzzles at the correct level of dif-
ficulty. A recently proposed general metric, puzzle entropy,
combines an analysis of game mechanics with a model of
player knowledge in the form of inference rules to predict
problem difficulty. The entropy of a puzzle is the amount of
information required, given a player’s knowledge about the
puzzle, to describe a solution to a puzzle. This paper gener-
alizes the concepts of puzzle entropy and solution informa-
tion, providing a better foundation for the previous work and
creating new algorithms, Minimum Solution Information and
Total Solution Information. While functionally similar to past
work, the new algorithms allow knowledge about a puzzle to
be represented as a policy. We then evaluate the impact of
inference rules, policies, and player knowledge in the 2016
game, The Witness.

Introduction
Developing a universal algorithm to measure puzzle diffi-
culty is a complex task (van Kreveld, Loffler, and Mutser
2015). Different games possess various features that may be
challenging to compute and standardize. For example, for
Sokoban-type games like Fling! (2011), simple metrics such
as the number of reachable states or problem decomposi-
tion using subproblem solution length have proven effec-
tive (Sturtevant 2021; Jarušek and Pelánek 2010). However,
these metrics may not be applicable for puzzles in Cut The
Rope (2010) and Angry Birds (2009), which involve real-
time physics. Additionally, difficulty varies among players
with different levels of knowledge and skills. Nevertheless,
an accurate difficulty metric can be highly beneficial. Puzzle
designers could use it to determine the quality and suitabil-
ity of a puzzle within a game (De Kegel and Haahr 2020)
and predict player enjoyment. It could also aid in generating
and analyzing puzzle curricula, allowing players to acquire
game-specific knowledge more easily (Lelis et al. 2022).

Recent work by Chen, White, and Sturtevant (2023) in-
troduced the notion of puzzle difficulty based on the amount
of uncertainty a player might face, which can be broadly
applied across different puzzle games (del Solar-Zavala,

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Schaa, and Barriga 2023). Their approaches rely on informa-
tion entropy, representing the amount of communication re-
quired to describe the solutions of a single-player turn-based
puzzle. Published results demonstrated a positive correlation
between puzzle difficulty, as measured by their algorithms,
and user ratings on a subset of puzzles and constraints from
The Witness (2016). This paper studies the nature of the un-
derlying algorithms, considers enhanced player models, and
expands the experiments conducted in previous studies.

This paper establishes the mathematical connection be-
tween the previous MUSE approach and the probability of
solving a puzzle. New approaches are derived which have
stronger mathematical foundations, while maintaining gen-
erality. This enables us to evaluate both policies and player
inference rules. We then develop additional inference rules
that can be applied to a broader class of puzzles in the game
The Witness. Consequently, we are able to expand the puz-
zle datasets used for evaluation. Empirically, we find that
our approach, total solution information (TSI), is as effective
as previous methods across different datasets. We hypoth-
esize that using too many or too powerful inference rules
overestimates players’ abilities, resulting in a poorer corre-
lation between puzzle difficulty and engagement. Moreover,
we evaluate a machine learning (ML) policy and show that
it has learned puzzle difficulty, but not as well as our in-
ference rules. Finally, we create a puzzle-design tool with
a web GUI, enabling designers to invoke exhaustive proce-
dural content generation (EPCG) queries that generate sug-
gested designs sorted by difficulty from our approach.

Background and Related Works
The work in this paper is closely related to measuring
puzzle difficulty and its relationship with player engage-
ment. Puzzle difficulty represents the challenge that play-
ers will face, and it affects player enjoyment (Abuhamdeh
and Csı́kszentmihályi 2012). Furthermore, automated diffi-
culty evaluation accelerates the puzzle generation pipeline
and helps user-specific puzzle generation (van Kreveld, Lof-
fler, and Mutser 2015). Simple metrics like minimum solu-
tion length are used in exhaustive procedural content genera-
tion (EPCG) (Sturtevant and Ota 2018) for incrementally de-
signing levels in Snakebird (2015) (Sturtevant et al. 2020) or
sliding puzzles like Rush Hour (De Kegel and Haahr 2020).
Constraint-based algorithms, such as answer set program-

ming, were used to assess maze-like puzzles, where mazes
are represented as grid-embedded trees with constraints on
reachability and path length (Smith et al. 2012; Nelson
and Smith 2016). More complex methods, like simulating
playtests using deep reinforcement learning, can be used in
Angry Birds (2009) (Roohi et al. 2021). Chen, White, and
Sturtevant (2023) proposed an algorithm that uses heuristic
search and information entropy for turn-based puzzle games,
evaluated on puzzles in The Witness (2016).

Heuristic Search
A puzzle P can be formally defined as P = (S,A, T, s0, G)
(Lelis et al. 2022), where S is a set of states that includes the
initial state s0, and G is a subset of S that represents the set
of goal states. The action functionA returns a set of possible
actions at a given state s. If a state s is terminal, A(s) = ∅.
The deterministic transition function T takes a state s and an
action a as input, and produces a new state s′ which is the re-
sult of applying action a to state s. Thus, the solution path to
goal state g can be represented as a sequence of state-action
pairs τg = {(si, ai) | T (si, ai) = si+1 and T (sm, am) =
g ∈ G}mi=0, and a player’s policy can be represented by a
function π(a, s) : A(S) × S → [0, 1] that returns the prob-
ability of taking action a at state s. The search space is as-
sumed to be a tree, where each node corresponds to a state
in S, and the tree is rooted at s0. A directed edge exists from
state s to state s′ if T (s, a) = s′ for some action a ∈ A(s).
The successor function, σ(s) = T (s,A(s)), returns the set
of successor states of s. Therefore, the entire search state
space is described by the tree of all possible actions and a
solution path is a path starting from initial state s0 to a goal
state g.

Entropy of a Puzzle
Information entropy (Shannon 1948) serves as a fundamen-
tal metric in information theory, allowing for the quantifi-
cation of uncertainty in stochastic processes. Entropy rep-
resents the expected amount of information content given a
discrete random variable X and its probability distribution
P : X → [0, 1] over the sample space X .

H(X) = E [I(X)] = −
∑
x∈X

P (x) log2 P (x) (1)

For example, consider the case of tossing a fair six-sided die.
The entropy of this event would be H = −6 × 1

6 log2
1
6 =

log2 6 ≈ 2.585 Sh1, indicating that the information content
of each outcome is log2 6Sh.

To gauge puzzle difficulty, we adopt the minimum uni-
form entropy (MUSE) and relative minimum uniform en-
tropy (ReMUSE) metrics proposed by Chen, White, and
Sturtevant (2023). These metrics quantify the amount of in-
formation an oracle would need to provide for a player to
solve the puzzle. MUSE directly calculates the minimum
amount of uniform entropy based on the number of choices

1We use the Shannon (binary unit) as the unit of information
instead of bit (binary digit) according to the International System
of Quantities (International Organization for Standardization 2008)

at each step along the solution path. On the other hand, Re-
MUSE utilizes the Kullback-Leibler (KL) Divergence (Kull-
back and Leibler 1951), also known as relative entropy, as
shown in Equation 2, to capture the information of other so-
lutions from successors of the current state.

DKL(P ∥ Q) =
∑
x∈X

P (x) log2
P (x)

Q(x)
(2)

Here, P and Q are discrete probability distributions defined
on the same sample space X . In ReMUSE, P is the softmin
of direct successors’ uniform entropy, Q is a uniform distri-
bution as player’s policy, and |P | = |Q| = |A(s)|. MUSE
and ReMUSE values increase with more complex puzzles,
as they require the player to make more decisions. Previous
work (Chen, White, and Sturtevant 2023) demonstrated that
MUSE and ReMUSE can effectively assess puzzle difficulty.
The positive correlation between these metrics and user rat-
ings in the puzzle game, The Witness, further supports the
relationship between difficulty and player satisfaction.

Puzzles from The Witness
The Witness is a single-player puzzle solving game pub-
lished by Thekla, Inc. in 2016. We refer to them henceforth
as “Witness puzzles”. Most puzzles in the game are rectan-
gular grids of sizew×h. In Witness puzzles, the player must
draw a non-self-crossing path along the grid lines starting
from the designated start junction and ending at any of the
goal junctions. The start junction is represented by a round
circle, and the end junction is indicated by a notch extended
from the grid line (Figure 1a). When the path reaches the
end junction, the notch is automatically filled.

The game includes two classes of constraints: path con-
straints and region constraints. Path constraints are placed
on the grid lines, while region constraints are present in the
blocks surrounded by the grid. Figure 1b and Figure 1c il-
lustrate examples of path constraints and region constraints
with their corresponding solutions. Additionally, Figure 2a
presents a more complex puzzle that includes every type of
constraint studied in this research. The requirements for sat-
isfying these constraints are explained in Table 1. It is essen-
tial for the solution path to comply with all the constraints
in the puzzle. Moreover, some combinations of constraints
significantly reduce the number of possible solutions. By un-
derstanding these constraints, players can reduce the number
of possible actions, thereby simplifying the puzzle. These
guidelines are known as inference rules. We explore the ef-
fects of inference rules in later sections.

The solution path for the puzzle in Figure 1b is
{(s0, aup), (s1, aright), (s2, aup)}, and its MUSE value with-
out using inference rules is

∑2
i=0 log2 |A(si)| = 1+1+1 =

3 Sh. Similarly, the solution path for the puzzle in Figure
1c is {(s0, aright), (s1, aup), (s2, aleft), (s3, aup), (s4, aright)},
and its MUSE value is 1Sh instead. Based on these calcula-
tions, we conclude that puzzle in Figure 1c is easier than the
one in Figure 1b.

Mathematical Foundations
We study the nature of MUSE by examining the connection
to the probability of finding a solution given a player policy.

(a) A 1× 2 puz-
zle with no con-
straint

(b) A 1× 2 puz-
zle with 2 region
constraints and a
solution

(c) A 1× 2 puz-
zle with a path
constraint and a
solution

Figure 1: Example The Witness puzzles with size 1× 2

(a) A 4×4 puzzle with 5 types
of constraints

(b) The solution to the puzzle
in (a)

Figure 2: Example 4× 4 complex puzzle and its solution

MUSE and Probability
We denote the MUSE of puzzle X as µ(X). In the calcu-
lation of µ(X), it is assumed that the probability distribu-
tion of player actions is uniform, and |A(s)| represents the
number of available actions at each state s. Therefore, in
the policy πµ, πµ(a, s) = |A(s)|−1 and the local entropy at
s is log2 |A(s)| (Chen, White, and Sturtevant 2023). More-
over, let τm = {(si, ai)}mi=0 be the sequence of state-action
pairs starting at the root of the tree s0 and ending at termi-
nal state T (sm, am) = s, then π(s) =

∏
(si,ai)∈τm

π(ai, si)

and π(g) represents the probability of reaching the goal state
g through the solution path, τg , according to π. Similarly,
πµ(g) is the probability of reaching the goal state g by uni-
form random. Now, we can derive the following theorem.
Theorem 1 µ(X) is proportional to the probability of find-
ing the most likely solution according to the player’s policy
(uniform random), where each solution path to the goal state
g ∈ G is a state-action sequence τg . It can be calculated by:

µ(X) = − log2 max
g∈G

πµ(g) (3)

Proof. According to the recursive definition, µ of a non-
terminal state, µ(s), is obtained by summing the local en-
tropy and the minimum entropy of its successors. The local
entropy is log2 |A(si)| since πµ(s) = |A(si)|−1. Hence, we
have the following cases:

µ(s) =

0 if s ∈ G
minsi∈σ(s) µ(si) + log2 |A(si)| if A(si) ̸= ∅
∞ otherwise

By simplifying the definition without recursion, we obtain:

µ(X) = min
g∈G

∑
si∈τg

log2 |A(si)|

Icon and Name Requirements

The path must cross the constraint

The path cannot cross the constraint

Must-Cross

Cannot-Cross

Separation

The constraint must be separated from
different coloured separation constraints in

the same region

Star

The containing area must have exactly one
other region constraint with the same colour

Triangle

The path around it must occupy the same
number of edges as the number of triangles

Table 1: Constraints and their requirements

where each solution path to the goal state g ∈ G is
a state-action sequence τg = {(si, ai) | T (si, ai) =
si+1 and T (smg

, amg
) = g}mg

i=0 and si ∈ τg stands for
si ∈ {si | (si, ai) ∈ τg}.
Using the properties of logarithms, where log2 x =
− log2 x

−1 and the logarithm function is monotone, we
have:

µ(X) = min
g∈G

∑
si∈τg

log2 |A(si)|

= min
g∈G

log2
∏

si∈τg

|A(si)|

= min
g∈G

− log2
∏

si∈τg

|A(si)|−1

= min

g∈G

− log2
∏

(si,ai)∈τg

πµ(ai, si)

= min

g∈G
[− log2 πµ(g)]

= − log2 max
g∈G

πµ(g)

Thus, MUSE is equivalent to the logarithm of the probability
of the most likely solution path, given uniform probability
on all actions.

Minimum Solution Information
Now we extend MUSE to cover the case where the player’s
policy is not uniform, and thus the local entropy is not
log2 |A(s)|. For example, suppose |A(s)| = 2. This is like a
fair coin flip, where getting heads represents taking the ac-
tion leading to the goal. If the coin is fair, then the entropy
of this event is H = −0.5 log2 0.5 − 0.5 log2 0.5 = 1 Sh,
which equals to the information content of each outcome.
However, if the coin is not fair and the probability of heads

is 0.1, then the entropy of this event is H = −0.1 log2 0.1−
0.9 log2 0.9 ≈ 0.469 Sh. This results shows that tossing this
unfair coin is less uncertain than tossing a fair one, since the
outcome is highly unlikely to be heads. Therefore, the out-
come of heads is more informative in this event, which is
I = − log2 P (Head) = − log2 0.1 ≈ 3.322 Sh. Similarly, if
an oracle needs to describe the solution to the player in this
case, it also needs to communicate 3.22Sh to the player.

We generalize MUSE to handle arbitrary policies by
defining the minimum solution information (MSI) of a puz-
zle X as I∗(X) shown in Equation 4, which represents the
minimum information needed to describe a specific goal
from puzzle X .

I∗(X) = − log2 max
g∈G

π(g) (4)

If player’s policy is uniform, then π = πµ and thus I∗(X) =
µ(X).

Total Solution Information
Similar to ReMUSE, if a puzzle has multiple solutions (goal
states) and the player does not have a preference for a spe-
cific one, then the oracle does not have to communicate an
exact solution, but can minimize the expected communi-
cation needed to get the player to a goal. Considering the
state-space tree of possible moves, minimizing the expected
amount of information for every state in the tree requires
minimizing the sum of the communication needed at that
state and the expected amount of information necessary for
each direct successor. For example, in MUSE or MSI, fol-
lowing the communication, the player’s policy is updated
such that π′(a, s) = 1 if and only if sa = T (a, s) is on the
most likely solution path and 0 otherwise, as shown in Fig-
ure 3. Therefore, the amount of information required for the
communication at the current node can be also calculated by
DKL(π

′ ∥ π).
Recall that σ(s) is the successor function for s. Then, we

define the total solution information (TSI) at state s, ψ(s),
as

ψ(s) =

0 if s ∈ G
minF (π′(s)) if A(s) ̸= ∅
∞ otherwise

(5)

where F is defined as

F (π′) = DKL(π
′ ∥ π) + Eπ′ [I (σ(s))] (6)

DKL(π
′ ∥ π) captures the amount of information utilized for

shifting the player’s policy from π to π′ using KL diver-
gence. Eπ′ [I (σ(s))] is the expected amount of information
required for successors of s under the new policy π′.

After carefully examining ψ(s), we propose the following
theorem:
Theorem 2 F (π′(s)) is minimal if

π′(a, s) =
π(a, s) · Pπ(ga | sa)∑

a∈A(s) [π(a, s) · Pπ(ga | sa)]
(7)

and

minF (π′(s)) = − log2
∑

a∈A(s)

π(a, s) · Pπ(ga | sa) (8)

where Pπ(ga | sa) represents the probability of reaching a
goal ga from the successor state sa = T (s, a) of state s
according to the player’s original policy π. The proof for
Theorem 2 is provided in (Shen 2024).

Equation 7 shows that the minimum amount of commu-
nication to change the policy to the one that always reaches
a goal is multiplying the original policy with the probabil-
ity of reaching a goal ga from the successor sa after taking
the action a under the original policy π. Figure 4 presents
an example of the behavior of the communication for TSI
within a state-space tree, similar to the one depicted in Fig-
ure 3. Specifically, the original policy π is [13 ,

2
3] at s0 and

the probabilities for reaching g0 and g1 from s1 and s2
(Pπ(g0 | s1) and Pπ(g1 | s2)) are 3

4 and 1
2 , respectively.

Therefore, after receiving the communication, the policy up-
dates to [13 ×

3
4 ,

2
3 ×

1
2]. Upon normalization, it becomes

[37 ,
4
7].

Subsequently, the minimum amount of information re-
quired for communicating the solution is proportional to the
probability of reaching a goal from the current state s, as
shown in Equation 8. By considering the current state as the
initial state s0, we can thus simplify the definition without
recursion as follows:

ψ(X) = − log2
∑
g∈G

π(g) (9)

Therefore, the TSI of a puzzle, ψ(X), is derived from the
logarithm of the sum of the probabilities of reaching goals
according to the player’s policy π.

In contrast, ReMUSE employs a softmin function with
base e for calculating the probability distribution of the uni-
form entropy of the immediate children (Chen, White, and
Sturtevant 2023), which effectively shifts the distribution of
reaching goals since uniform entropy is derived from the log
of base 2 instead of e. Moreover, it is not possible to de-
rive an equation for ReMUSE without recursion. Even if we
know a player’s policy and the corresponding probability of
reaching the goal(s), calculating ReMUSE still requires re-
cursively traversing the state space of the puzzle.

To summarize, MUSE computes the information needed
from an oracle to find a single solution to a puzzle, given
a uniform a priori policy. MSI generalizes this to find the
information needed for a single solution given any a pri-
ori policy. TSI computes the minimum expected information
needed to find any solution, given any a priori policy. TSI
can be expressed more simply than ReMUSE, as TSI is just
the logarithm of the probability of reaching the solution with
a given policy.

Inference Rules
When solving logic puzzle games, players often deduce sets
of inference rules, which are guidelines that can solve or
simplify the puzzle (Chen, White, and Sturtevant 2023).
Formally, an inference rule is a function that determines
whether a specific action should be taken at a given state.
When a player’s policy incorporates inference rules, the
probability of actions that cannot be taken is reduced to
zero. Conversely, if an action must be taken, then the prob-
ability of that action is one, and the probability of all other

s0

s1

s3

1
2

g0

1
2

1
2

s2

s4

1
3

s5

1
3

g1

1
3

1
2

the communication

I∗(X)

s0

s1

s3

0

g0

1

1

s2

s4

0

s5

0

g1

0

0

Figure 3: How the communication shifts the player’s policy in MUSE and MSI

s0

s1

s3

1
4

g0

3
4

1
3

s2

s4

1
4

s5

1
4

g1

1
2

2
3

the communication

ψ(X)

s0

s1

s3

0

g0

1

3
7

s2

s4

0

s5

0

g1

1

4
7

Figure 4: How the communication shifts the player’s policy in TSI

actions is zero. For actions in Witness puzzles (aup, aright,
adown, aleft), each action can be classified as unknown (UN-
KNOWN), cannot be taken (CANNOT TAKE), or must be
taken (MUST TAKE). These classifications reflect the prob-
ability of solving the puzzle by taking the corresponding ac-
tions. For instance, CANNOT TAKE actions either directly
violate the puzzle constraints or lead to situations where con-
straints cannot be satisfied later. Similarly, necessary actions
to satisfy constraints are classified as MUST TAKE. If there
are multiple MUST TAKE actions, then the puzzle is not
solvable at that state since the player can take only one action
at each state. Note that inferences rules can be directly incor-
porated into policies, but a policy cannot always be turned
into an inference rule. It is useful to reason explicitly about
inference rules separate from policies, as this can be used
to model players. An example of integrating inference rules
into πµ is shown in Algorithm 1.

Chen, White, and Sturtevant (2023) proposed two infer-
ence rules for must-cross and separation constraints in their
work, and another one for triangle constraints in a follow-up
thesis (Chen 2023). We briefly explain these rules in Figure
5. Furthermore, we assume the state-space tree of a given
puzzle mirrors that of an empty puzzle of the same size but
without constraints. In such a tree, each path from the root
to a leaf node represents a solution to the empty puzzle. This
assumption generalizes the scenarios described by Chen
(2023), where actions are classified as CANNOT TAKE.

To expand the dataset for testing algorithms and study
the effect of different player models, we propose the follow-
ing additional inference rules that could be applied broadly
across Witness puzzles containing different types of con-
straints.

Along-the-path Rule (APR)
For any sub-path (or subsequence) of a solution path that
begins at the initial state, known as a partial solution, the re-

gion constraints that are adjacent to the same side of the path
must not be violated. These constraints are guaranteed to re-
main in the same region regardless of the rest of the solution,
allowing for immediate evaluation to determine the validity
of the partial solution. For example, in Figure 6a, there are
8 star constraints adjacent the path, and none of them are
violated. In contrast, there are 3 violated star constraints ad-
jacent to the right side of the path in Figure 6b, thus this
path is not part of any solution. The implementation of this
inference rule is provided in Algorithm 2.

Region-completion Rule (RCR)
When the path intersects the boundary of the puzzle twice,
it forms a new closed region. A closed region that does not
contain the end junction cannot be changed, as shown in Fig-
ure 7. Every constraint within a closed region must be sat-
isfied; otherwise, these constraints cannot be satisfied later.
Algorithm 3 provides the details of this inference rule.

Experiments and Results
Our experiments aim to answer the following questions:
First, how does TSI perform compared to ReMUSE on dif-
ferent puzzle datasets? Second, how do policies from ma-
chine learning (ML) policy compare to our manually created
inference rules? Third, how does the quality of the player
model affect the puzzle difficulty calculation and its correla-
tion with player enjoyment?

Experiment Setup
The Windmill (Gruen 2016) is a website where users can de-
sign and publish Witness puzzles. It also allows users to up-
vote or downvote puzzles based on their enjoyment. We as-
sume that users on the website are advanced players of The
Witness and they generally upvote challenging puzzles and
downvote trivial ones (Chen, White, and Sturtevant 2023).

(a) aright is MUST TAKE, since
a must-cross constraint is adja-
cent to the current junction

(b) aright is MUST TAKE, since
two separation constraints are ad-
jacent to each other and the path
must go between them

(c) aright is MUST TAKE, since
the double triangle cannot be sat-
isfied later by taking aup

(d) aright is CANNOT TAKE, since
the triple triangle cannot be satis-
fied later by taking it

Figure 5: The baseline inference rules proposed in previous studies (Chen, White, and Sturtevant 2023; Chen 2023)

(a) A puzzle with a path that
does not violate any region con-
straints next to it

(b) The same puzzle as (a) but
with a path that violates star
constraints highlighted in red on
its right-hand side

Figure 6: Example puzzles with similar paths

The complete puzzle dataset comprises every 4 × 4 puz-
zle prior to November 29, 2022, consistent with previous
studies (Chen, White, and Sturtevant 2023). This fixed size
limits the maximum difficulty and eliminates the variable
of puzzle size. We excluded all puzzles that are included in
the original game or duplication, applying different filters
to obtain subsets of puzzles for various experiments. Ad-
ditionally, the number of upvotes for each puzzle is nor-
malized based on the linear relationship between upvotes
and timestamps within the test set to account for temporal
variations, as the number of active users on the website de-
creases over time. Furthermore, for reproducibility, we im-
plemented MUSE, ReMUSE and inference rules from the
previous study (Chen, White, and Sturtevant 2023; Chen
2023) individually and assumed player policies to be uni-
form after applying inference rules.

To assess the relationship between player enjoyment and
puzzle difficulty, as well as the quality of difficulty assess-
ment, we compare the Pearson Correlation Coefficients (r-
values) derived from simple linear regression of puzzle dif-
ficulty and the number of upvotes. The corresponding prob-
abilities of the F-statistic (p-values) represent the likelihood
of failing to reject the null hypothesis; in other words, they
indicate that the variable has no effect.

Comparing Different Algorithms
The first test set is identical to the one used in the previ-
ous study (Chen, White, and Sturtevant 2023). It contains

(a) A puzzle with 2 completed
regions highlighted in green,
where all separation constraints
inside them are satisfied

(b) A puzzle with 1 completed
region highlighted in red, where
all separation constraints inside
it are not satisfied

Figure 7: Example puzzles with completed regions high-
lighted

Approach Correlation p-value

MUSE (Reported) 0.410 1.10× 10−5

MUSE/MSI (Reproduction) 0.412 1.53× 10−5

ReMUSE (Reported) 0.570 1.57× 10−10

ReMUSE (Reproduction) 0.583 1.02× 10−10

TSI 0.563 5.78× 10−10

Table 2: Correlation and p-value for different approaches
evaluated on the dataset used in previous study (Chen,
White, and Sturtevant 2023)

104 puzzles that incorporate only separation and path con-
straints. Table 2 shows the correlation computed from dif-
ferent algorithms, and Figure 8 provides details of the diffi-
culty score of each puzzle and its linear correlation with the
number of upvotes. In this case MSI is identical to MUSE,
because a uniform default policy is assumed. We observed
that TSI and ReMUSE, however, are not the same, but TSI
is very similar to ReMUSE on this test set.

Applying Additional Inference Rules
The second test set (T-only set) comprises 179 puzzles, each
containing at least one triangle constraint and possibly one
or both path constraints. The first half of Table 3 provides de-
tails of how inference rules affect the correlation. The abso-
lute correlations without applying any additional inference

Algorithm 1 πµ with inference rules

function πµ(a, s)
Initialize empty map M
for each a′ ∈ A(s) do

M [a′] = UNKNOWN
end for
for each f ∈ {All inference rules} do

if f(a, s) = CANNOT TAKE then
return 0

else if f(a, s) = MUST TAKE then
return 1

end if
for each a′ ∈ A(s) do

if M [a′] ̸= UNKNOWN and
M [a′] ̸= f(a′, s) then

return 0 ▷ conflicts between rules
end if
M [a′]← f(a′, s)

end for
end for
A′ ← ∅
for each a′ ∈ A(s) do

if M [a′] = MUST TAKE and a′ ̸= a then
return 0

else if M [a′] = CANNOT TAKE then
continue

end if
A′ ← A′ ∪ {a′} ▷ append a′ to A′

end for
return |A′|−1

end function

rule are lower than in previous test sets, as expected (Chen,
White, and Sturtevant 2023). More importantly, adding the
along-the-path rule improves the correlation, while adding
the region-completion rule reduced correlation. This may in-
dicate that players tend to use along-the-path rules when the
puzzle contains triangles.

For comparison, we conduct a follow-up experiment on
the complementary set of the second test set (non-T set): the
set of 226 puzzles that do not contain triangle constraints
(containing separation constraints, star constraints, and path
constraints). The second half of Table 3 demonstrates that
incorporating more inference rules, resulting in a more in-
formed model, does not necessarily lead to a better correla-
tion between difficulty scores and player upvotes. One might
infer that users on The Windmill are not necessarily using all
of the inference rules that we developed. However, as we dis-
cuss further at the end of the experimental results, there may
be other factors in play: good puzzles will have inference
rules that help guide players to the solution. Regardless, it is
crucial to model player knowledge accurately when measur-
ing puzzle difficulty.

Difficulty Calculated by ML Policy
Since MSI and TSI are derived from the probability of reach-
ing goals, it is possible to use a policy provided by a machine

Algorithm 2 Along-the-path Rule

function PATHTEST(s)
▷ Record blocks on the left-hand side and right-hand

side of the path that are not in a completed region,
into lists lhs and rhs, respectively. ◁

lhs, rhs← GETLEFTRIGHTBLOCKS(s)
if ∃cregion ∈ lhs and cregion is not satisfied then

return false
end if
if ∃cregion ∈ rhs and cregion is not satisfied then

return false
end if
return true

end function

function ALONGTHEPATHRULE(a, s)
Apply Action a to s
r ← PATHTEST(s)
Undo Action a
if r = true then

▷ cannot be determined by this rule ◁
return UNKNOWN

else
return CANNOT TAKE

end if
end function

learning (ML) model instead of manually creating inference
rules. Lelis et al. (2022) utilized a modified Bootstrap model
(Jabbari Arfaee, Zilles, and Holte 2011), which takes a puz-
zle instance as input and returns a policy, to be used as a
policy in Levin tree search (Orseau et al. 2018) for gener-
ating an equidistant curriculum of specific types of Witness
puzzles. This curriculum is designed to ease player learn-
ing. The model was trained on Witness puzzles that contain
only separation constraints with two colors, referred to as
Black and White Square (BWS) puzzles. The authors shared
the source code and corresponding datasets with us, and
we trained their model independently. The complete dataset
contains 24 BWS puzzles. We collect all solutions for each
of them. To compute the MSI, we calculate the logarithm
of the probability of reaching the most likely solution as
dictated by the model’s policy using Equation 4. For the
TSI, we calculate the logarithm of the sum of the proba-
bilities of reaching each solution (goal state) using Equation
9. The baseline inference rule in these puzzles is the separa-
tion rule (SR), explained in Figure 5b, since other inference
rules proposed previously (Chen 2023) do not affect puzzles
in this test set. The results shown in Table 4 indicate that
the MSI and TSI derived from the ML policy are very close
to each other. Notably, the TSI derived from the ML policy
surpasses that derived from inference rules on these simple
puzzles. Additionally, the results show that applying extra
inference rules worsens the correlation, consistent with the
previous experiment.

To verify that the model learns inferences, we conduct a
supplementary experiment. We first collect states along all
solution sequences of each puzzle that have actions pruned

Algorithm 3 Region-completion Rule

function REGIONTEST(s)
R← GETCOMPLETEDREGIONS(s)
for each r ∈ R do ▷ Check each completed region

if ∃cregion ∈ r and cregion is not satisfied then
return false

end if
end for
return true

end function

function REGIONCOMPLETIONRULE(a, s)
Apply action a to s
if a region is completed then

r ← REGIONTEST(s)
else

r ← true
end if
Undo action a
if r = true then ▷ Cannot be determined by this rule

return UNKNOWN
else

return CANNOT TAKE
end if

end function

Puzzle Set Inference Rule Correlation p-value

T-only Baseline 0.366 4.67× 10−7

T-only APR 0.433 1.40× 10−9

T-only RCR 0.252 6.58× 10−4

T-only Both 0.322 1.09× 10−5

non-T Baseline 0.515 1.03× 10−16

non-T APR 0.494 2.62× 10−15

non-T RCR 0.497 1.71× 10−15

non-T Both 0.479 2.16× 10−14

Table 3: Correlation and p-value for for different player
models evaluated on triangle-only and non-triangle Witness
puzzles

by the separation rule shown in Figure 5b. We then cal-
culate the expected probability of the policy taking CAN-
NOT TAKE actions. Additionally, we calculate the expected
probability of taking the correct action, as the separation rule
selects actions that are MUST TAKE rather than explicitly
identifying other actions as CANNOT TAKE. In general, if
the policy learns the inference that prunes actions, then the
probability of taking these pruned actions should be close
to 0. Similarly, if the policy learns the inference that selects
actions, then the probability of taking these selected actions
should be close to 1. Furthermore, we collect states along
all solution sequences of every puzzle that the separation
rule cannot be applied but other two new inference rules can
be applied respectively. The results are provided in Table 5.
They show that the model adequately learned the along-the-
path rule; however, it did not learn the region-completion

Figure 8: The number of upvote of puzzles from the dataset
used by the previous study (Chen, White, and Sturtevant
2023) and their difficulty measured by ReMUSE and TSI
respectively

rule effectively, which is also reflected in Table 4. Conse-
quently, we conclude that the model is capable of learning
inference and can be effectively utilized in both MSI and
TSI.

Integration with EPCG
Procedural Content Generation (PCG) is a technique that in-
volves the algorithmic creation of content rather than man-
ual creation, aiming to reduce content production costs and
enable the production of vast, diverse, and dynamic envi-
ronments, characters, and scenarios (De Kegel and Haahr
2020). Exhaustive PCG (EPCG) extends this concept by
striving to explore all possible permutations and variations
within a defined set of parameters (Sturtevant and Ota 2018).

As part of this overall work, we developed a puzzle editor
that allows designers to place question marks on the puzzle,
as shown in Figure 9c. The generator will exhaustively try
all possible constraints at these locations and return the re-
sulting solvable puzzles sorted by TSI. In March 2024, we
selected the latest puzzle (Figure 9a) posted on The Wind-
mill and used our editor to generate a similar puzzle with a
higher TSI (Figure 9b). We then published it alongside the
original one. Three months later, the original puzzle had 207
solves and 4 upvotes, while our puzzle had only 113 solves
and 5 upvotes.

In going back and trying to solve this puzzle again, we

Player Model
Correlation p-value Correlation p-value

SR (baseline) 0.521 8.99× 10−3 0.844 2.23× 10−7

APR 0.401 5.23× 10−2 0.720 7.20× 10−5

RCR 0.405 4.94× 10−2 0.449 2.77× 10−2

SR and APR 0.341 1.03× 10−1 0.769 1.15× 10−5

SR and RCR 0.490 1.51× 10−2 0.827 6.26× 10−7

APR and RCR 0.377 6.92× 10−2 0.739 3.69× 10−5

All Inference Rules 0.299 1.55× 10−1 0.771 1.02× 10−5

ML Policy 0.751 2.35× 10−5 0.787 5.16× 10−6

MSI TSI

Table 4: Correlation and p-value for MSI and TSI with different player models evaluated on BWS Witness puzzles (Lelis et al.
2022)

Method Probability

uniform 0.497
policy 0.002
inference 0.000

(a) Expected probabilities of
taking CANNOT TAKE actions
pruned by the separation rule in
total of 11050 states

Method Probability

uniform 0.497
policy 0.994
inference 1.000

(b) Expected probabilities of
taking MUST TAKE actions se-
lected by the separation rule in
total of 11050 states

Method Probability

uniform 0.465
policy 0.091
inference 0.000

(c) Expected probabilities of
taking CANNOT TAKE actions
pruned by the along-the-path
rule in total of 4518 states

Method Probability

uniform 0.418
policy 0.331
inference 0.000

(d) Expected probabilities of
taking CANNOT TAKE actions
pruned by the region-completion
rule in total of 2998 states

Table 5: Methods and the expected probabilities of taking
different actions

find that it is difficult for us to solve, because there are very
few inferences we can make to guide our own problem-
solving process. We end up solving it more by random ex-
ploration than by reasoned exploration. TSI is high because
no inference rules reduce the search. Our experience is re-
flected in the relative low total number of solves.

We must be careful not to draw too broad of conclusions
from this single puzzle. This result suggests that instead of
just looking for puzzles with high TSI, we may be interested
in finding puzzles that have a large difference in TSI depend-
ing on the inference rules used. This would indicate puzzles
that can be more easily solved if you know the inference
rule, but are hard otherwise. This approach has been used
recently in curriculum generation (Mahmoud and Sturtevant
2024). Regardless, more work is needed to understand the
interplay between TSI, player models, and puzzle enjoy-
ment.

Conclusion
In this paper, we generalized entropy and solution informa-
tion and proposed new algorithms, MSI and TSI, as gen-

(a) Original puzzle with TSI of
6.67Sh

(b) Generated puzzle using our
editor with TSI of 8.58Sh

? ?

?

of solutions: 30

Select a constraint
Region Constraint

?
Path Constraint

?

Change Color

Hide # of solutions Clear All

(c) GUI of our editor

Figure 9: Screenshots of puzzles and the editor

eral metrics for measuring puzzle difficulty. These novel ap-
proaches facilitate analysis involving both inference rules
and player policies. After validating these metrics with two
additional inference rules through extensive experiments on
various puzzle sets and player models, we conclude that our
approach is as effective as previous methods while offering
an improved mathematical foundation and generality. Fur-
thermore, we demonstrated that accurate player modeling is
essential. Finally, we developed a Witness puzzle editor that
supports EPCG queries.

Acknowledgements
This work was supported by the National Science and Engi-
neering Research Council of Canada Discovery Grant Pro-
gram and the Canada CIFAR AI Chairs Program.

References
Abuhamdeh, S.; and Csı́kszentmihályi, M. 2012. The Impor-
tance of Challenge for the Enjoyment of Intrinsically Moti-
vated, Goal-Directed Activities. Personality & social psy-
chology bulletin.
CandyCane Software. 2011. Fling! https://www.
candycaneapps.com/fling/. Accessed: 2024-06-15.
Chen, E. Y. C. 2023. Entropy as a Measure of Puzzle Diffi-
culty. Master’s thesis, University of Alberta.
Chen, E. Y. C.; White, A.; and Sturtevant, N. R. 2023. En-
tropy as a Measure of Puzzle Difficulty. Proceedings of the
AAAI Conference on Artificial Intelligence and Interactive
Digital Entertainment, 19(1): 34–42.
De Kegel, B.; and Haahr, M. 2020. Procedural Puzzle Gen-
eration: A Survey. IEEE Transactions on Games, 12(1): 21–
40.
del Solar-Zavala, J. A.; Schaa, H.; and Barriga, N. A. 2023.
Using Entropy for Modeling Difficulty in the Asteroid Es-
cape Sliding Puzzle. In 2023 IEEE CHILEAN Conference on
Electrical, Electronics Engineering, Information and Com-
munication Technologies (CHILECON). IEEE.
Gruen, M. 2016. The Windmill. https://windmill.
thefifthmatt.com. Accessed: 2024-06-15.
International Organization for Standardization. 2008. Quan-
tities and units – Part 13: Information science and technol-
ogy. https://www.iso.org/standard/31898.html. Accessed:
2024-06-15.
Jabbari Arfaee, S.; Zilles, S.; and Holte, R. C. 2011. Learn-
ing heuristic functions for large state spaces. Artificial Intel-
ligence, 175(16–17): 2075–2098.
Jarušek, P.; and Pelánek, R. 2010. Difficulty Rating of
Sokoban Puzzle. In Proceedings of the 2010 Conference
on STAIRS 2010: Proceedings of the Fifth Starting AI Re-
searchers’ Symposium, 140–150. NLD: IOS Press. ISBN
9781607506751.
Kullback, S.; and Leibler, R. A. 1951. On information and
sufficiency. The annals of mathematical statistics, 22(1):
79–86.
Lelis, L. H. S.; Nova, J. G. G. V.; Chen, E. Y. C.; Sturtevant,
N. R.; Epp, C. D.; and Bowling, M. 2022. Learning Cur-
ricula for Humans: An Empirical Study with Puzzles from
The Witness. In International Joint Conference on Artificial
Intelligence.
Mahmoud, Y.; and Sturtevant, N. R. 2024. Using EPCG for
Designing a Hexagon Tangram Puzzle. In Proceedings of
the AAAI Conference on Artificial Intelligence and Interac-
tive Digital Entertainment.
Nelson, M. J.; and Smith, A. M. 2016. ASP with Applica-
tions to Mazes and Levels, 143–157. Springer International
Publishing. ISBN 9783319427164.
Noumenon Games. 2015. Snakebird. https://store.
steampowered.com/app/357300/Snakebird/. Accessed:
2024-06-15.
Orseau, L.; Lelis, L. H. S.; Lattimore, T.; and Weber, T.
2018. Single-agent policy tree search with guarantees. In

Proceedings of the 32nd International Conference on Neu-
ral Information Processing Systems, NIPS’18, 3205–3215.
Red Hook, NY, USA: Curran Associates Inc.
Roohi, S.; Guckelsberger, C.; Relas, A.; Heiskanen, H.;
Takatalo, J.; and Hämäläinen, P. 2021. Predicting Game
Difficulty and Engagement Using AI Players. Proc. ACM
Hum.-Comput. Interact., 5(CHI PLAY).
Rovio Entertainment Corporation. 2009. Angry Birds. https:
//www.angrybirds.com/. Accessed: 2024-06-15.
Shannon, C. E. 1948. A Mathematical Theory of Commu-
nication. Bell System Technical Journal, 27(3): 379–423.
Shen, J. 2024. Generalized Entropy and Solution Informa-
tion for Measuring Puzzle Difficulty. Forthcoming.
Smith, A. M.; Andersen, E.; Mateas, M.; and Popović, Z.
2012. A case study of expressively constrainable level de-
sign automation tools for a puzzle game. In Proceedings of
the International Conference on the Foundations of Digital
Games, FDG’12. ACM.
Sturtevant, N. 2021. An Argument for Large-Scale Breadth-
First Search for Game Design and Content Generation via a
Case Study of Fling! Proceedings of the AAAI Conference
on Artificial Intelligence and Interactive Digital Entertain-
ment, 9(3): 28–33.
Sturtevant, N.; Decroocq, N.; Tripodi, A.; and Guzdial, M.
2020. The Unexpected Consequence of Incremental Design
Changes. Proceedings of the AAAI Conference on Artificial
Intelligence and Interactive Digital Entertainment, 16(1):
130–136.
Sturtevant, N.; and Ota, M. 2018. Exhaustive and Semi-
Exhaustive Procedural Content Generation. Proceedings of
the AAAI Conference on Artificial Intelligence and Interac-
tive Digital Entertainment, 14(1): 109–115.
Thekla, Inc. 2016. The Witness. https://store.steampowered.
com/app/210970/The Witness/. Accessed: 2024-06-15.
van Kreveld, M.; Loffler, M.; and Mutser, P. 2015. Au-
tomated puzzle difficulty estimation. In 2015 IEEE Con-
ference on Computational Intelligence and Games (CIG).
IEEE.
ZeptoLab UK Limited. 2010. Cut The Rope. https://www.
cuttherope.net/. Accessed: 2024-06-15.

