
Reaching the Goal in Real-Time Heuristic Search:
Scrubbing Behavior is Unavoidable

Nathan R. Sturtevant
Department of Computer Science

University of Denver
Denver, Colorado, USA

sturtevant@cs.du.edu

Vadim Bulitko
Department of Computing Science

University of Alberta
Edmonton, Alberta, Canada
bulitko@ualberta.ca

Abstract

Real-time agent-centered heuristic search is a well-studied
problem where an agent that can only reason locally about the
world must travel to a goal location using bounded computa-
tion and memory at each step. Many algorithms have been
proposed for this problem, and theoretical results have also
been derived for the worst-case performance. Assuming suf-
ficiently poor tie-breaking, among other conditions, we de-
rive theoretical best-case bounds for reaching the goal using
LRTA*, a canonical example of a real-time agent-centered
heuristic search algorithm. We show that the number of steps
required to reach the goal can grow asymptotically faster than
the state space, resulting in a “scrubbing” when the agent re-
peatedly visits the same state. This theoretical result, sup-
ported by experimental data, encourages recent work in the
field that uses novel tie-breaking schemas and/or perform dif-
ferent types of learning.

1 Introduction
The framework of real-time agent-centered heuristic search
models an agent with locally limited sensing and perception
that is trying to reach a goal while interleaving planning and
movement (Koenig 2001). This well-studied problem has
led to numerous algorithms (Korf 1990; Furcy and Koenig
2000; Shimbo and Ishida 2003; Hernández and Meseguer
2005; Bulitko and Lee 2006; Hernández and Baier 2012)
and various theoretical analysis (Ishida and Korf 1991;
Koenig and Simmons 1993; Koenig, Tovey, and Smirnov
2003; Bulitko and Lee 2006; Bulitko and Bulitko 2009;
Sturtevant, Bulitko, and Björnsson 2010).

While several worst-case bounds on the time for an agent
to reach the goal have been established, there has been little
published work on practical lower bounds on the time for an
agent to reach the goal the first time. Some work has con-
sidered the problem of learning convergence over multiple
trials, where an agent travels repeatedly between the start
and the goal, which we do not consider here.

The main contribution of this paper is a non-trivial lower
bound on the travel distance required for an agent to reach
the goal under the basic real-time heuristic search frame-
work. This is important in many applications such as real-
time pathfinding in video games. We show theoretically
that there exists a tie-breaking schema that forces the agent
to revisit its states (“scrub”) in polynomially growing state

spaces. This is an undesirable property of real-time heuristic
search which plagued the field from the beginning. Our re-
sult shows that, unfortunately, this phenomenon is unavoid-
able under certain common conditions. We further support
this theoretical result empirically by showing that common
tie-breaking schemas exhibit similar undesirable behavior.

The rest of the paper is organized as follows. We begin
in Section 2 by formally defining the problem at hand. We
will review related work on this problem in Section 3. Our
own theoretical analysis is presented in Section 4 and sup-
ported by empirical results in Section 5. We then conclude
the paper and outline directions for future work.

2 Problem Formulation
In this paper we use a common definition of the real-time
heuristic search problem. We define a search problem S
as the n-tuple (S,E, s0, sg, h) where S is a finite state of
states and E ⊂ S × S is a finite set of edges between
them. S and E jointly define the search graph which is
undirected: ∀a, b ∈ S [(a, b) ∈ E =⇒ (b, a) ∈ E]. Two
states a and b are immediate neighbors iff there is an edge
between them: (a, b) ∈ E; we denote the set of immediate
neighbors of a state s by N(s). A path P is a sequence of
states (s0, s1, . . . , sn) such that for all i ∈ {0, . . . , n − 1},
(si, si+1) ∈ E. A route R is a path that does not include
cycles.

At all times t ∈ {0, 1, . . . } the agent occupies a single
state st ∈ S. The state s0 is the start state and is given as a
part of the problem. The agent can then change its current
state, that is move to any immediately neighboring state in
N(s). The traversal incurs a travel cost of 1. The agent
is said to solve the search problem at the earliest time T it
arrives at the goal state: sT = sg . The solution is a path
P = (s0, . . . , sT): a sequence of states visited by the agent
from the start state until the goal state.

The cumulative cost of all edges in the solution is the
travel cost – the performance metric we are concerned with
in this paper.1 Since each edge costs 1, the travel cost is the
number of edges the agent traversed while solving the prob-

1In the language of real-time heuristic search this paper deals
strictly with the first trial performance. We do not teleport the agent
back to the start state upon reaching the goal and we do not consider
learning convergence (Bulitko and Lee 2006).

lem (i.e., T for the solution (s0, . . . , sT)). The cost of the
shortest possible path between states a, b ∈ S is denoted by
h∗(a, b). As usual, h∗(s) = h∗(s, sg).

The agent has access to a heuristic h : S → [0,∞).
The heuristic function is a part of the search problem spec-
ification and is meant to give the agent an estimate of
the remaining cost to go. The search agent can mod-
ify the heuristic as it sees fit as long as it remains ad-
missible ∀s ∈ S [h(s) ≤ h∗(s)] and consistent ∀a, b ∈
S [|h(a)− h(b)| ≤ h∗(a, b)] at all times. The heuristic at
time t is denoted by ht; h0 = h. The total magnitude of all
updates to the heuristic function is the total learning amount.

Numerous heuristic search algorithms have been devel-
oped for the problem described above (e.g., (Korf 1990;
Bulitko and Lee 2006; Koenig and Sun 2009)). Most of them
are based on Algorithm 1.

Algorithm 1: Basic Real-time Heuristic Search
input : search problem (S,E, s0, sg, h)
output: path (s0, s1, . . . , sT), sT = sg

1 t← 0
2 ht ← h
3 while st 6= sg do
4 ht+1(st)← mins′∈N(st)(1 + ht(s

′))
5 st+1 ← arg minτs′∈N(st)

(1 + ht(s
′))

6 t← t+ 1

7 T ← t

A search agent following the algorithm begins in the start
state s0 and repeatedly loops through the process of choos-
ing the next state and updating its heuristic until it reaches
the goal state sg for the first time (line 3). Within the loop, in
line 4 the agent first updates (or learns) its heuristic by set-
ting it to be the estimated cost to go from the most promising
neighbor plus the cost of getting to that neighbor (1). Then
in line 5 the agent moves to the next state as to greedily
minimize its heuristic. Ties among neighbors that have the
same minimal heuristic values are broken with a tie-breaking
schema τ as detailed later in the paper.

The problem we consider in this paper is to describe the
minimum amount Tmin(S) of the travel cost that any search
agent of the type described above would necessarily incur in
finding a solution to S = (S,E, s0, sg, h). While the exact
value of Tmin(S) can intricately depend on the particulars of
a specific search problem S, we will derive a useful asymp-
totic lower bound on Tmin(S).

3 Related Work
Previous work has focused primarily on deriving upper
bounds on the agent’s travel cost. For instance, LRTA*
(Algorithm 1) is guaranteed to reach the goal in O(|S|2)
steps (Ishida and Korf 1991). This follows from the anal-
ysis of MTS (Ishida and Korf 1991) if the target’s po-
sition is fixed. Examples have been provided to show
that the exact bound, |S|2/2 − |S|/2, is tight (Edelkamp
and Schrödl 2012). The analysis was later extended on
a sub-class of reinforcement learning algorithms of which

LRTA* is a special case (Koenig and Simmons 1992; 1993;
1996). The results are still upper bounds and, for value-
iteration algorithms, are still O(|S|2).

There has also been substantial work on analyzing
algorithms with backtracking moves, introduced with
SLA* (Shue and Zamani 1993a; 1993b) and the more gen-
eral SLA*T (Shue, Li, and Zamani 2001; Zamani and Shue
2001). Such algorithms behave in the same way as our algo-
rithm until the total learning exceeds a certain threshold T .
After that the agent backtracks to the previous state when-
ever it raises a heuristic value. It was shown (Bulitko and
Lee 2006) that the travel cost of SLA*T is upper bounded
by h∗(s0, sg) +T where T is the threshold (learning quota).
However, this upper bound holds only if the path being built
by SLA*T is processed after every move and all state revisits
are removed from the path.

The analysis was later generalized beyond SLA*T onto
a wider class of backtracking algorithms which no longer
required removing state duplicates from the path after every
move. With some modifications to the definition of the travel
cost, an upper bound exponential in T was derived for a wide
class of algorithms (Bulitko and Bulitko 2009).

A problem-specific analysis of the minimum learning re-
quired to prove the optimal path was described in (Sturte-
vant, Bulitko, and Björnsson 2010), but they do not consider
the first trial performance. They also showed that algorithms
that look farther ahead have better performance primarily
because they perform less learning over and above the min-
imum required.

4 Our Analysis
Our goal in this paper is to derive a non-trivial asymptotic
lower-bound on the amount of travel any search agent that
uses Algorithm 1 will need to perform to reach the goal state.
We will achieve this goal in stages. Section 4.1 presents our
derivation informally, illustrated with a few intuitive exam-
ples. We present a map of the derivation in Section 4.2 and
then detail individual steps in Sections 4.3 through 4.6. We
then apply the analysis to the case of polynomially growing
state spaces in Section 4.7 and discuss its implications on
state revisits (i.e., “scrubbing”).

4.1 Intuition
Consider the five-state grid world in Figure 1. The goal is
state 5 on the far right. The agent starts out in state 2. At
each state the agent examines the heuristic in its left and
right immediate neighbors and goes to one with the low-
est heuristic. If the neighbors’ heuristic values are identical
then the ties are broken to the neighbor on the right. We
will use several variations on this problem to illustrate the
importance of tie-breaking on solution travel cost.

Now consider heuristic values in a ten-state version of this
grid world in Figure 2, where the goal is on the far right
and the agent starts out on the far left. The initial heuristic
values are shown with dark bars, and the learned updates
to the heuristic are light bars stacked on top. Each plate
shows a single time step. The agent’s current position is
indicated with an ‘A’. After reaching time step 4, the agent

A

Time = 0

A

Time = 1

A

Time = 2

A

Time = 3

A

Time = 4

Figure 2: Heuristic learning with best-case tie breaking. The ten states of the problem are along the horizontal axis. The vertical
shows the value of the heuristic function per time step. The darker bars are the initial heuristic values. The lighter bars are the
increases due to learning. The initial heuristic is at the top. The agent’s current state is shown with an ‘A’.

Figure 1: A one-dimensional grid world of five states num-
bered at the top. The agent ‘A’ is located in state 2 and has
two available actions shown in the figure.

can continue straight to the goal without further heuristic
updates.

Due to the fortunate tie-breaking schema in this particular
example, the total amount of learning (i.e., the total area of
light bars) is 8 and the travel cost is 9. Scaling this example
to 2k states, the total amount of learning will be 2(k − 1)
and the path produced will have the optimal cost of 2k − 1,
with no state revisits. Thus, the total learning in this example
grows linearly with the state space size.

However, tie breaking can adversely affect the agent’s
performance. Consider the search problem in Figure 3 with
13 states. In this example, each tie is broken away from
the goal (i.e., to the left). The travel cost is now 20 and
the total amount of learning is 18 indicating some revis-
its of the 13 states by the agent, such as at time steps 3,
7, and 9. Scaling this search problem, the total amount of
learning will be asymptotically quadratic in the number of
states. The amount of heuristic learning per move is at most
2 which means that the travel cost will also be asymptoti-
cally quadratic in the number of states and number of revisits
per state will increase with the search space size.

The difference between these two cases is asymptotically
significant. While best-case tie-breaking can be achieved in
simple examples, it cannot be always guaranteed.

4.2 Analysis Overview
Our goal is to quantify the travel required by any agent of the
type described in Section 2 to find a solution. The examples

in the previous section demonstrated that the travel cost can
depend on the tie-breaking schema used by the agent. Since
it may not always be possible to design the best tie-breaking
schema for a given problem (or series of problems), we con-
sider the agent’s performance with sufficiently suboptimal
tie-breaking schemas and develop a meaningful lower bound
on the amount of travel. Our lower bound is asymptotic in
the number of states and, unfortunately, demonstrates that
under common conditions the agent will necessarily have
to revisit states many times – an undesirable phenomenon
known as “scrubbing” in real-time heuristic search.

We present the high-level argument immediately below
and detail each step individually in the subsequent sections.
First, due to consistency of the heuristic, the learning per-
formed in each step is constant-bounded. Thus, an asymp-
totic lower bound on the learning required to reach the goal
is also an asymptotic lower bound on travel distance (Sec-
tion 4.3). We then show that with a sufficiently suboptimal
tie breaking an agent traveling from sa to sb must raise the
heuristic of sa to at least sb (Section 4.4). Given a search
graph, a current location, and a goal, we identify a lower
bound on the maximum heuristic value ĥ that the agent must
encounter when traveling to the goal (Section 4.5). Since
the heuristic is maintained consistent at all time we use ĥ to
compute the minimum amount of learning (Section 4.6).

We then apply the argument to polynomial search spaces
where the number of states within distance r from a given
state growth as Θ(rd) (e.g., quadratically on the commonly
used two-dimensional navigation maps, d = 2). In such
spaces we show that, given an appropriately inaccurate ini-
tial heuristic, the amount of learning necessarily performed
by the agent can grow as Ω(rd+1) which is asymptotically
higher than the number of states Θ(rd). Since learning per
step is constant-bounded, the amount of travel will also grow
asymptotically faster than the number of states. This result
indicates that any real-time heuristic search agent of the type
introduced above will necessarily revisit the states (“scrub”)
with the number of revisits growing as well (Section 4.7).

A

Time = 0

A

Time = 1

A

Time = 2

A

Time = 3

A

Time = 4

A

Time = 5

A

Time = 6

A

Time = 7

A

Time = 8

A

Time = 9

A

Time = 10

A

Time = 11

A

Time = 12

A

Time = 13

Figure 3: Heuristic learning with unfortunate tie breaking.

This result suggests that if we want to improve the per-
formance of a learning real-time heuristic search agent of
the form described here, we need to experiment with novel
forms of learning and/or movement rules. Incidentally, that
is what recent work in the field has investigated (Sturtevant
and Bulitko 2011; Hernández and Baier 2012).

4.3 Learning per Step is Constant Bounded
It is difficult to lower-bound the agent movement directly
but we can bound the learning required to solve a problem –
the cumulative updates to the heuristic function from t = 0
until t = T . We show that the learning per step is constant-
bounded. This implies that a lower bound on learning is also
a lower bound on movement.

Lemma 1 The total change in heuristic values during each
learning step of Algorithm 1 is constant bounded.

Proof. Algorithm 1 updates the heuristic of a state st in
line 4 of the pseudo code based on the heuristic of a neigh-
boring state st+1. Because st+1 is a neighbor of st and be-
cause the heuristic is consistent, |ht(st) − ht(st+1)| ≤ 1.
The new heuristic for st is 1 + ht(st+1). Thus, the heuristic
of st can increase by at most 2. Since st is the only state that
has its heuristic updated, the maximum change is heuristic
values at each time step is 2 which is constant bounded. 2

While not shown here, this proof can be generalized to the
case of arbitrary finite search graphs with finite edge costs as
well as to search algorithms that update the heuristic value
in multiple states per move (i.e., with larger local learning
spaces such as LSS-LRTA* (Koenig and Sun 2009)).

4.4 Maintaining Heuristic Slope
In this section we will prove that there exists a tie-breaking
schema that forces the agent to maintain a non-increasing
heuristic along its route. The agent’s route is defined as a
sequence of states from the start state s0 to the current state
st with any loops removed. For instance, if by the time t = 5

the agent has traversed the path P = (s0, A,B,A,C,D)
then its route R = (s0, A,C,D). A heuristic profile is the
vector of heuristic values along the route.

We will construct a tie-breaking schema such that when-
ever this property is violated due to raising heuristic at the
current state, the agent will be forced to backtrack, remov-
ing the offending state from its route. To illustrate, consider
Figure 3. In the second row the agent increases the heuristic
of its current state and violates the non-increasing property.
The agent therefore backtracks, making a move to the left
thereby removing the offending state from its route. Only af-
ter reaching the far-left state can the agent once again move
forward while satisfying the inequality (the last plate of the
second row and all plates in the third row).

st�1 st

ht

st�1 st

ht+1

s0

Figure 4: Why raising h(st) above h(st−1) allows a tie-
breaking schema to force the agent to backtrack.

Lemma 2 (Forced Backtracking) Consider an agent in
a non-goal state st at time t. Its current route is R =
(s0, . . . , st−1, st). Then there exists a tie-breaking schema
τ such that after updating the heuristic of st from ht(st) to
ht+1(st) if the updated value raises the heuristic profile so
that it ceases to be non-increasing, then the agent will back-
track to its previous state st−1:

ht+1(st−1) < ht+1(st) =⇒ st+1 = st−1. (1)
Proof. First, as the agent moved from st−1 to st, it must hold
that ht(st−1) ≥ 1 + ht(st) which implies that ht(st−1) >

ht(st). This means that the only way the antecedent of im-
plication (1) can become true is if the agent, being in state
st, raises its heuristic ht(st) to ht+1(st) which, in turn, ex-
ceeds ht(st−1) = ht+1(st−1). Suppose the raise did hap-
pen and ht+1(st) = 1 + ht(s

′) where s′ ∈ N(st) is a
state with the lowest heuristic among st’s neighbors (Fig-
ure 4). As all edge costs are 1, all heuristic values are in-
tegers2 which means that ht(s′) = ht(st−1). This means
that after the raise, the state st−1 will be among the ties of
arg mins∈N(st) ht(s). Thus, a tie-breaking schema will be
able to break the ties towards st−1, making the agent back-
track from st to st−1. This tie-breaking schema is τ . 2

Since backtracking removes the offending state from the
agent’s route, we have the following corollary.

Corollary 1 (Heuristic Slope) At any time during the
search, there exists a tie-breaking schema such that the
heuristic along the agent’s route R = (r1, . . . , rn) is non-
increasing:

ht(r1) ≥ ht(r2) ≥ · · · ≥ ht(rn). (2)

Proof. We prove this claim by induction on route length n.
For n = 1 inequality (2) trivially holds. Suppose it holds for
the route of length n then when the (n+1)th state is added to
the route, by Lemma 2 it must hold that the heuristic of the
added state is less than or equal to the heuristic of the route’s
previous end (for otherwise the agent would backtrack and
the route would not grow). 2

4.5 A Lower Bound on the Maximum Heuristic
Encountered

Assume that at time t the agent added the state sb to its route.
According to Corollary 1 this means that ht(sa) ≥ ht(sb)
for any state sa already in the route. Since heuristic values
never decrease during learning (due to consistency), this also
means that ht(sa) ≥ h0(sb) which implies that the agent
must raise the heuristic of sa by at least h0(sb)−h0(sa). We
are interested in identifying the states in a particular prob-
lem which maximize the difference h0(sb)−h0(sa). In this
section we show how to find these states. In particular, sb
will be the state with largest heuristic that the agent must
encounter en route to the goal.

Figure 5 illustrates this concept with pathfinding on a
video-game map. Suppose that the agent is in state sa and
is trying to reach state sg . We observe that the agent must
pass through one of the states within the bottleneck C1 be-
fore reaching the goal. Similarly, the agent must also pass
through one of the states in C2 before reaching the goal.

We say that a set of states C is a cut set with respect to
the states sa and sg iff sa /∈ C, sg /∈ C and all routes
R = (sa, ..., sg) have a non-empty intersection with C. To
illustrate, in Figure 5 the sets C1, C2 and C3 ∪ C4 are three
different cut sets with respect to sa and sg . Given two states
sa and sg , we denote the set of all their cut sets as C(sa, sg).

We use the notion of cut sets to derive a lower bound on
the maximum heuristic value seen by an agent en route to

2If they are not integers we can, without loss of generality, take
the ceiling to make them integers.

sa

sg
C1

C2

C3

C4

Figure 5: A two-dimensional navigational search problem
with the goal state labeled sg and the start state labeled as
sa. Several cut sets are labeled Ci and explained in the text.

the goal. For the map in Figure 5, assuming the standard
straight-line heuristic, C1 is not the best cut set because the
initial heuristic values of its states will be relatively small.
C2 is better because its heuristic values will be larger. C3 ∪
C4 is an even better cut set as it will have the largest heuristic
values among C1, C2, C3 ∪ C4.

In general, we can find the best lower bound by consid-
ering all cut sets and choosing the one with the maximal
minimal initial heuristic:

ĥ(sa, sg) = max
C∈C(sa,sg)

min
s∈C

h0(s) (3)

From this definition and the definition of a cut set it fol-
lows that an agent will necessarily travel through some state
s such that h0(s) ≥ ĥ(sa, sg). Thus, ĥ(sa, sg) is a useful
lower bound on the maximum heuristic encountered along a
route from sa to sg .

Note that these two states can be arbitrary states in S.
Thus, if R(S) is the set of states in a route generated by
the agent while solving the problem S then we can define:

∆h = max
s∈R(S)

ĥ(s, sg)− h0(s) (4)

s∆ = arg max
s∈R(S)

ĥ(s, sg)− h0(s). (5)

Here s∆ is a state on the agent’s route to goal whose heuris-
tic value has to be (maximally) raised by at least ∆h:

∆h ≤ hT (s∆)− h0(s∆). (6)

While all states along a route R(S) may not be known a
priori, R(S) must contain the initial state s0 which means
that ∆h ≥ ĥ(s0, sg) − h0(s0). Furthermore, for certain
classes of problems it may be possible to identify a state
in R(S) which yields a lower bound on ∆h higher than
ĥ(s0, sg)− h0(s0).

Figure 6 illustrates this with a simple one-dimensional
search space where all states between the start state s0 and

sgs0

ĥ(s0, sg)

s�
S

h0

�h

Figure 6: An illustration of s∆, ∆h and ĥ(s0, sg).

the goal state sg belong to a cut set. Hence ĥ(s0, sg) tracks
the highest initial heuristic on the agent’s route. Thus, the
heuristic of all states to the left of the peak will have to be
raised to at least ĥ(s0, sg). The maximum amount of learn-
ing, ∆h, happens in the state s∆.

4.6 Minimum Learning and Minimum Travel
Required Overall

We have now established that there exists a state s∆ along
the agent’s route to goal whose heuristic the agent will nec-
essarily raise by at least ∆h. Per Lemma 1, the amount of
learning per move is constant-bounded, the number of visits
to the state s∆ is Ω(∆h) which will cause repeated visits to
the state as ∆h increases.

Consistency of the heuristic allows us to derive even
stronger lower bounds on the total amount of learning and
travel cost. Indeed, raising the heuristic of s∆ by ∆h im-
plies that the heuristic values of many other states have to be
raised as well, contributing to the total amount of learning,
travel and state re-visits.

When the agent reaches the goal at T , by definition of
consistency:

∀n ∈ S [hT (n) ≥ hT (s∆)− h∗(s∆, n)] . (7)

The initial heuristic is consistent and hence upper-bounded:

∀n ∈ S [h0(n) ≤ h0(s∆) + h∗(s∆, n)] . (8)

For each state n ∈ S, the difference between the left sides of
(7) and (8) is at least as large as the difference between their
right sides:

hT (n)− h0(n) ≥ hT (s∆)− 2h∗(s∆, n)− h0(s∆)

which, due to (6), becomes:
≥ ∆h − 2h∗(s∆, n) (9)

We sum the right side of (9) over all states n ∈ S and, since
no heuristic value decreases during learning, we derive the
following lower bound on the total amount of learning:

Lmin(S) ≥
∑
n∈S

max{0,∆h − 2h∗(s∆, n)}. (10)

This is illustrated in Figure 7 where consistency of the
heuristic determines the diamond around ∆h. The area of
the diamond is the right side of inequality (10).

�h

sgs0 s�

h0

Figure 7: A lower bound on Lmin determined by s∆, ∆h.

As the amount of learning per move is constant bounded
(Section 4.3) we can also derive a lower bound on the
amount of travel:

Tmin(S) ∈ Ω (Lmin(S)) . (11)

4.7 Special Case: Isotropic Polynomial State
Spaces

The lower bounds on the amount of learning (10) and total
travel (11) hold for a general search space S. The problem
lies with computing the number of states η(r, S,E) which
are precisely distance r away from the state s∆:

η(r, S,E) = |{s ∈ S | h∗(s, s∆) = r}|. (12)

Generally speaking, η(r, S,E) depends on the topology
of the search graph (S,E) and can be arbitrarily complex.
However, if the search space is isotropic around the state s∆

then the number of states distance r away from s∆ does not
depend on the direction and can be described simply as η(r).
Then the sum in inequality (10) can then be alternatively
computed as an integral over the shortest distance r between
the state s∆ and all other states of the space:∑

n∈S
max{0,∆h − 2h∗(s∆, n)} =

∫ ∆h
2

0

η(r)(∆h − 2r)dr. (13)

We can further simplify the computation of the integral
(13) for polynomial search spaces which extend from s∆

for the distance of at least ∆h/2. Together these assump-
tions make η(r) a (d−1)-degree polynomial of r where d is
the dimension of the space. While a general (d− 1)-degree
polynomial of r is

∑d−1
i=0 kir

i, for the sake of brevity of the
following asymptotic analysis and without loss of generality
we consider only the dominating term of the polynomial:

η(r) = αrd−1 (14)

For instance, for common two-dimensional navigational
maps which are also isotropic and extend indefinitely around
the state s∆, d = 2 and η(r) = αr2−1 = αr ∈ Θ(r). Note
that this is a theoretical abstraction because real-life maps
(e.g., Figure 5) are not isotropic as they have an asymmet-
ric structure. They may also not stretch far enough around

the state s∆. Finally, they are not polynomial as the ob-
stacles may non-uniformly reduce the number of available
states distance r away from any state.

Substituting η(r) = αrd−1 in (13), we get:∫ ∆h
2

0

η(r)(∆h − 2r)dr =∫ ∆h
2

0

αrd−1(∆h − 2r)dr =

∆hα

∫ ∆h
2

0

rd−1dr − 2α

∫ ∆h
2

0

rd−1rdr =

∆hα

d
rd
∣∣∣∣

∆h
2

0

− 2α

d+ 1
rd+1

∣∣∣∣
∆h
2

0

=

∆hα

d

(
∆h

2

)d
− 2α

d+ 1

(
∆h

2

)d+1

=

α

d2d
(∆h)d+1 − α

(d+ 1)2d
(∆h)d+1 =

α

2d

(
1

d
− 1

d+ 1

)
(∆h)d+1 =

α

2dd(d+ 1)
(∆h)d+1 ∈

Θ((∆h)d+1). (15)

Combining (10), (13) and (15) and we conclude that for
isotropic polynomial spaces of dimension d that extend for
distance at least ∆h/2 around the state s∆, the minimum
amount of total learning is lower-bounded as:

Lmin(S) ∈ Ω
(
(∆h)d+1

)
. (16)

As the amount of learning per step is constant-bounded, the
same asymptotic lower bound applies to the travel cost:

Tmin(S) ∈ Ω
(
(∆h)d+1

)
. (17)

Note that under our assumptions, the number of states
within radius r of the state s∆ grows as:∫ r

0

η(x)dx =

∫ r

0

αxd−1dx ∈ Θ(rd). (18)

Suppose that when an isotropic polynomial search space
of dimension d increases, we are able to maintain the
heuristic delta ∆h a linear function of state space diame-
ter maxa,b∈S h∗(a, b) (see example in Section 5.1 and Fig-
ure 8). Then the minimum amount of travel Tmin will grow
at least as a polynomial of degree d + 1 (Equation (17))
whereas the number of states will grow as a polynomial
of degree d (Equation (18)). Consequently, any real-time
heuristic search algorithm that follows the basic framework
formulated earlier in this paper and is unlucky enough with
its tie breaking will necessarily revisit its states. The number
of revisits scales up with the search space size.

This result is probably not completely surprising to any
researcher that has spent time watching these algorithms per-
form in practice, but there are some limitations to this theory.

Most importantly, we have only shown that this holds for a
basic agent design. We conjecture that these bounds hold
for some of the more advanced agent designs, such as with
larger lookahead during learning, but we do not yet have
theoretical results to confirm this.

5 Experimental Results
To derive the theoretical lower bounds in the previous sec-
tions we have made a number of simplifying abstractions.
For instance, we used a particular tie-breaking schema, unit
edge costs, and limited the agent’s lookahead during learn-
ing to 1. The experiments presented in this section support
this conjecture empirically by utilizing different tie-breaking
rules, non-unit edge costs, and different lookahead depths.

In the first experiment we investigate applicability of
Corollary 1 to other tie-breaking schemas on a synthetic
map. We then take the next step and use actual video-game
maps and a deeper lookahead.

5.1 Other Tie-Breaking Schemas
Consider a previously published and analyzed scalable cor-
ner map (Sturtevant, Bulitko, and Björnsson 2010) in Fig-
ure 8.

s0

sg

s�

ŝ

ŝ

n

Figure 8: The “corner” map (Sturtevant, Bulitko, and
Björnsson 2010).

This example contains a corner-shaped wall with the start
s0 in the upper left corner and the goal sg behind the wall in
the bottom right corner. The map is 8-connected; diagonal
movement costs 1.5. An octile distance heuristic will mis-
lead the agent into traveling to s∆ (Equation (5)) while try-
ing to reach the goal. Under the tie-breaking schema τ con-
structed in this paper, the final heuristic value of that state,
hT (s∆), will be raised to at least ĥ(s0, sg) = h0(ŝ), based
on the states marked ŝ in the figure. On this map ĥ(s0, sg) =
h0(ŝ) = n where n+ 1 is the number of cells along the side
of the map. By recording hT (s∆)−ĥ(s0, sg) = hT (s∆)−n
we can see how different tie-breaking schema affect the the-
oretical bound. Specifically, a measurement hT (s∆) − n <
0 indicates that the agent had more fortunate tie-breaking
schema than τ .

For each value of n, we ran 20 trials of LRTA* with looka-
head of 1 and random tie breaking (instead of τ). We also
experimented with fixed tie-breaking and got similar results.
Averages, maxima and minima of hT (s∆)− n as a function

400+2.7x2.5

LSS-LRTA*(1)

D
ist

 T
ra

ve
le

d

104

106

Max Learning
1 10 100

400+0.3x2.55

LSS-LRTA*(10)

D
ist

 T
ra

ve
le

d

103

104

105

106

Max Learning
1 10 100

400+0.03x2.65

LSS-LRTA*(100)

D
ist

 T
ra

ve
le

d

103

104

105

Max Learning
1 10 100

Figure 10: Solution cost versus max learning for any state when solving a problem instance using LSS-LRTA* with lookahead
depths of 1, 10 and 100.

Max Difference
Average Difference
Min DifferenceH

eu
ris

tic
 D

iff
. (

h(
s Δ

)-h
0(
ŝ)

)

−10

−5

0

5

Problem Radius (n)
20 40 60 80 100

Figure 9: Readings of hT (s∆) − n recorded by running
LRTA* on the corner map.

of n are plotted in Figure 9. Although on 18% of the tri-
als LRTA* with randomized tie-breaking did better than our
tie-breaking schema τ would suggest, the difference does
not seem to grow significantly as the problem size increases.
This suggests that ∆h is a robust measure of the learning
that must occur for the agent to reach the goal.

5.2 Pathfinding on Video-Game Maps
In this experiment we identify the state with the maximum
learning after an agent solves a problem. We then attempt
to correlate the amount of learning at that state to the cost of
the agent’s solution.

We performed this experiment on the Moving AI bench-
mark set (Sturtevant 2012), on all problems in Dragon Age:
Origins maps with the optimal solution cost in [400, 404).
We ran these problems with LSS-LRTA* (Koenig and Sun
2009) with lookahead depths of 1, 10 and 100 (LSS-LRTA*
with lookahead 1 is equivalent to Algorithm 1). Diagonal
movement was allowed with cost 1.5. Ties were broken sys-
tematically in each state without randomization.

A total of 600 problems were used. We measure the max-
imum learning that occurred in any state as well as the total
distance traveled before reaching the goal, and then plot one
point for each problem instance in our test set. The results
are shown in Figure 10.

We visually fit a polynomial 400 + c1 · xc2 to the data
as we knew that all problems have the optimal solution cost
between 400 and 403. The values for c1 and c2 for each

of the three lookahead depths are shown in the figure. The
correlation coefficients are 0.94, 0.92 and 0.91 respectively.

These two-dimensional d = 2 maps are not isotropic
around the state s∆ due to their asymmetric topology,
have non-unit-cost edges, are not fully polynomial due to
non-uniform obstacle distribution, and may not extend far
enough from s∆ to satisfy the conditions of the analysis in
Section 4.7. As a result, our theory does not require the
asymptotic bound of Ω((∆h)3) to hold. However, the man-
ually fit polynomial curves do come somewhat close with
the degree of the polynomial being between 2.5 and 2.65.
The data therefore appears to support our claim that maxi-
mum heuristic error (∆h) is predictive of the total movement
required to reach the goal. We also see that as ∆h grows
across different maps and problem instances, the distance
moved appears to grow faster than the state space.

6 Conclusions

The primary contribution of this paper is the development
of a non-trivial lower bound on the minimum travel any
LRTA*-like real-time heuristic search agent may have to
perform to reach the goal state. In theoretical polynomial
state spaces the lower bound grows asymptotically faster
than the state space which means that the agent will nec-
essarily “scrub” (revisit states) – an undesirable behavior
in many applications such as real-time pathfinding in video
games. These theoretical results are supported experimen-
tally with real-life polynomial search problems.

Our proofs depend on many assumptions, such as unit
edge costs and one-step lookahead. While we conjecture
that the results hold with arbitrary edge costs and larger
lookahead, we do not as yet have a complete proof for it.
As such, this is an important area of future work.

This bound may appear discouraging as it suggests that
common real-time heuristic search algorithms may not, on
their own, be able to avoid “scrubbing”. On the posi-
tive side, the analysis points to two areas for future re-
search: improved heuristic learning algorithms and im-
proved rules for movement and tie breaking. Work in this
direction has already started (Sturtevant and Bulitko 2011;
Hernández and Baier 2012) and we hope that our theoretical
results will encourage further work in this direction.

References
Bulitko, V. K., and Bulitko, V. 2009. On backtracking in
real-time heuristic search. CoRR abs/0912.3228.
Bulitko, V., and Lee, G. 2006. Learning in real time search:
A unifying framework. Journal of Artificial Intelligence Re-
search (JAIR) 25:119–157.
Edelkamp, S., and Schrödl, S. 2012. Heuristic Search -
Theory and Applications. Academic Press.
Furcy, D., and Koenig, S. 2000. Speeding up the conver-
gence of real-time search. In National Conference on Artifi-
cial Intelligence (AAAI), 891–897.
Hernández, C., and Baier, J. A. 2012. Avoiding and es-
caping depressions in real-time heuristic search. Journal of
Artificial Intelligence Research (JAIR) 43:523–570.
Hernández, C., and Meseguer, P. 2005. LRTA*(k). In Inter-
national Joint Conference on Artificial Intelligence (IJCAI),
1238–1243.
Ishida, T., and Korf, R. 1991. Moving target search. In Inter-
national Joint Conference on Artificial Intelligence (IJCAI),
204–210.
Koenig, S., and Simmons, R. G. 1992. Complexity anal-
ysis of real-time reinforcement learning applied to finding
shortest paths in deterministic domains. Technical Report
CMU–CS–93–106, School of Computer Science, Carnegie
Mellon University, Pittsburgh.
Koenig, S., and Simmons, R. G. 1993. Complexity analysis
of real-time reinforcement learning. In National Conference
on Artificial Intelligence (AAAI), 99–105.
Koenig, S., and Simmons, R. G. 1996. The effect of repre-
sentation and knowledge on goal-directed exploration with
reinforcement-learning algorithms. Machine Learning 22(1-
3):227–250.
Koenig, S., and Sun, X. 2009. Comparing real-time and
incremental heuristic search for real-time situated agents.
Journal of Autonomous Agents and Multi-Agent Systems
18(3):313–341.
Koenig, S.; Tovey, C.; and Smirnov, Y. 2003. Performance
bounds for planning in unknown terrain. AI 147:253–279.
Koenig, S. 2001. Agent-centered search. Artificial Intelli-
gence Magazine 22(4):109–132.
Korf, R. 1990. Real-time heuristic search. Artificial Intelli-
gence 42(2–3):189–211.
Shimbo, M., and Ishida, T. 2003. Controlling the learning
process of real-time heuristic search. Artificial Intelligence
146(1):1–41.
Shue, L.-Y., and Zamani, R. 1993a. An admissible heuristic
search algorithm. In International Symposium on Method-
ologies for Intelligent Systems (ISMIS-93), volume 689 of
LNAI, 69–75.
Shue, L.-Y., and Zamani, R. 1993b. A heuristic search al-
gorithm with learning capability. In ACME Transactions,
233–236.
Shue, L.-Y.; Li, S.-T.; and Zamani, R. 2001. An intelli-
gent heuristic algorithm for project scheduling problems. In
Annual Meeting of the Decision Sciences Institute.

Sturtevant, N. R., and Bulitko, V. 2011. Learning where you
are going and from whence you came: H- and G-cost learn-
ing in real-time heuristic search. In International Joint Con-
ference on Artificial Intelligence (IJCAI), IJCAI’11, 365–
370. AAAI Press.
Sturtevant, N.; Bulitko, V.; and Björnsson, Y. 2010. On
learning in agent-centered search. In Autonomous Agents
and Multiagent Systems (AAMAS), 333–340. International
Foundation for Autonomous Agents and Multiagent Sys-
tems.
Sturtevant, N. 2012. Benchmarks for grid-based pathfind-
ing. Transactions on Computational Intelligence and AI in
Games 4(2):144 – 148.
Zamani, R., and Shue, L.-Y. 2001. A heuristic learning al-
gorithm and its application to project scheduling problems.
Technical report, Department of Information Systems, Uni-
versity of Wollongong.

