
Implementing Games on Pinball Machines

Daniel Wong Darren Earl Fred Zyda
Ryan Zink Sven Koenig Allen Pan

Selby Shlosberg Jaspreet Singh
Computer Science Department

University of Southern California
Los Angeles, California, USA

{wongdani,fzyda,skoenig}usc.edu
{allenpan,shlosber,jasprees}@usc.edu

{earl.darren,ryanzink}@gmail.com

Nathan Sturtevant
Computer Science Department

University of Alberta
Edmonton, Alberta, Canada

nathanst@cs.ualberta.ca

ABSTRACT
Almost no research has been done on designing pinball
games although much research has been done on design-
ing video games. We are interested in designing pinball
games on pinball machines to teach computer science stu-
dents about how to interface to mechanical systems in a fun
and motivating way. Thus, we have developed a pinball ma-
chine interface between a PC and a recent Lord of the Rings
pinball machine. We demonstrate that it is easy to innovate
pinball games by designing and implementing Pinhorse, a
pinball game that avoids some of the design problems of ex-
isting pinball games. For example, it features a true multi-
player mode where each player directly influences the game
of the other player within a limited amount of play time.
This paper describes both our innovative pinball game and
the hardware and software of our pinball machine interface
that enables game designers to develop such pinball games
on real pinball machines.

Categories and Subject Descriptors
K.8.0 [Personal Computing]: General—Games

General Terms
Design

Keywords
Game Architecture, Game Development, Hardware Inter-
face, Pinball Machine, Software Interface, Teaching Com-
puter Science

1. INTRODUCTION
The faculty members of the Department of Computer Sci-

ence at the University of Southern California (USC) believe

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FDG 2010, June 19-21, Monterey, CA, USA
Copyright 2010 ACM 978-1-60558-937-4/10/06 ...$10.00.

that teaching computer science hands-on via the develop-
ment of games helps students to learn computer science. We
have therefore created a Bachelor’s Program in Computer
Science (Games) and a Master’s Program in Computer Sci-
ence (Game Development), which not only provide students
with all the necessary computer science knowledge and skills
for working anywhere in industry or pursuing advanced de-
grees but also enable them to be immediately productive in
the game industry [13]. As part of this overall effort, dif-
ferent faculty members explore different ideas. Almost no
research has been done on designing pinball games although
much research has been done on designing video games. We
are interested in designing pinball games for two educational
reasons:

• The first reason is the same as the reason behind
letting students design video games [12]. Design-
ing games can be used to teach many computer sci-
ence topics and many computer science skills, includ-
ing computational thinking skills, software engineer-
ing skills and programming skills. Designing games
can also be used to teach a variety of skills that are
not taught in traditional computer science classes, in-
cluding creativity, design skills, artistic skills, problem-
solving skills and teamwork skills, such as collabora-
tion skills with non-computer scientists. Students are
motivated to learn how to program games because they
find games fun to play and are thus curious about
how to create them, because they can play their games
themselves and because they are driven by an element
of friendly competition due to their desire to create the
best game. There is evidence that teaching computer
science via game development can help to increase stu-
dent enrollment and retention in computer science, and
the US needs to double the number of science and tech-
nology graduates by 2015 according to the July 2005
report of the TAP Forum [3].

• The second reason is different from the reason be-
hind letting students design video games. The stan-
dard computer science education tends to teach stu-
dents only about software but not about interfacing
it to mechanical systems, such as electronics, signal
generation, embedded systems, communication proto-
cols, interface programming and real-time program-
ming. However, this skill is important, for example, in

the context of robotics. Designing pinball games can
be used for this purpose since pinball machines inter-
face to the physical world. They contain actuators (in
the form of motors and solenoids), sensors (in the form
of switches) and visual outputs (in the form of lights
and the dot-matrix display). Their game is determined
by the input-output behavior of the computer, that is,
what outputs the computer activates and when it ac-
tivates them in response to its input-output history.
Pinball machines are essentially robots but have a va-
riety of advantages over mobile robots, namely that
they are easier to maintain and that their low-level
control is simpler and more robust since they provide
very controlled environments for pinballs to move in
(resulting in a motivational experience).

We have developed a pinball machine interface between a
PC and a recent Lord of the Rings pinball machine, which
enables students to implement pinball games on pinball ma-
chines. Pinball games have not substantially changed for
far more than a decade [10]. The students of the small
pilot CS499 class “Designing and Implementing Games on
Pinball Machines” at USC (and co-authors of this paper)
demonstrated that it is easy to innovate pinball games by
designing and implementing Pinhorse on our first-generation
pinball machine interface, a pinball game that avoids some
of the design problems of existing pinball games. For exam-
ple, it features a true multi-player mode where each player
directly influences the game of the other player within a
limited amount of play time. We first give an overview of
the hardware and software of our pinball machine interface
and then describe Pinhorse. Our pinball machine interface
allows game designers not affiliated with the manufacturers
of pinball machines to create pinball games and might allow
consumers in the future to buy a new (cheap) pinball game
for their pinball machine rather than having to buy another
(expensive) pinball machine.

2. PINBALL MACHINE
We decided to work with a used solid-state Lord of the

Rings (LOTR) pinball machine, see Figure 1 (left), because
the layout of its playfield is flexible and not particularly
theme-specific, see Figure 1 (center). Stern Pinball produced
about 5,100 of these pinball machines, starting in 2003. Used
LOTR pinball machines cost about $3,000-$3,500. We con-
trol the pinball machine via its I/O Power Driver Board,
which was used by all Sega and Stern pinball machines with
a WhiteStar or WhiteStar II board system (roughly from
1995 to 2004). Thus, we expect the pinball machine inter-
face to be usable with a variety of pinball machines from
Stern. The LOTR pinball machine consists of the following
input and output devices, see Figure 1 (right):

• The input devices of the LOTR pinball machine con-
sist of the 58 playfield switches and the 7 dedicated
switches, which correspond to switches that humans
interact with (such as the left and right flipper but-
tons). The LOTR pinball machine supports up to 64
playfield switches, arranged in an 8x8 switch matrix.
The controller reads the playfield switches by software
polling. It strobes each column and then reads the
row signal after it has gone through RC filters (for
noise filtering) and a comparator (for signal buffering)

Figure 1: LOTR Pinball Machine

Orthanc Balrog Palantir POTD Ring Magnet

Arrow Lamps Pop Bumpers Loop Diverter

Figure 2: Important LOTR Playfield Parts

Figure 3: LOTR Backbox with Boards

to create a stronger steady signal. The LOTR pinball
machine supports up to 8 dedicated switches. The
controller reads the dedicated switches directly.

• The output devices of a LOTR pinball machine con-
sist of the lights (namely 80 lamps, 9 flash lamps and 19
LEDs) and 23 low and high current solenoids (includ-
ing 2 slingshots, 3 vertical upkickers, 3 pop bumpers,
2 flippers, 1 loop diverter, 1 ring magnet and 1 Bal-
rog motor), see Figure 2. They also consist of a pair of
speakers and the dot-matrix display. The lamps are ar-
ranged in a 10x8 lamp matrix and need to be strobed,
similar to the playfield switches, at approximately 1
ms to minimize flickering.

The LOTR pinball machine is controlled by the following
components, see Figure 3:

• The CPU/Sound Board processes the switch signals
and generates the control signals for the speakers, the

Display Controller Board and the I/O Power Driver
Board. It includes the 8-bit 68B09E microprocessor,
the CPU Game ROM and the Sound/Voice ROM.

• The I/O Power Driver Board drives the lights and
solenoids. It includes registers that hold the status
of each light and solenoid. The CPU/Sound Board
sets the data of these registers. The I/O Power Driver
Board then activates the lights and solenoids accord-
ingly.

• The Display Controller Board controls the 128x32
plasma dot-matrix display (DMD). It includes the Im-
age ROM. The CPU/Sound Board determines which
image from the Image ROM to display. The Display
Controller Board then retrieves the image and gener-
ates it on the DMD.

3. HARDWARE INTERFACE
One extreme of programming the LOTR pinball machine

is to reprogram its ROMs. However, a reverse engineering ef-
fort is very difficult without any available documentation for
the proprietary boards other than the LOTR manual. The
other extreme of programming the LOTR pinball machine
is to replace all boards. However, this is costly and time-
consuming since there are more than 100 switches, lights and
solenoids. We therefore decided to replace the CPU/Sound
Board with a PC, which is used for running the software in-
terface and pinball game. We use a Dell Outlet Inspiron 530
PC with an Intel Core 2 Quad Q6600 Kentsfield 2.4GHz pro-
cessor and the default installation of OpenSuse 10.3 Linux.
The PC costs $469, and Linux costs $0. We decided to in-
terface the PC to the pinball machine via a small number
of existing connectors, namely the connectors A-E in Fig-
ure 3, rather than soldering wires onto the existing boards,
which would make it difficult to both make additional pin-
ball machines programmable and transform them back into
their original state (which means that they would lose retail
value). We also decided to interface the PC to the DMD
because we wanted to be able to generate images on the
DMD on the fly rather than having to store them in the
Image ROM. Finally, we decided to use the PC speakers
for playing music tracks, sound effects and voice clips. Our
first-generation hardware interface consisted of the following
components:

• The Intermediate Switch Detection Board used
passive analog circuits to filter and buffer the incoming
switch signals similar to what the CPU/Sound Board
did before. The parts of this custom-made board cost
about $30.

• The DMD Board interfaced the PC to the DMD.
It used a Parallax Propeller, an 8-core 32-bit micro-
processor. The Parallax Propeller Demo board costs
about $80.

• The Digital I/O Board interfaced the PC via the
PCI bus to the I/O Power Driver Board and the Inter-
mediate Switch Detection Board. It used a National
Instruments PCI-6509, a high-current 96-channel 5V
TTL/CMOS Digital I/O card. The PCI-6509 costs
$299, and its cabling kit costs $259.

Figure 4: PinBoard

Figure 5: Hardware Interface

This first-generation hardware interface had some disad-
vantages: First, it cost about $670, which made it expensive
to replicate. Second, it consisted of three boards, which
made it difficult to replicate due to the complicated wiring.
Third, the PC was responsible for polling the playfield
switches and strobing the lights and solenoids but had trou-
ble generating its signals with sufficient speed and accuracy,
resulting in the lights flickering slightly and the strength of
the solenoids not being completely consistent. The solenoids
are controlled via pulse-width modulation. Their strength
is directly proportional to the duty cycle of the signal. In
order to accurately drive a solenoid, the PC needs to accu-
rately generate a signal at the desired duty cycle, which is
impossible with Linux due to its scheduling policies.

The second-generation hardware interface consists of only
one custom-made printed circuit board, called PinBoard,
see Figure 4. PinBoard communicates with the PC via a
dual serial-to-USB converter that maintains two virtual se-
rial ports that share a standard USB connection, enabling
even laptops and mobile devices to control the pinball ma-
chine. Connectors A, B and C in Figure 4 connect PinBoard
via custom-made cables to the switches, as shown in Figure
3, and are used to read their statuses. Connector D connects
PinBoard via a ribbon cable to the I/O Power Driver Board
and is used to control both the lights and solenoids. Connec-
tor E connects PinBoard via a ribbon cable to the DMD to
control it. The total cost of the hardware interface (includ-
ing the custom-made Molex connectors and header pins) is
only about $150 plus the cost of the PC. Figure 5 shows the
architecture of PinBoard, which uses a Parallax Propeller
with eight independent cores. The Parallax Propeller runs
the following seven tasks (one on each core) without the need
for interrupts or complicated task scheduling, which allows
it to generate its signals with sufficient speed and accuracy:

• The DMD Serial Task handles the low-level serial
communication protocol between PinBoard and the

Figure 6: Software Interface Layers

PC with respect to the DMD.

• The DMD Handler processes the incoming com-
mands and data from the PC.

• The DMD Driver generates the control signals for
the DMD.

• The Pinball Serial Task handles the low-level serial
communication protocol between PinBoard and the
PC with respect to the switches, lights and solenoids.

• The Pinball Handler processes the incoming com-
mands from the PC. The PC can read the statuses
of the switches, change the statuses of the lights and
solenoids and program the type, behavior and proper-
ties of the lights and solenoids.

• The Pinball Behavior Task determines the desired
statuses of the lights and solenoids. Each light and
solenoid has an associated type that determines its be-
havior. For example, the flippers require a longer high-
power signal to kick them up and then a longer low-
power signal to keep them up, while the pop bumpers
require a short pulse of a high-power signal. The Pin-
ball Behavior Task also performs safety checks to pre-
vent fuses and transistors from blowing. It uses con-
servative timeouts for all solenoids. For example, the
loop diverter automatically turns off after one minute,
and the Balrog motor turns off immediately when Bal-
rog is completely open or closed. It uses timeouts of
half a second for the flash lamps and solenoids since
they need to be active only for fractions of a second.

• The Pinball Driver generates the control signals with
respect to the switches, lights and solenoids. For ex-
ample, to control the lights and solenoids, it sets the
data of the registers of the I/O Power Driver Board.
To read the levels of the playfield switches, it strobes
the columns of the switch matrix and reads the row
signals via the intermediate switch detection circuit
on PinBoard. It does not only read the levels of the
switches (to determine which switches are active) but
also uses edge detection to recognize changes in their
levels (to determine which switches just became ac-
tive).

4. SOFTWARE INTERFACE
The software interface allows a pinball game to control all

aspects of the pinball machine. The software interface al-
lows game designers and students to prototype pinball games

rapidly by providing an almost complete abstraction of the
hardware. All functionality of the software interface can be
provided to the students to shield them from the hardware.
Alternatively, some functionality can be omitted to expose
them to the hardware by letting them implement the func-
tionality themselves. The software interface consists of the
following layers, see Figure 6:

• The Hardware Control Layer interfaces to Pin-
Board. A pinball game has to know the statuses of the
switches, lights and solenoids, for example, whether a
switch is closed or a lamp is on. The Hardware Con-
trol Layer thus maintains local representations of the
statuses of the switches, lights and solenoids, both by
reading the statuses of the switches from PinBoard
hundreds of times per second and by remembering how
the Game Support Layer changed the statuses of the
lights and solenoids. It allows the Game Support Layer
to read the local representations of the statuses of the
switches, lights and solenoids and change the actual
statuses of the lights and solenoids, which also updates
their local representations.

• The Game Support Layer interfaces to the Hard-
ware Control Layer. The Game Support Layer pro-
vides high-level API calls and additional functionality
that allow game designers to develop pinball games
easily. It is easy to use and extend.

The API calls execute tested procedures that sim-
plify the amount of knowledge and code required to
program common input/output tasks needed in pin-
ball games. Initially, the game designers had to pro-
gram all of these tasks directly. The API calls now
shield them from details of interfacing to the Hard-
ware Control Layer and from having to write many
lines of code to accomplish common tasks needed in
pinball games, such as reading the current statuses of
switches, setting the current statuses of the lights and
solenoids, playing audio and generating and display-
ing DMD graphics. Table 7 shows examples of the
API calls provided by the Game Support Layer.1 For
example, the initial game code (without API calls) for
activating the right slingshot when a pinball triggers
its playfield switch looked as follows:

double lastT = elapsedT;
int iteration = -1;
pb.switches.set(1);
while (pb.switches.get_status13()

|| pb.switches.get_status12())
{

pb.sollmp.execute();
pb.switches.execute();
pb.dswitch.execute();
gettimeofday(¤t, NULL);
elapsedT = difftime(current,start);
if(elapsedT - lastT < 0.5)

continue;
iteration++;
lastT = elapsedT;
switch(iteration)
{

1There are different API calls for different audio files since
music tracks occupy their own channel and are thus treated
differently from sounds effects and voice clips, which occupy
the remaining 15 audio channels of SDL and can occur si-
multaneously.

Switches Lamps Solenoids Audio DMD
Is switch active? Turn on lamp. Turn on solenoid. Play music track. Clear buffer.
Is switch becoming active? Turn off lamp. Turn off solenoid. Play sound effect. Display buffer.
Is switch being released? Set lamp status. Set solenoid status. Play voice clip. Print text.

Toggle lamp status. Toggle solenoid status. Stop music tracks.
Turn on all lamps. Set maximum solenoid power. Stop sound effects.
Turn off all lamps. Stop all audio.

Figure 7: Examples of Provided API Calls

case 0:
pb.sollmp.sola.setActivate5(1);
pb.sollmp.solc.setActivate3(1);
break;

case 1:
pb.sollmp.sola.sola5.setTimeOff(2,0);
pb.sollmp.solb.setActivate3(1);
pb.sollmp.solc.setActivate5(1);
break;

case 2:
pb.sollmp.solb.setActivate4(1);
break;

case 3:
pb.sollmp.solb.setActivate5(1);
pb.sollmp.solc.setActivate4(1);
pb.sollmp.solc.setActivate6(1);

default:
iteration = -1;

}
}

The same game code with API calls is shorter and
easier to understand:

ballStuck = true;
while (ballStuck)
{
setSolenoid("Trough Up-Kicker", 1);
setSolenoid("Left VUK", 1);
setSolenoid("Top VUK", 1);
setSolenoid("Right VUK", 1);
setSolenoid("Sword Lock Release", 1);
if (!(switchActive("Left VUK")

&& switchActive("Top VUK")
&& switchActive("Right VUK")
&& switchActive("Sword Lock Low")))

ballStuck=false;
usleep(3000000);

}

DMD operations benefit the most from API calls since
SDL graphics operations can be unwieldy. For exam-
ple, it takes more than ten lines of code to print a
single character to the DMD without API calls. The
same operation with API calls takes only two lines of
code, namely one for printing the text to a buffer (for
double buffering) and one for displaying the buffer on
the DMD.

The additional functionality includes the delayed
execution of functions. For example, a vertical up-
kicker should be activated fractions of a second after
a pinball triggers its playfield switch to allow the pin-
ball to settle first. The additional functionality also
includes the tracking of the pinball with a naive track-
ing algorithm that updates the position of the pinball
based on the position of the most recently activated
playfield switch.

The software interface is written in C/C++ and uses only
a small number of external libraries (namely libserial for
serial communication with PinBoard, SDL for audio and

Figure 8: Thread Initialization and Execution

graphics and a lightweight XML parser) to achieve porta-
bility. Initially, information about the pinball machine and
pinball game, such as the locations of switches and lamps
on the playfield and the locations of audio files on the hard
drive, had to be hard coded in the relevant code sections of
the pinball game. It is now stored in an XML file, whose
structure generally reflects the hierarchy and contents of the
objects used in the software interface. The XML file al-
lows game designers to configure the software interface eas-
ily since it makes it easy for them to store, find and change
information about the pinball machine and pinball game and
to maintain different sets of information for different pinball
machines and games. For example, the initial game code
(with hard coded information) looked as follows:

sfx[1]=Mix_LoadWAV("Sfx/star_destroy.ogg");
sfx[3]=Mix_LoadWAV("Sfx/grain_bonus.ogg");
voice[MADE]=Mix_LoadWAV("Sfx/voice/centerRamp.wav");

The same information in an XML file is easier to change:

<PinballBoard>
<Resources>

<SoundEffects>
<SoundEffect path="Media/Sfx/grain_bonus.ogg" duration="1">

GrainBonus
</SoundEffect>
<SoundEffect path="Media/Sfx/star_destroy.ogg" duration="1">

StarDestroy
</SoundEffect>

</SoundEffects>
<VoiceClips>

<VoiceClip path="Media/Voice/centerRamp.ogg" duration="1">
CenterRamp

</VoiceClip>
</VoiceClips>

</Resources>
</PinballBoard>

The software interface is multi-threaded, see Figure 8.
The first thread (called game-rules thread) runs the pinball
game. The second thread (called graphics thread) generates
the DMD graphics using double buffering and transfers it to
PinBoard for display on the DMD, which guarantees a high
refresh rate despite the large amount of processing required
when drawing graphics, such as converting text to pixels.
The third thread (called delayed execution thread) handles
the delayed execution of functions (called timed events). It
maintains a priority queue of functions and their event times

Mode Property Issue Solution
single-player mode predefined shots unexciting for experts use dynamic shots
multi-player mode same as turn-based single-player mode unexciting for experts allow player interaction

different play times for experts and novices unexciting for notices limit play time per player

Figure 9: Issues of Current Pinball Games

Figure 10: State Diagram of Pinhorse

and calls each function at its event time. Future versions of
the software interface will likely use even more threads to
guarantee small reaction times.

5. DESIGNING A NEW PINBALL GAME
Pinball machines provide strong design constraints on pin-

ball games and need to be used in creative ways to create
pinball games since pinball games are partly determined by
the playfield of the pinball machine, which we do not want
to alter physically. When we set off to design a new pinball
game, we first had to understand what makes pinball games
fun. We attended a meeting of the Orange County Pinball
League, where we were able to play 15 different pinball ma-
chines. We also observed expert pinball players and asked
them questions about their strategies. We learned that pin-
ball games seem to follow a fairly strict formula where the
players need to make a series of predefined shots to advance
the game. This can make them unexciting for expert players
since they quickly become monotone. In multi-player mode,
pinball games keep a score for each player, with little to no
change in game play. This can make them unexciting for
nonexpert players since the expert players in the group can
keep the pinball in play for long periods of time and the
nonexpert players are then idle most of the time, see Table
9 for a summary.

This experience made us settle on three design goals:
First, we wanted to design a pinball game where the se-
quence of shots required to win the game is determined dur-
ing the game and can thus be different each time the pinball
game is played. Second, we wanted to design a multi-player
game where each player directly influences the game of the
other player. Finally, we wanted to design a pinball game
that limits the play time of each player.

To satisfy the three design goals and ensure that our pin-
ball game would be different from existing pinball games, we

Figure 11: Shotmap of Pinhorse

designed a pinball game based on the concept behind Horse.
Horse is a game played on a basketball court where the first
play makes a shot that the second player must duplicate
from the same position on the court. We adapted this con-
cept to pinball by dividing the play into two roles: a shot
establisher and a shot matcher. The first player completes a
series of shots within a fixed amount of time with no restric-
tions on his play. His goal is to create a sequence of shots
that is difficult to match either due to its length or the skill
required to make the individual shots. Once his time is up,
the flippers become disabled and the pinball drains. The sec-
ond player then attempts to replicate this sequence of shots
within the allotted time. If he is successful, he is allowed to
complete additional shots with no restrictions on his play to
improve his score, see Figure 10. A full game would eventu-
ally consist of several iterations with players switching roles
and keeping running totals of their performance.

We defined seven possible shots based on the physical lay-
out of the playfield, namely the left orbit (A), middle orbit
(D), right orbit (G), left ramp (B), center ramp (E), right
ramp (F) and the Orthanc tower (C), see Figure 11. These
are the shots that skillful players can make reliably. If the
player hits the Palantir (chosen for its unique lighting char-
acteristics and visibility), the loop diverter and Balrog open
for a short amount of time. The loop diverter opens to make
the Orthanc tower shot easier, and the Balrog opens to en-
able the center ramp shot. These dynamics allow skilled
players to make substantially more difficult shot sequences.
We quickly learned that replicating a sequence of shots is
almost impossible for regular players without intervening
shots and thus relaxed the rules to allow intermediate shots
by the second player. For example, if the first player defines
the shot sequence “left orbit” and “right ramp,” then the
second player can replicate it with the shot sequence “left
orbit,”“right orbit” and “right ramp.” We call the resulting
pinball game Pinhorse.

6. IMPLEMENTING THE GAME
Shots consist of sequences (usually of length two) of play-

field switch edges in quick succession, which allows Pinhorse
to detect whether the shot was sufficiently strong to com-

plete successfully and what the direction of the shot was.
Some shots consist of more than one sequence of playfield
switch edges, which allows the player to complete it in dif-
ferent ways. Pinhorse adds every playfield switch edge to
a small buffer and then scans the buffer in an attempt to
match a shot (shot recognition). For the first player, recog-
nized shots are added to the end of a queue. For the second
player, recognized shots are compared to the first shot in the
queue. If they match, the first shot in the queue is removed
(shot matching). Pinhorse knows that the second player has
matched all shots of the first player once the queue is empty
and then starts a bonus mode where the second player can
make extra shots to increase his score.

Pinball games require both visual and audio cues to com-
municate the current game state to the players and create
the right mood. Pinhorse uses the DMD to display the cur-
rent player, the number of shots made by the first player or
the number of shots still to be made by the second player, the
next shot to be made by the second player and the remaining
time. However, since the pinball action is fast-paced, Pin-
horse makes extensive use of the lights to give visual cues to
the players.

Pinhorse uses a variety of light effects. The software in-
terface addresses the lights according to the architecture im-
posed by the I/O Power Driver Board. We therefore im-
plemented a wrapper that allows Pinhorse to reason about
lights in Cartesian coordinates. These coordinates are de-
rived as the projections of the lights onto the playfield glass
from the point of view of the player and thus loosely re-
flect the absolute positions of the lights. The lights are
grouped hierarchically, for example, into circles, arcs and
arrows. Lighting functions operate on these groups and can
access the system time and maintain state to realize complex
light patterns, such as rotating half circles, expanding rings,
balls with time-dependent radii and strobing lights. Each
light pattern has several configurable parameters, such as
the velocity of progression, acceleration, start coordinates
and duration. More than one light pattern can be active at
any time.

Pinhorse defines about 20 groups of lights and uses light
patterns in several ways. For example, Pinhorse strobes
Palantir at an increasing rate after a Palantir hit to indicate
the amount of time left before the loop diverter and Balrog
close again. For the first player, Pinhorse confirms that a
shot was established with a quick flash of light. The speed
of a rotating half circle across the entire playfield indicates
the amount of remaining time. For the second player, Pin-
horse indicates the next shot to be made with a ball of light
with time-dependent radius centered on the corresponding
blinking arrow lamp to catch his attention. As with the first
player, the speed of a rotating half circle of lights indicates
the remaining time. However, the animation is restricted to
a small group of lights near the flippers so as to not interfere
with the indication of shots. In the bonus mode, all lights
on the board are strobed to signify the accomplishment of
the second player.

Pinhorse uses sound effects to inform the players of the
outcomes of their actions. For example, Pinhorse plays voice
recordings to reinforce which shot the second player is ex-
pected to make next, which greatly improved the player ex-
perience. Pinhorse also uses sound effects to encourage the
second player to act quickly when his time runs out. Finally,
Pinhorse plays background music during game play.

7. CURRENT STATUS / FUTURE WORK
Pinhorse is a proof of concept game that demonstrates

what can be accomplished with the pinball machine inter-
face. Pinhorse was intended to help us improve the hard-
ware and software interface and demonstrate the feasibil-
ity of writing a pinball game within a semester. Pinhorse
consists of about 680 lines of code, the helper classes for
shot recognition, shot matching and light patterns consist
of about 1,600 lines of code, and the software interface con-
sists of about 2,300-25,00 lines of code. Almost all of this
code can be reused to speed up the development of future
pinball games and to increase their complexity. Pinhorse
incorporates almost all of the playfield parts as well as the
DMD and audio but needs to be developed further to reach
the sophistication of existing pinball games. For example,
the first player can define as many as 10 to 12 shots in the
60 seconds that we allotted for each round, which can be dif-
ficult for the second player to replicate. Future versions of
Pinhorse could be made easier with a system of power-ups
that the second player can earn with particular shots and
that then increase his remaining time or turn off features
of the pinball machine that randomize the movement of the
pinball, such as the slingshots or pop bumpers.

8. COLLABORATIONS
We have recently made our pinball machine interface avail-

able to the University of Alberta (Canada) to enable their
students to implement pinball games as well, for example
as part of their award-winning game class [11], and allow
for an unbiased evaluation. They have purchased their own
LOTR pinball machine and currently are undertaking sev-
eral projects that are expected to result in a close collabo-
ration between USC and the University of Alberta:

• The first project was to build an event-based layer on
top of the existing software interface and to structure
the code to simplify the addition of new projects. The
event-based layer reduces the need for pinball games
to continually poll the software interface for state
changes. Pinball games now install event handlers, and
the software interface calls these event handlers when
state changes occur. The event-based layer also pro-
vides the functionality to switch solenoids and lamps
on and off after given periods of time. This project
was successfully completed and simplifies the creation
of pinball games greatly. For example, the base func-
tionality of Pinhorse was re-implemented with fewer
than 200 lines of code, most of which were dedicated
to DMD operations.

• The second project is to adapt ScriptEase [7] to
generate pinball games automatically from high-level
game specification. ScriptEase is software whose origi-
nal purpose was to generate stories for the role-playing
game Neverwinter Nights. ScriptEase could provide
an intuitive interface for non-programmers to design
pinball games using common design patterns. This
project is expected to start in Summer 2010.

9. RELATED WORK
There are only a small number of teaching and research

efforts that use actual pinball machines. Actual pinball ma-
chines have, in research, been used to study hybrid system

control [9] and develop and evaluate machine learning algo-
rithms by an undergraduate student of Sven Koenig (one
of the authors of this paper) at Georgia Institute of Tech-
nology (USA) in 1999. In teaching, they have been used to
teach real-time and embedded systems as part of “Introduc-
tion to Embedded and Real-Time Programming” (CS160)
at Brown University (USA) in Spring 2007, “Smart Prod-
uct Design Laboratory” (ME218a) at Stanford University
(USA) in 2007, “Designing with Microcontrollers” (EE476)
at Cornell University (USA) in Spring 2007 and “Special
Topics in Electrical Engineering: Pinball Machine Project”
(ENEE 488Q) at the University of Maryland at College Park
(USA) in Spring 1997. A similar effort existed at Brooklyn
College (USA) around 1997 [5]. Pinball machines have also
been used to teach signal and image processing as part of
“Project Course in Signal Processing and Digital Communi-
cation” (EQ2430/EQ2440) at Kungliga Tekniska Högskolan
(Sweden) in Spring 2004 and“Project: Pinball” (EOH 2004)
of the ACM Special Interest Group for Computer Archi-
tecture at the University of Illinois at Urbana Champaign
(USA) in Spring 2004. One of these efforts attempted to
build a pinball machine from scratch, which allows them to
customize the hardware for easier control. Other efforts used
old electro-mechanical pinball machines, which are easier to
control than newer solid-state pinball machines. The state of
the art in controlling a pinball machine was as follows: Some
efforts controlled the flippers by modifying the hardware [4].
Some tracked the ball via input from the playfield switches
[9] or an overhead camera [8] [6]. The most sophisticated
project so far mimicked the microcomputer-based control
unit to read the switches and control the solenoids [2] [1].
We, on the other hand, provide a hardware and software
interface that controls all aspects of an existing solid-state
pinball machine (including the lights, solenoids, DMD and
speaker) without needing to modify its hardware. Further-
more, we have used the hardware and software interface to
program a complete (but simple) pinball game that makes
use of all of these aspects.

10. CONCLUSIONS
The development of the pinball machine interface and Pin-

horse continues. The pilot CS499 class used to build Pin-
horse was different from the kind of classes that we envision
to offer in the future since it was a hands-on project class
used to debug the existing hardware interface, develop a first
version of the software interface and a first pinball game
from scratch, all in one semester without worked out class
material. Thus, we were not able to formulate the learning
objectives up front or evaluate the class afterwards. There-
fore, it is future work to offer a more systematic class and
evaluate it rigorously. Similarly, Pinhorse is only a proof of
concept game and does not reach the level of sophistication
of commercial games in terms of complexity or engaging-
ness. Therefore, it is future work to develop more sophis-
ticated games and evaluate them rigorously. However, we
hope that this paper will raise awareness of the availability
of our pinball machine interface as a testbed for creating
games different from video games. More information can be
found on our pinball project webpages at

idm-lab.org/pinball

together with an 11-minute YouTube video that demon-
strates the features of Pinhorse and was viewed more than

3,000 times in its first three months.

11. ACKNOWLEDGMENTS
Figure 2 uses parts of images by Cassidy Thomas, ob-

tained from the Internet Pinball Database at www.ipdb.org.
The game music of Pinhorse is a mix of “Fearless Flight”
from Nullsleep, “March of the Nucleotides” from Bit Shifter
and other pieces from Castlevania. The pinball project was
supported in part by a grant from the USC Fund for In-
novative Undergraduate Teaching and the National Science
Foundation under Grant No. 0113881. Daniel Wong was
supported by the USC Undergraduate Merit Research Pro-
gram and the Rose Hills Foundation. We thank the Orange
County Pinball League for their hospitality.

12. REFERENCES
[1] J. Bork. Controlling a pinball machine using Linux.

Linux Journal, 139, 2005.

[2] J. Bork. Reverse engineering a microcomputer-based
control unit. Master’s thesis, Industrial Technology,
Bowling Green State University, Bowling Green
(Ohio), 2005.

[3] Business Roundtable. Tapping America’s potential:
The education for innovation initiative, 7 2005.

[4] D. Clark. An inexpensive realtime testbed - the pinball
player project. In Proceedings of the IEEE Workshop
on Real-Time Applications, pages 86–88, 1994.

[5] D. Clark. Progress toward an inexpensive real-time
testbed: The pinball player project. In Proceedings of
the Real-Time Educational: Second Workshop, pages
72–79, 1997.

[6] R. Cohen. Designing an experimental pinball wizard.
The Electronic System Design Magazine, 19, 1989.

[7] M. Cutumisu, C. Onuczko, M. McNaughton, T. Roy,
J. Schaeffer, A. Schumacher, J. Siegel, D. Szafron,
K. Waugh, M. Carbonaro, H. Duff, and S. Gillis.
ScriptEase: A generative/adaptive programming
paradigm for game scripting. Science of Computer
Programming, 67(1):32–55, 2007.

[8] S. Gustafsson, J. Munoz, S. Norell, D. Real, and
Y. Xiao. Smart pinball project - final report. Technical
report, Skolan för Elektro- och Systemteknik, Royal
Institute of Technology, Stockholm (Sweden), 2004.

[9] G. Lichtenberg and J. Neidig. An example of hybrid
systems control: The pinball machine. Technical
Report 2003.13, Lehrstuhl für
Automatisierungstechnik and Prozessinformatik,
Ruhr-Universität Bochum, Bochum (Germany), 2003.

[10] M. Rossignoli. The Complete Pinball Book. Schiffer,
1999.

[11] N. Sturtevant, H. Hoover, J. Schaeffer, S. Gouglas,
M. Bowling, F. Southey, M. Bouchard, and
G. Zabaneh. Multidisciplinary students and
instructors: A second-year games course. In ACM
Technical Symposium on Computer Science Education,
pages 383–387, 2008.

[12] M. Zyda. Creating a science of games.
Communications of the ACM, 50(7):26–29, 2007.

[13] M. Zyda and S. Koenig. Teaching artificial intelligence
playfully. In Proceedings of the AAAI-08 Education
Colloquium, pages 90–95, 2008.

