
Prob-Maxn: Playing N-Player Games with Opponent Models

Nathan Sturtevant and Martin Zinkevich and Michael Bowling
Department of Computing Science, University of Alberta,

Edmonton, Alberta, Canada T6G 2E8
{nathanst, maz, bowling }@cs.ualberta.ca

Abstract

Much of the work on opponent modeling for game tree search
has been unsuccessful. In two-player, zero-sum games, the
gains from opponent modeling are often outweighed by the
cost of modeling. Opponent modeling solutions simply can-
not search as deep as the highly optimized minimax search
with alpha-beta pruning. Recent work has begun to look
at the need for opponent modeling inn-player or general-
sum games. We introduce a probabilistic approach to oppo-
nent modeling inn-player games called prob-maxn, which
can robustly adapt to unknown opponents. We implement
prob-maxn in the game of Spades, showing that prob-maxn

is highly effective in practice, beating out the maxn and soft-
maxn algorithms when faced with unknown opponents.

Introduction and Background
Researchers have often observed deficiencies in the min-
imax algorithm and its approach to game playing. Rus-
sell and Norvig (1995), for instance, gave a prominent
example of where minimax play can be flawed through
slight errors in the value of leaf positions. Others have
shown that minimax search can be pathological, return-
ing less accurate results as search depth increases (Beal
1982; Nau 1982). While new algorithms have been de-
signed for better analysis of games (Russell & Wefald 1991;
Baum & Smith 1997) or for opponent modeling (Carmel &
Markovitch 1996) these approaches have not been widely
used in practice. There are a variety of reasons for this, but
the primary one seems to be that minimax with alpha-beta
pruning is simple to implement and adequate for most anal-
ysis.

In this paper we turn the research focus from two-player,
zero-sum games ton-player, general-sum games. Much less
research has gone into this area, but problems in this do-
main are much more suitable for incorporating additional
information such as opponent models. We extend the re-
sults in our previous work (Sturtevant & Bowling 2006),
which showed that opponent modeling is needed forn-
player games by introducing prob-maxn. Prob-maxn is a
search algorithm in the tradition of maxn but makes use of
probabilistic models of the opponents in the search. We also
show how the probabalistic models can form the basis for

Copyright c© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

learning models during play, through Bayesian inference. In
the game of Spades we demonstrate that prob-maxn is supe-
rior to existing approaches.

Opponent Modeling Algorithms
Early work in opponent modeling focused on the prob-
lem of recursive modeling (Korf 1989; Iidaet al. 1993a;
1993b). While this early work is interesting, it has not
made its way into use by current game-playing programs.
Carmel and Markovitch (1996), for instance, look at the per-
formance of a checkers program using opponent modeling.
But, CHINOOK, which is considered the best program in this
domain, does not use explicit opponent modeling. Instead,
it relies on other techniques to achieve high performance.
Donkers and colleagues (2001) take a more probabilistic ap-
proach to opponent modeling which is somewhat similar to
the approach we take in this paper. We will address these
differences after we have presented our new work.

We believe that one reason these approaches haven’t
found success in practice is because they have been applied
to two-player, zero-sum games. From a practical and the-
oretical point of view these games are much easier than
general-sum games, and thus there is much less of a need
to model one’s opponent. We demonstrate a domain where,
even given a perfect evaluation function (we search to the
end of the game tree), we need to take into account a model
of our opponent.

Motivating Example: Spades
Spades is a card game for two or more players. For this
research, we consider the three-player version of the game,
where there are no partnerships. The majority of the rules
in Spades are not relevant for this work, and there are any
number of other games, such as Oh Hell, which have similar
properties to Spades. We will only cover the most relevant
rules of the game here.

Each game of Spades is broken up into a number of hands,
which are played as independent units. Hands are further
broken up into tricks. Before a hand begins each player must
predict, in the form of a bid, how many tricks they expect to
take in the following hand. Scores are determined accord-
ing to whether players make their bids or not. If a player
doesn’t take as many tricks as they bid, they get a score of
−10×bid. If they take at least as many tricks as they bid they

get10× bid. The caveat is that the number of tricks taken
over a player’s bid (overtricks) are also tallied, and when,
over the course of a game, a player takes 10 overtricks, they
lose 100 points. Thus, the goal of the game is to make your
bid without taking too many overtricks.

Spades is an imperfect information game because play-
ers are not allowed to see their opponents cards. One com-
mon approach to playing imperfect-information games is to
use Monte-Carlo sampling to generate perfect-information
hands which can then be analyzed. While there are some
drawbacks to this approach, it has been used successfully
in domains like Bridge (Ginsberg 2001). Because this ap-
proach works well, we focus our new work on the perfect-
information game and all experiments in this paper are
played with open hands. meaning that players can see each
other’s cards.

Importance of Modeling
To help motivate this paper we present some previous re-
sults from the game of Spades without explaining the full
details of how the experiments were set up and run. These
details will be duplicated for our current experiments and
are covered in the experimental results section of this pa-
per. The trends shown here motivate the practical need for
this line of research. Specifically, we consider two different
“player types”, defined by their utility function over game
outcomes. The first player type, called mOT, tries to mini-
mize overtricks. The second player type, called MT, tries to
simply maximize tricks. When doing game tree search, we
must have a model of our opponents. In two-player zero-
sum games we normally assume that our opponent is identi-
cal to ourselves. Recent experiments (Sturtevant & Bowling
2006) have shown that this approach is not robust inn-player
games.

Consider what happens when these two player types com-
pete, where they both have correct opponent models. That
is, the mOT players knows which opponents are maximiz-
ing tricks, and the MT players knows which opponents are
minimizing overtricks. In this case it is not surprising that
an mOT player wins nearly 75% of the games against MT
players. What is surprising is that, if each player instead as-
sumes their opponents have the same strategy that they do,
an mOT player then only wins 44% of the games.

These results are not due to uncertainty in heuristic eval-
uation: all game trees are searched exhaustively. Instead,
there is a fundamental issue of opponent modeling. In 3-
player Spades we cannot blindly assume that our opponents
employ our same utility function, without potentially facing
disastrous results. This is in distinct contrast to the very suc-
cessful use of this principle in two-player, zero-sum games.

Multi-Player Game-Tree Search
The first game-tree search algorithm proposed forn-player
games was maxn.

Maxn

Maxn (Luckhardt & Irani 1986) is the generalization of min-
imax to any number of players, while in a two-player, zero-

1

2 2 2

3

(6, 4, 0)

3

(1, 4, 5)

3

(3, 4, 3)

3

(1, 3, 6)

3

(5, 4, 1)

3

(4, 4, 2)

(a)
(6, 4, 0)

(b)
(3, 4, 3)

(c)
(5, 4, 1)

(6, 4, 0)

Figure 1: An example maxn tree.

1

2 2 2

3

(6, 4, 0)

3

(1, 4, 5)

3

(3, 4, 3)

3

(1, 3, 6)

3

(5, 4, 1)

3

(4, 4, 2)

(a)
{(1, 4, 5),
(6, 4, 0)}

(b)
{(3, 4, 3)}

(c)
{(5, 4, 1),
(4, 4, 2)}

{(5, 4, 1),
(4, 4, 2)}

Figure 2: An example soft-maxn tree.

sum game it will return the same result as minimax. The val-
ues at the leaves of a maxn tree (maxn values) aren-tuples,
where theith value in the tuple corresponds to the score or
utility of a particular outcome for playeri. The maxn value
of a node where playeri is to move is the value of the child
node for which theith component is maximal. In the case of
a tie, any outcome may be selected.

Figure 1 demonstrates the maxn algorithm. Each node in
the tree is a square, inside of which is the player to move
at that node. At node (a) Player 2 can choose between two
outcomes, (6, 4, 0) and (1, 4, 5). Because Player 2 gets 4
from either choice we arbitrarily break the tie to the left and
return the value (6, 4, 0). At node (b) Player 2 will choose
(3, 4, 3) to get 4, instead of (1, 3, 6) to get 3. Player 2 also
has a tie at node (c), and chooses the value (5, 4, 1). At the
root of the tree Player 1 chooses the left branch to get (6, 4,
0), the final maxn value of the tree.

If all players use maxn to search a game tree, and all leaf
values are known, the resulting strategies will be in equi-
librium, meaning that no player can do better by changing
their strategy. But, this analysis doesn’t provide a worst case
guarantee. A player, for instance, may be able to change
their strategy in a way that decreases another player’s score
without causing their own score to decrease. In fact, mis-
taken analysis at even a single node of a maxn tree can arbi-
trarily effect the payoff of the resulting strategy (Sturtevant
2004).

Soft-Maxn

The soft-maxn algorithm (Sturtevant & Bowling 2006) ad-
dresses many of the shortcomings of maxn. At the sim-

plest level it avoids trying to predict how ties will be broken.
When a tie is encountered in a soft-maxn tree, instead of
choosing a single value to return, a set of values (amaxn set)
is returned instead. This set of values represents the possible
outcomes that could be chosen if one were to play down a
particular branch of a tree.

We use the same tree from Figure 1 to demonstrate soft-
maxn in Figure 2. The maxn value at node (b) is computed
in the same manner as in maxn. But, at nodes (a) and (c) we
form maxn sets containing both possible outcomes at those
nodes, because Player 2 is indifferent between the outcomes.
This allows Player 1 to make a more informed decision at the
root of the tree. If, for instance, Player 1 just needs 3 points
to win, moving towards (c) will guarantee a win. If Player 1
needs 6 points to win, Player 1 can choose to move towards
node (a), the only possible move that will lead to a win.

This simple explanation of soft-maxn omits some impor-
tant details. In practice, the utilities for a game should also
be modified for a soft-maxn search. If we are not certain
that an opponent prefers one outcome to another, we should
not guess or arbitrarily predict how that opponent will act,
but instead consider the specific outcomes to be ties. More
precisely, soft-maxn can be implemented given a partial-
ordering function for values in the game tree. Whenever the
children of a node do not have a distinct maximal value due
to the partial ordering, a maxn set will be backed up instead
of a single value.

Performance

Soft-maxn’s performance in Spades are reported in the ex-
perimental results section. The summary of these results is
that soft-maxn provides a reasonable gain in winning per-
centage over using plain maxn. The main message to be
understood from these results is that mistaken assumptions
regarding how one’s opponents are going to play can have a
strong adverse effect on performance in practice. It is much
safer to use a generic opponent model than to make overly
strong assumptions about an opponent.

There are a few drawbacks to soft-maxn which we address
in this paper. First, the number of outcomes in any soft-maxn

set can grow, at least in theory, to the size of the number
of leaves in the game tree. This may not be a drawback
in some domains, such as Spades, because the number of
unique leaf-values in the game tree is asymptotically smaller
than the size of the game tree, but it is always a potential
issue.

A related, and more important, drawback is that soft-maxn

does not clearly specify how the player at the top of the tree
should decide between the moves available. There is no as-
sociated information with the returned values that specifies
how often they occur in the game or how likely we think we
are to receive any of those possible outcomes when playing
on a given branch of the tree.

Finally, while an inference method for learning soft-maxn

opponent models through play has been proposed (Sturte-
vant & Bowling 2006), this inference mechanism is brittle.
It requires that our opponents play exactly according to one
of our models. If this is not the case we will be forced to use

the fully generic opponent model. Thus, to improve upon
soft-maxn we propose a new algorithm, prob-maxn.

Prob-Maxn

Prob-maxn is similar to soft-maxn in that we want to return
information from multiple children of a node, instead of just
from the single maximal child. In essence we would just like
to add probabilities to a soft-maxn tree. However, instead of
adding probabilities to each outcome within a soft-maxn set,
we are going to maintain utilities of models. The number of
models used will likely be much smaller than the number of
outcomes possible in the game.

First, for each playeri, we have some set ofN opponent
modelsmi,1 . . .mi,N . A model for an opponent consists of
a utility function over outcomes. Like the vector of utili-
ties in maxn, we will maintain a utility matrixu, such that
u[i, j] is the utility for playeri under modelmi,j . At ter-
minal nodes,u[i, j] is determined using the utility function
of mi,j . Consider an internal node in a game tree where the
set of children isC. We will use a new update rule to com-
pute the utility of this node. At each node in the game tree,
we will determine the probability,probChoice[c], that the
player to move at that node selects any given choicec ∈ C.
Recursively, we determine the utility of each choice such
thatutilityOfChoices[c][i, j] is the utility for playeri under
modelmi,j given that choicec is made. Then we compute
u[i, j] of the current node to be:

u[i, j] =
∑
c∈C

probChoice[c] utilityOfChoices[c][i, j] (1)

In other words, this is the expected utility. It is simply a
weighted sum of the utility matrices of the children. What
is left is to defineprobChoice[c]. Suppose thaticurrent is
the player to move at a given node in the game tree. Then,
like maxn, we find the optimal choice(s) for the current
player icurrent. However, each of playericurrent’s models
mi,1 . . .mi,N has its own preference with regards to the
optimal choices. To combine the models, we consider our
global belief,probModel[i, j], that playeri is playing with
modelj, for eachmi,j (so

∑N
j=1 probModel[i, j] = 1). We

assume each model isε-greedy, in the sense that it will as-
signε probability uniformly over all choices, and1−ε prob-
ability uniformly over the optimal choices formi,j . This al-
lows us to anticipate possible deviations from our model. If
B ⊆ C (the “best” choices) are the choicesc ∈ C that max-
imizeu[a][i, j], thenprobModelsChoice[c, j] = 1−ε

|B| + ε
|C|

if c ∈ B andprobModelsChoice[c, j] = ε
|C| if c /∈ C. Fi-

nally, we combine the probabilities of the models’ choices:

probChoice[c] =
N∑

j=1

probModelsChoice[c, j] probModel[icurrent, j] (2)

The above procedure is not only used for opponent de-
cision nodes, but is also used for the player’s own decision
nodes. In this case,probModel[i, j] used in the above cal-
culation actually comes from the recursive belief of how

1

2 2 2(a) (b) (c)

(31, 10, -20) (30, -10, 20) (31, -10, -20)

Figure 3: Prob-maxn example tree.

Model: MT Model: mOT
Player 1 31 29
Player 2 10 10
Player 3 -20 -20

Figure 4: Prob-maxn value of node (a) from Figure 3.

the other players model the prob-maxn player. We do this
to avoid assuming that the opponents have a perfect model
of the decisions the prob-maxn player will make during the
game. On the other hand, when the prob-maxn player actu-
ally makes a decision at the root of the tree, it does know
its own decision rule, and so should take advantage of this
knowledge when making a decision. In order to make de-
cisions with this extra information, we must maintain ad-
ditional information in the search,utrue, which is our be-
lief about our own expected utility at any node in the tree.
utrue is easily computed from its children. At opponent de-
cision nodes, we combine the children’s utilities based on
probChoice[c]. Theutrue value at the root player’s decision
nodes is the maximalutrue value from among the children of
that node. At the root of the tree, prob-maxn makes the move
which leads to the largestutrue. Although, utrue entirely
determines prob-maxn’s action,utrue is computed based on
probChoice computations throughout the tree, which are
determined by the propagatingu[i, j] matrices.

Example
We demonstrate the computation done by prob-maxn in a
small example shown in Figure 3. The values shown at the
leaves are the payoffs for a hand of Spades, where one point
is awarded for each overtrick1.

In Figure 4 we show how the value at node (a) is repre-
sented during back-up by prob-maxn. The first step at the
leaves of the tree is to convert the payoffs from the game
into utilities. For this example we have two models for each

1Overtricks are usually tallied this way because a player’s score
mod10 will then be the number of overtricks they have taken.

Choice (a) Choice (b) Choice (c)
Payoff (31, 10, -20) (30, -10, 20) (31, -10, -20)

[bid+1] [bid] [bid+1]
MT Utility 31 30 31
MT Weight (1−ε)

2
+ ε

3
ε
3

(1−ε)
2

+ ε
3

mOT Utility 29 30 29
mOT Weight ε/3 (1− ε) + ε/3 ε/3

Figure 5: Calculating weights for choices in prob-maxn.

Model: MT Model: mOT
Player 1 30.55 29.45
Player 2 -4.5 -4.5
Player 3 -2 -2

Figure 6: Final prob-maxn value of root node in Figure 3

// PROB-MAX N computes the Utility Matrix for an
// internal or external node.
PROB-MAX N (node, Models)

if TERMINAL (node)
Return Models.EVALUATE (node)

set icurrent=node.GETCURRENTPLAYER()
UtilityMatrix choices[]
for each c in node.GETCHILDREN()

choices[i]= PROB-MAX N (s, Models)
Return COMBINE(choices, icurrent, Models)

Table 1: Pseudo-code for prob-maxn. node is the node in
the game tree to be evaluated.node.GETCHILDREN() re-
turns the children of a node.node.GETCURRENTPLAYER()
returns the player to act.Modelscontains the set of models.
Models.EVALUATE (node) returns a utility matrix.

player, a maximizing tricks model (MT) and a minimizing
overtricks model (mOT). For the MT model the utility is just
the payoff in the game, while the mOT model subtracts the
number of overtricks from a player’s score. Thus when, at
node (a) in Figure 3 Player 1 takes one overtrick, the MT
model has utility of 31 while the mOT model has utility 29,
as shown in Figure 4.

Given a table of values for each possible move, we cal-
culate the probability that Player 1 makes each move given
each model. This computation is shown in Figure 5. For
all players, the minimum probability of making any move is
ε/3. For the MT player outcomes (a) and (c) have the same
utility, so the remaining weight(1− ε) is distributed evenly
between these outcomes. For the mOT, choice (b) has the
best utility, so we expect mOT to choose this choice with
additional weight1− ε.

Supposing thatε = 0.30, then the MT model would
choose branches (a) through (c) with probability 0.45, 0.10
and 0.45 respectively. Similarly, mOT would choose these
moves with probability 0.1, 0.8 and 0.1. IfprobModel(MT)
= probModel(mOT) = 0.5, then we expect Player 1 to
choose outcome (a) and (c) with probability 0.275 and out-
come (b) with probability 0.45.

The final value returned by prob-maxn for this example
can be computed by multiplying the utility of each outcome
under each model by the probability that the outcome would
be selected. So, the utility for Player 1 using model MT is
0.275 ∗ 31 + 0.45 ∗ 30 + 0.275 ∗ 31 = 30.55. All values for
this example are shown in Figure 6. See Table 1 and Table 2
for pseudo-code that implements prob-maxn.

Global doubleprobModel[,]
Global doubleepsilon= 0.1
Global intyou=1

// COMBINE combines the utility matrices.
COMBINE(choices, icurrent, Models)

// answerandprobChoice initialized to zero.
UtilityMatrix answer
doubleprobChoice[1 . . . |choices|]
for m in 1 . . .Models.N :

probChoice +=
probModel[icurrent,m]
×GETPROBCHOICE(choices, icurrent, m)

answer=
∑|choices|

c=1 probChoice[c]choices[m]
// If we are to play, the true utility is
// the maximum true utility.
if (icurrent==you)

answertrue = maxc∈1...|choices| choices[c]true

Returnanswer

// choices[c][i,j] is the utility of the jth model
// of agent i if choice c is taken.
// GETPROBCHOICE returns the probabilities of the
//choices associated with the model.
GETPROBCHOICE(choices, icurrent, model)

// argmax. . . returns thesetof all choices
// that maximize the utility ofmodel.
setB = argmaxc∈1...|choices| choices[c][icurrent, model]
for i in 1. . .|choices|

if i ∈ B

weights[i]=
(

1−ε
|B| + ε

|choices|

)
else

weights[i]=
(

ε
|choices|

)
Returnweights

Table 2: Pseudo-code for COMBINE. probModel[i, j] is the
probability of thejth model of playeri, and is initialized
elsewhere.Models.N is the number of models.you is the
index of the searching player.

Theoretical Underpinnings
One way to interpret prob-maxn is as a belief about the oppo-
nents. If for each agenti we haveNi modelsmi,1 . . .mi,Ni

,
andN = N1 + N2 + N3 models total, then we believe that
our opponents believe that they are playing the following
game amongN (instead of 3)mini-players. Standing behind
(or inside the head of) each real playeri in the real game
of spades, there areNi mini-players. Any situation where
player i would move in spades, anNi-sided die is rolled
and j pips show up. Then, theith player plays whatever
mini-playermi,j recommends. Note that the mini-players
for each player are distinct; no mini-player can play for two
players)

We consider mini-players that with probabilityε act at
random and with probability1 − ε choose an action that
maximizes some utility functionui,j over outcomes. Thus,

what makesmi,1 and mi,2 distinct is that they are trying
to achieve different outcomes (e.g., one might be trying to
maximize tricks, the other might be trying to minimize over-
tricks). Moreover, we assume that not only does each mini-
player believe the game evolves in this fashion, but they be-
lieve others believe that the game also evolves in this fash-
ion.

Theorem 1 The prob-maxn algorithm computes the proba-
bility that each player will take each action correctly given
the assumptions described above.

Proof: For each node in the game tree, we compute the
utility matrix, consisting of an expected utility of each mini-
player. This expected utility is what that particular mini-
player expects to get given that node is reached. We com-
pute this utility matrix by traversing the tree bottom up, like
maxn. However, instead of taking the branch that maximizes
utility for thenth player, we have a more complicated update
rule.

What we do is attempt to predict the probabilityp(a) that
playeri makes each movea ∈ A. We do that by first finding,
given the die hadj pips, the probability that playeri makes a
movea, which we denotep(a|j). We know that modelmi,j

will almost maximize utility. Since we have utility matrices
for every child of the node, we can determine which choices
maximize the utility ofmi,j . If s of t total choices are op-
timal, for each optimal choicea∗, mi,j will play it with a
probabilityp(a∗|j) = 1−ε

s + ε
t , and each sub-optimal choice

a′, mi,j will play it with a probabilityp(a′|j) = ε
t .

Thus, if p(j) = 1/Ni, the probability thatj pips come
up on the die, then the probability that playeri plays ac-
tion a is

∑Ni

j=1 p(a|j)p(j). Given thesep(a), we can com-
pute the expected utility of every model given the node
is reached. Ifui′,j(a) is the utility of mi′,j if action a
is chosen, then the utility of this node for modelmi′,j is
ui,j(this) =

∑
a∈A p(a)ui′,j(a). This is exactly what our

algorithm computed in the previous section.

Given this belief, our algorithm is attempting to maximize
some true utilityutrue. The true utility is updated based
upon the distribution over actions that was described before
for other agents, but for ourselves, the true utility is simply
the maximum true utility of all children.

Theorem 2 The algorithm in the previous section maxi-
mizes the true utility.

Proof: Our belief about other agents can be described
as abehavior, a distribution over actions at every point
in the game. Thus, the expected utility for every node
of the opponent is a weighted sum of the utility of
all the children, i.e. ifA is the set of actions, then
utrue(this) =

∑
a∈A p(a)utrue(a). When we our-

selves move, we choose the action with highest utility, so
utrue(this) = maxa∈A utrue(a).

Discussion
Given a complete description of prob-maxn we can now de-
scribe the relation of prob-maxn to PrOM (Donkers, Uiter-
wijk, & van den Herik 2001). Both algorithms allow multi-
ple opponent models and assign a probability to each model.

One difference between PrOM and prob-maxn is that prob-
maxn is designed for games with more than two players
while PrOM is for two-player games. More importantly,
PrOM and prob-maxn handle recursive modeling differently.
In PrOM, opponent models are minimax agents, while in
prob-maxn opponent models use epsilon-greedy move selec-
tion with a common recursive probabilistic model.

Learning in Prob-Max n

Until this point, we have assumed thatprobModel[i, j] was
fixed. This is the same as assuming a multinomial prior over
the models for each player. Alternatively, we don’t have to
pick one particular multinomial for the opponents, but could
define a prior over multinomials. Dirichlet priors are one
class of priors. By using a Dirichlet prior, if we observe a
player playing like one of the models, we will expect the
player to play like that model in the future.

The most well-known use of Dirichlet priors is the bucket
of words technique in document classification (i.e. näıve
Bayes). One assumes that documents of a particular type
are formed by randomly generating words from some fixed
but unknown multinomial distribution over words. Its pop-
ularity stems from the fact that the posterior Dirichlet can
be determined by simply counting how many times a word
occurred in documents of a certain concept. This is used to
predict the probability that a new document was generated
from a particular case.

In our case, determining the posterior belief is more diffi-
cult, because instead of observing a sequence of words, we
observe choices that could have been generated by any of the
models. Thus, for each choice, the model that generated that
choice is alatent variable. In order to exactly calculate the
posterior, we would have to iterate over all the exponentially
many possible assignments to the latent variables. However,
we used a Markov chain Monte Carlo Method (MCMC),
which is a fast approximation technique for inference in the
presence of many latent variables (Neal 1993).

Experimental Results
We evaluate prob-maxn in the game of Spades, replicating
the experimental setup of our previous work (Sturtevant &
Bowling 2006). In particular we played a total of 600 games
of Spades, which end after a player reaches 300 points.
These games consisted of only 100unique sequences of
deals, where the sequence was repeated for all possible ways
that two player types can be assigned to the three seats at the
table (see Table 3). The situation where all of the players
were of an identical type was ignored, leaving six permuta-
tions for six hundred games. Each hand consisted of seven
cards being dealt to each player from a 52 card deck and all
cards were public information. Prob-maxn can produce its
first move for such a hand in less than one second.

For each algorithm of interest, four experiments of 600
games, as described above, were performed. Each exper-
iment consisted of the candidate algorithm (soft-maxn or
prob-maxn) paired against a maxn opponent with a particu-
lar utility function and model of its opponents’ utilities (viz.,
MTMT , MTmOT , mOTMT , and mOTmOT , where the sub-
script refers to the player’s model of its opponents.) Half

Seat 1 Seat 2 Seat 3
1 A A B
2 A B A
3 A B B
4 B A A
5 B A B
6 B B A

Table 3: The six ways to arrange two player types, A and B,
in a three-player game.

Players Player A
A v. B Score %Win %Gain %Loss

mOTg v. MTmOT 241.7 68.5 15.0 6.8
mOTg v. MTMT 218.2 53.5 9.5 5.5
mOTg v. mOTMT 242.2 54.8 4.8 8.0
mOTg v. mOTmOT 230.6 46.0 8.8 4.0

Table 4: Performance of soft-maxn.

of the games then involved two candidate algorithms at the
table with one maxn player, and the other half involved two
maxn players and one candidate algorithm. We report aver-
age scores for each player type and their win rate, which if
the players were equal would be exactly 50% since half the
players are of a particular type.

We first examine the performance of soft-maxn with the
results presented in Table 4. Each row shows the outcome
of an experiment against one of the maxn opponent types. In
addition to showing the average score and winning rate for
the player type, the table also shows the “%gain”, which
shows the algorithm’s improvement in winning rate over
using standard maxn with the wrong model. Additionally,
“%loss” is the amount that could be gained by playing maxn

with the correct opponent model. As is clear in the table,
soft-maxn does provide a degree of robustness to incorrect
models. It also shows that further gains are possible. Note
that all of the %gain and %loss values are statistically sig-
nificant at the 95% confidence level.

We now examine the performance of prob-maxn with the
results presented in Table 5. The columns have the same
meaning as in Table 4 except now “%gain” shows the im-
provement in winning rate of prob-maxn over soft-maxn.
These results show an improvement over soft-maxn against
every single maxn opponent type. The improvements in
most cases are as dramatic as soft-maxn’s original improve-
ments over incorrect models. In the case of MTmOT the
improvement is not statistically significant, but soft-maxn’s
performance against this opponent was already very strong.

The performance against mOTmOT is now so strong that
not only is prob-maxn winning more games, it is actually
performing better than the maxn player with the perfect
model,i.e.̇the same player. Although this seems counterin-
tuitive, the result illustrates the importance of second-level
recursive reasoning. In the perfect model case, which in-
volves mOTmOT in self-play, all player’s models are per-
fect at all levels of recursion. In the siutation of prob-maxn

against this opponent, the maxn player correctly believes its

Players Player A
A v. B Score %Win %Gain %Loss

mOTp v. MTmOT 248.0 71.0 2.5◦ 4.3
mOTp v. MTMT 232.2 59.8 5.3 0.2◦
mOTp v. mOTMT 252.2 62.7 7.9 -0.1◦
mOTp v. mOTmOT 244.8 53.0 7.0 -3.0

Table 5: Performance of prob-maxn. “◦” denotes statisti-
cally insignicant results. All other gains and losses are sig-
nificant at the 95% confidence level.

opponent is minimizing overtricks. However, it incorrectly
believes that its opponent’s model of itself is equally correct.
Instead prob-maxn’s model is a probabilistic one. One might
think that prob-maxn’s first level modeling error would be
worse than maxn’s second level error. We can conclude from
these results, though, that prob-maxn’s robustness to model-
ing errors shields it from mistakes that maxn’s determinis-
tic beliefs cannot. We do not report the results here, but
we have run experiments with prob-maxn against opponents
for which prob-maxn does not have opponent models, and
prob-maxn is still able to play robustly and win a majority of
games.

Learning Performance
We also applied prob-maxn with Bayesian inference to the
same set of experiments described above. The learning re-
sults were interesting. At the end of the match we examined
the posterior model over the the maxn opponents’ utility dis-
tribution. The inference correctly skewed the distribution in
favor of the player’s actual type for 98.8% of the MT op-
ponents. FormOTmOT , it correctly skewed the distribution
81.8% of the time. And for mOTMT opponents, it correctly
skewed the distribution 67% of the time. Clearly, mOT type
players are more difficult to identify, particularly when they
have an incorrect belief about the prob-maxn player.

Note that less than 3% of the opponents were inferred to
have distributions far (posterior’s mean distribution assigin-
ing less than 30% to the correct type) from their true type.
So inference more often than not assigns the correct model,
and rarely puts too much probability on an incorrect model.

Although the inference results are quite successful the
actual effect on prob-maxn’s play was minimal. The re-
sults showed slight improvements against some opponents
but none of the results were statistically significant improve-
ments or losses. We suspect this is because prob-maxn’s per-
formance is already so strong against these opponents, there
is little opportunity left for learning to improve play.

Conclusions
In this paper we introduced the prob-maxn algorithm for
incorporating models of opponents inn-player games.
We have shown that the algorithm outperforms soft-maxn

against a variety of opponents. In addition we described how
Bayesian inference could be use to identify an opponent’s
model through play. We show it can successfully identify a
player’s type in the course of a single game, although it did
not lead to significant gains. We believe, though, that the

probabalistic modeling framework of prob-maxn, coupled
with inference, can lead to very strong players for multi-
player games.

Acknowledgments
This work was supported by the Alberta Ingenuity Center
for Machine Learning (AICML) and the Informatics Circle
of Research Excellence (iCORE).

References
Baum, E. B., and Smith, W. D. 1997. A bayesian approach
to relevance in game playing.Artificial Intelligence97(1-
2):195–242.
Beal, D. F. 1982. Benefits of minimax search. In Clarke,
M. R. B., ed.,Advances in Computer Chess, volume 3, 17–
24. Oxford, UK: Pergamon Press.
Carmel, D., and Markovitch, S. 1996. Incorporating oppo-
nent models into adversary search. InAAAI-96, 120–125.
Donkers, H. H. L. M.; Uiterwijk, J. W. H. M.; and van den
Herik, H. J. 2001. Probabilistic opponent-model search.
Inf. Sci.135(3-4):123–149.
Ginsberg, M. L. 2001. GIB: Imperfect information in a
computationally challenging game.Journal of Artificial
Intelligence Research14:303–358.
Iida, H.; Uiterwijk, J. W. H. M.; van den Herik, H. J.;
and Herschberg, I. S. 1993a. Potential applications of
opponent-model search. part 1, the domain of applicabil-
ity. ICCA Journal16(4):201–208.
Iida, H.; Uiterwijk, J. W. H. M.; van den Herik, H. J.;
and Herschberg, I. S. 1993b. Potential applications of
opponent-model search. part 2, risks and strategies.ICCA
Journal17(1):10–14.
Korf, R. E. 1989. Generalized game trees. InIJCAI-89,
328–333.
Luckhardt, C., and Irani, K. 1986. An algorithmic solution
of N -person games. InAAAI-86, volume 1, 158–162.
Nau, D. S. 1982. An investigation of the causes of pathol-
ogy in games.AIJ 19(3):257–278.
Neal, R. 1993. Probabilistic inference using markov chain
monte carlo methods. Technical Report CRG-TR-93-1,
University of Toronto.
Russell, S., and Norvig, P. 1995.Artificial Intelligence: A
Modern Approach. Englewood Cliffs, NJ: Prentice Hall.
Russell, S., and Wefald, E. 1991.Do the right thing:
studies in limited rationality. Cambridge, MA, USA: MIT
Press.
Sturtevant, N. R., and Bowling, M. 2006. Robust game
play against unknown opponents.Fifth International Joint
Conference on Autonomous Agents and Multi-Agent Sys-
tems.
Sturtevant, N. 2004. Current challenges in multi-player
game search. InProceedings, Computers and Games.

