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ABSTRACT OF THE DISSERTATION

Multi-Player Games:

Algorithms and Approaches

by

Nathan Reed Sturtevant

Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2003

Professor Richard Korf, Chair

Historically, much work in Artificial Intelligence research has gone 

into designing computer programs to play two-player perfect-infor-

mation games such as Chess, Checkers, Backgammon, and Othello. 

Comparatively little work, however, has gone into multi-player games 

such as Chinese Checkers, Abalone, Cribbage, Hearts, and Spades. As 

a result, we have highly optimized techniques for two-player games, 



x

but very little knowledge of how they work in multi-player games.

 In this thesis we extend many of the standard techniques from 

two-player games to multi-player games. We present two decision 

rules, maxn [Luckhardt and Irani, 1986] and paranoid, examining 

their theoretical properties. For maxn we also introduce several prun-

ing techniques, including Alpha-Beta Branch-and-Bound pruning 

and Speculative pruning. Speculative pruning is the first multi-player 

pruning algorithm that can prune any constant-sum multi-player 

game, and provides an order of magnitude reduction in node expan-

sions over previous search techniques in games like Chinese Check-

ers.

 We also analyze the properties of common two-player game 

techniques, such as zero-window search and iterative deepening, 

showing how their properties change in multi-player games. Finally, 

we present results of all these techniques in a variety of multi-player 

domains, including Chinese Checkers, Abalone, Cribbage, Hearts 

and Spades. These methods have allowed us to write state-of-the-art 

programs for playing Hearts and a version of Chinese Checkers on a 

smaller board.
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Chapter 1

Introduction

1.1 Motivation

 Researchers in the field of Artificial Intelligence (AI) have always been inter-

ested in the question of how computers can be taught, can learn, or be programmed 

to do the things that humans do. Things that are exceptionally easy for computers, 

like mathematical computation and data storage, are very difficult for humans. But, 

things that humans do well and often take for granted, such as carrying on a conver-

sation, are much more difficult for a computer.

 One difficult task that AI researchers have been interested in since before the 

inception of the field is that of game playing. Shannon proposed a chess machine as 

early as 1950 [Shannon, 1950], Turing wrote a program to play chess in 1951 [Tur-

ing et al., 1953], but never ran it on a computer, and Samuel had a quality checkers 

player by the early 1960ʼs [Samuel, 1959]. While some may dismiss these as merely 

“parlor” games, the video game industry currently makes more money each year 

than Hollywood [Baird, 2003]. This in itself does not justify game research, but it 

does mean that games are something that people have a fundamental interest in.
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 For instance, Electronic Arts CTO, Steve Anderson, recently claimed that 

Electronic Arts feels that developing good Artificial Intelligence systems for their 

games is one of their major challenges for the next decade [Anderson, 2003]. As 

the graphic capabilities of video game consoles have grown, it has become more 

and more obvious how poor the character movement and decision systems in cur-

rent games actual are. In fact, many “artificial intelligence” systems in games are 

just large finite state machines. The artificial intelligence technology used for such 

systems is becoming more and more important in creating a realistic environments. 

Finally, the development of high-performance graphic chips is beginning to free up 

the CPU for other tasks such as improved AI.

 Beyond the game industry, games have also played a large part in social 

structures throughout history. “Human fascination with game playing is long-stand-

ing and pervasive. Anthropologists have catalogued popular games in almost every 

culture....Games intrigue us because they address important cognitive functions.” 

[Epstein, 1999] This suggests, and we agree, that games have value beyond pure 

entertainment, as they often form part of the social structures within a culture or 

family group.

 While a great deal of research has gone into two-player games, many games 

and most real-world domains involve more than two parties, whether in cooperation 

or in competition. At first this may seem like a small difference, but as [Luce and 

Raiffa, 1957] point out, “it has long been recognized in sociology, and in practical 

affairs, that between two-person situations and those involving three or more per-
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sons there is a qualitative difference which is not as simple as the difference between 

2 and 3.” Obviously in a two-player strictly competitive game, the strongest player 

will usually win. But, the introduction of a third player doesnʼt guarantee that the 

strongest player will win. In fact, many have informally observed this in the recent 

TV game show “The Weakest Link,” where the smartest players are usually voted 

out of the game in the stages when they become a threat to the remaining players.

 Besides a recent surge of work on agent-based systems, relatively little work 

has been done in what practical algorithms and techniques could actually be used to 

play games with more than two players.

 In this thesis we lay the groundwork for extending research from two-player 

games to multi-player games. It is our hope and goal that in addition to providing a 

framework for work on multi-player games, this work would also be useful to the 

greater domains of decision making in contexts with multiple competing agents.

1.2 Problem Overview

 If one wishes to write a high-quality two-player game playing program, there 

is generally a straightforward set of steps by which it can be done, starting with 

minimax and alpha-beta pruning, a customized evaluation function, and continuing 

through a list of well-researched topics. AI researchers know the basic steps, and 

new techniques are often just needed to fine-tune certain aspects of a game. There 

are notable exceptions to this, particularly Go and Shogi (Japanese Chess), but as 

we will discuss in later chapters, this formula has seen a fair amount of success.
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 Compared to this, there are relatively few answers when it comes to multi-

player games. There is no standard algorithm that has been used for multi-player 

games, and it is unclear exactly which techniques are worthwhile to use in multi-

player games.

 There are three categories of multi-player games that are most widespread 

and that usually require computer opponents. The first category is the first-person 

shooter (FPS). These games usually require quick movement and reflexes, but 

movement and shots shouldnʼt be so precise as to make a human opponent always 

lose. Games in this category include Doom, Quake, and Half-Life. Another category 

is the real-time strategy (RTS) game. These games usually require you to coordinate 

armies of units across a battlefield for real-time combat. This category of games 

includes Starcraft, Warcraft, and Myth. Finally, there are board and card games in 

which play is less frenzied, but can often be just as intense.

 Most people writing computer opponents for FPS and RTS games use fairly 

ad-hoc methods, but even so it is usually easy for a computer opponent to annihilate 

even the best human. Thus, the issue in these games is how to write a balanced op-

ponent. In board and card games, however, it is much more difficult to develop a 

strong opponent, so this is where we focus our work.

1.3 Problem Approach

 An important element of any game is the choice of the decision rule which is 

implemented by the algorithm used to search the game tree. The standard two-play-
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er decision rule is minimax. In this thesis we consider two decision rules, paranoid 

[Sturtevant and Korf, 2000] and maxn [Luckhardt and Irani, 1985]. The paranoid 

decision rule results from the simplification of a multi-player game to a two-player 

game by assuming that all our opponents are collaborating against us, while maxn is 

a generalization of minimax to a n-player game.

 The choice of decision rule may be made on the theoretical strength of the 

rule or its computational efficiency, but implicit in the decision rule is a model of 

our opponents. If we choose to use the paranoid algorithm, we are using a model in 

which we expect our opponents to collaborate, while the maxn decision rule assumes 

every player is out for themselves. Although we will not discuss opponent modeling 

in detail, it is important to realize that we cannot get away with the implicit assump-

tions we might have made in a two-player game. In a subtle way, this is an issue 

behind many of the difficulties that arise in multi-player games.

 The minimax decision rule has dominated two-player game research because 

of the efficiency of alpha-beta pruning [Knuth and Moore, 1975], which allows 

minimax to be implemented much more efficiently than nearly any other algorithm 

proposed for two-player games. In practice, unfortunately, most simple analogs to 

alpha-beta pruning in multi-player games are either ineffective or not valid. The 

best previous technique, shallow pruning [Korf, 1991] has a reasonable best-case 

performance, but this cannot realistically be achieved in practice.

 Therefore, we introduce a set of new pruning techniques which are much 

more effective in practice. These include branch-and-bound pruning, alpha-beta 
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branch-and-bound pruning [Sturtevant and Korf, 2000], last-branch pruning and 

speculative pruning [Sturtevant, 2003]. We also extend the previous analysis of 

immediate and shallow pruning, providing enhanced bounds on when they can be 

applied along with their effectiveness.

 Besides pruning techniques, there have been many other methods used to 

calculate decision rules and search game trees more efficiently. These often involve 

extensive use of computer memory, while most decision rules require very little 

memory for computation. We consider some of these techniques, such as transpo-

sition tables and opening and closing books, discussing how they can be used in 

multi-player games, and some of the issues that we need to be aware of when using 

them in multi-player games.

 Finally, we also implemented a range of practical games including Chinese 

Checkers, Hearts, Spades, Cribbage and Abalone. We use these games as a test bed 

to measure the efficiency and effectiveness of the techniques discussed here.

 We will begin Chapter 2 with an overview of games in which computer pro-

grams play well, along with some of the techniques used in those programs. This is 

followed in Chapter 3 by a description of the multi-player games that we use in this 

thesis, along with a few other popular multi-player games.

 In Chapter 4 we begin to present our new work as we cover the paranoid and 

maxn decision rules, followed by various pruning techniques for these algorithms 

in Chapter 5. Chapter 6 discusses some of the other techniques that have been used 

in two-player games and how they can be applied to multi-player games. Chapter 7 



7

describes the software package we have written to play and test multi-player games, 

along with the results of these experiments. We conclude in Chapter 8 with a sum-

mary of our work and a description of different areas of open research.
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Chapter 2

Expert-Level Two-Player Game Programs

 There are many different domains in which computer programs have been 

written that exhibit expert-level play. The story of how this has occurred and how 

humans have responded to the challenge is quite interesting, and we suggest that 

anyone interested in the details of the story should see [Schaeffer, 2001].

 In this chapter, we will discuss these domains more briefly, looking for what 

the key elements were that allowed these successes. This history will partly set the 

stage for our discussion of multi-player games, as it provides a list of techniques that 

have proven their worth in two-player games.

2.1 Two-Player games

 Chess dominated early game research, with a truly “expert” program seem-

ing to be about 10 years off [Newell, et al., 1958] for a long time. It wasnʼt until 

IBMʼs work on specialized hardware for Deep Blue in the late 1990ʼs that the top 

human chess player was defeated in an exhibition match. Recent efforts on pro-

grams such as Deep Fritz and Deep Junior have begun to produce similar results 

on more commonly-available hardware. Expert chess programs rely on minimax 
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search with alpha-beta pruning, iterative deepening, opening books, end-game da-

tabases, transposition tables and quiescence (selectively deeper) search. The other 

important factor has been highly tuned and accurate evaluation functions.

 Checkers is another game that received early consideration. Samuelʼs check-

ers program [Samuel 1959, 1967] used machine learning to come up with a good 

evaluation function. But, it wasnʼt until the late 1980ʼs and early 1990ʼs when com-

puters offered serious challenges to humans. One of the primary reasons for this was 

the development of a massive end-game database, containing all positions with 8 or 

fewer pieces on the boards [Schaeffer, et al., 1992]. Chinook, the program written 

based on this research, was the first computer program to ever win a game against 

a human champion in formal match play, and it is the strongest Checkers player in 

the world. Chinook used minimax and alpha-beta as the basic core of its search en-

gine.

 As in Checkers, expert Othello programs are currently known to be better 

than all humans. The top Othello program, Logistello [Buro, 1997], learned an 

extremely sophisticated evaluation function for play. In fact, it actually learned 13 

different evaluation functions that were used separately across different stages of 

the game. This, combined with traditional minimax and alpha-beta pruning has been 

quite successful, allowing Logistello to strongly sweep the world champion in an 

exhibition match in 1997.

 Each of these first three games has used very similar techniques, and they 

also have very similar properties, all being two-player perfect information games. 
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The next three games we discuss are not perfect-information games.

 Backgammon is a non-deterministic game, as it involves the random roll of 

dice. The best backgammon program, TD-Gammon [Tesauro and Sejnowski, 1989] 

is similar to Logistello in that it uses a learned evaluation function for play. In back-

gammon this is even more important, since the random dice rolls greatly restricts 

the amount of search possible in the game. TD-Gammon used temporal difference 

learning [Tesauro, 1995] to learn its evaluation function. TD-Gammon is currently 

playing at the level of the best backgammon players in the world.

 Scrabble is a word game in which imperfect knowledge of the state of the 

game limits the possibility of deep search. In most of the game there are too many 

possible moves, much less opponent hands, to consider them all. Thus, the best 

Scrabble program, Maven [Sheppard, 2002], relies on sophisticated move-selection 

algorithms, as well as limited sampling of possible opponent responses. In an exhi-

bition match against one of the best North American players in 1998, Maven won 

9-5 [Schaeffer, 2001].

 Bridge is one of the domains for which good two-player game programs 

have more recently been developed. GIB [Ginsberg, 2001] is generally considered 

to be the best Bridge program in the world, although it hasnʼt played any sanctioned 

matches against top world players, so it is difficult to know exactly where it stands. 

The biggest issue in Bridge is the (lack of) knowledge about your opponents  ̓hands. 

GIB handles this using Monte-Carlo simulation, and more recently other imperfect 

information methods, which we will discuss later in this chapter. GIB also uses so-
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phisticated transposition tables.

 To summarize work in two-player games, all the games mentioned here use 

the minimax decision rule with alpha-beta pruning for efficient search. They also 

use a combination of transposition tables, opening/closing books, and hand-crafted 

evaluation functions. There are still significant challenges in two-player games 

which these techniques alone have not been able to solve. Specifically, games like 

Go and Shogi are too complicated for standard search techniques. There is presently 

a lot of research effort going into these games, which is not the case for multi-player 

games.

2.2 Extending Work Multi-Player Games

 We can use some of the techniques from two-player games directly in multi-

player games without much thought. Methods for learning a static evaluation func-

tion are likely to be useful in both two-player and multi-player games, as well as 

techniques like Monte-Carlo sampling.

 Despite this, there isnʼt a single multi-player game for which expert-level 

programs have been written. Probably the most skilled program in a multi-player 

game is Loki [Billings, et al., 2002], which plays Texas Hold ʻem Poker, although 

it has not yet played against humans for money, which will be a true test of its skill. 

Poker is one of the more widely played multi-player games, and we will discuss 

briefly in the next chapter.

 Given the lack of work in multi-player games, there are many unanswered 
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question about how to play these games in practice. Prior to this work, there was 

limited research into multi-player game tree search. Specifically, papers addressed 

the maxn algorithm [Luckhardt and Irani, 1986], the introduction of shallow pruning 

and the incorrectness of deep pruning [Korf, 1991], along with some work on show-

ing that maxn can suffer from game tree pathologies [Mutchler, 1993]. However, 

this in itself is hardly sufficient to provide a basis for writing an expert-level multi-

player game. The later chapters of this thesis will extend many of the two-player 

techniques found in the previous section to multi-player games.

2.3 Solving Perfect and Imperfect Information Games

 Most search algorithms are designed for perfect-information games such as 

Chinese Checkers. To play imperfect-information games such as Spades or Hearts, 

we must either modify the standard algorithms to allow for imperfect information, 

or use new algorithms designed for imperfect-information games.

 If, in a card game, we could see our opponents  ̓cards, we would be able to 

use standard search algorithms such as minimax to play the game. While in most 

games we donʼt know the exact cards our opponent holds, we do have an estimate 

of the probability of our opponent holding any particular hand or card. Thus, we can 

create a hand that should be similar to what our opponent holds, and use a perfect-

information algorithm to play against it.

 The full expansion of this idea results in Monte-Carlo sampling. Instead of 

generating just a single hand, we generate a set of hands that are representative of 
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the actual hand we expect our opponent to have. In Bridge, for instance, we would 

generate hands that are consistent with the bidding and play so far. We then solve 

each of these hands using the standard minimax algorithm. When we have complet-

ed the analysis of each hand, we combine and analyze the results from each hand to 

produce our next play. As play continues we update our models to reflect the plays 

made by our opponent.

 Many of the imperfect information games we consider in this thesis are card 

games, and so they resemble Bridge in terms of their imperfect information. Thus, 

in much of our work we will discuss all games as if they are perfect information 

games, making the assumption that, as in Bridge, we will be able to use perfect-in-

formation methods to play imperfect information games.
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Chapter 3

Multi-Player Games

 There are a wide variety of multi-player games. We begin by covering many 

of these games here, paying particular attention to the games we have spent more 

time investigating. A secondary purpose is to catalogue some of the interesting 

multi-player games which have not been studied in depth.

 It is important to note that many games such as Bridge are played with four 

players in two teams. While these games have multiple players, the players are in 

two coalitions, and so regular two-player game theory applies.

Figure 3.1: A Chinese Checkers board with three players.
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3.1 Chinese Checkers

 Chinese checkers is a perfect information game for 2-6 players. A Chinese 

Checkers board is shown in Figure 3.1. The goal of the game is to get 10 pegs or 

marbles from oneʼs starting position to oneʼs ending position as quickly as possible. 

The positions vary depending on how many players are in the game. Starting and 

ending positions are always directly across from each other on the board, and play-

ers are placed as symmetrically as possible around the board. In a two-player game, 

the players would start at the top and bottom of the board, while in a three-player 

game the players begin in alternating corners of the board.

 Pegs are moved by stepping to an adjacent position on the board or by jump-

ing over adjacent pegs. One can jump over any playerʼs pegs, or chain together sev-

eral jumps, but pegs are not removed from the board after a jump. We demonstrate 

this with a set of consecutive moves in Figure 3.2. The first move is a simple jump 

Figure 3.2: Move possibilities to start a game of Chinese Checkers.



16

over a single piece. The second move is a double jump. The third move is a simple 

move to an adjacent space, and the last move involves 4 hops. Players can chain 

together as many jumps as they wish over both their own pieces and their opponents 

pieces, as long as every segment of the jump is from an empty space to another 

empty space over a single peg. There are no forced moves in Chinese Checkers, as 

there are in Checkers.

3.2 Abalone

 Abalone, like Chinese Checkers, is a perfect-information board game for 2-6 

players. Abalone is a more recent game which became popular in the mid-1990ʼs. 

An example of an abalone board is shown in Figure 3.3. The goal of the game is to 

push 6 of your opponents pieces off the edge of the board.

 A player can move 1-3 pieces on his turn. There are two classes of moves 

allowed in an abalone game, which are illustrated in Figure 3.4. The first class of 

moves are simple moves of oneʼs own pieces. This involves moving a row of one, 

two, or three linearly contiguous pieces together one space along any axis. In the 

Figure 3.3: A three-player abalone game board.
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first example in Figure 3.4 each player has made a move of this class on the board. 

The player at the top has moved a single pieces down and to the left. The player on 

the bottom left has moved two pieces along the axis of those pieces one space up-

wards. The bottom right player has moved three pieces together up and to the left.

 The second class of moves allowed in abalone are push moves. These are il-

lustrated by the right half of Figure 3.4. The first move is made by the bottom right 

player, using three of his pieces to push one of the upper players pieces upwards. 

Then, the upper player responds by using three of his pieces to push his opponentʼs 

piece off the board. When making push moves, one must push pieces along the same 

axis of the pieces being moved, and you must always push less pieces than you are 

moving yourself. So, three pieces can push one or two pieces, and two pieces can 

push one piece, but you can never use four pieces to push three pieces.

3.3 Card Games

 Card games have many similarities which we will consider first before dis-

cussing any particular games in detail. We break them into two classes here, trick-

based games and non-trick-based games. Trick-based games include Hearts, Spades 

Figure 3.4: Example moves from the game of Abalone.

44
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and Pinochle, while Cribbage, Uno and others are not trick based.

 In a trick-based game, cards are dealt out to each player face down before the 

game begins. The first player plays (leads) a card face-up on the table, and the other 

players follow in order, playing the same suit as lead if possible. A play out of suit is 

called a “slough.” When all players have played, the player who played the highest 

card in the suit that was led “wins” or “takes” the trick. He then places the played 

cards facedown in his discard pile, and leads the next trick. This continues until all 

cards have been played. Some games contain “trump” suits. If a trick contains a 

trump card, the highest trump card played will win the trick, regardless of the suit 

lead. In trick games, points are assigned by either the number of tricks taken or the 

point value of each card taken in a trick.

 Most trick games are divided into sets of hands. Each hand represents one 

deal of the cards, and the play of those cards according to the rules of the game. 

After a hand is played out, points are added to playerʼs total scores, the cards are 

shuffled, dealt, and then the next hand begins. Players continue this process until at 

the end of a hand one playerʼs score surpasses a predetermined limit, at which point 

the game is over.

Figure 3.5: A sample card trick.
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 We demonstrate a sample trick in Figure 3.5. In this trick, the first player has 

lead the Jack of Clubs. The second player followed suit with the Ace, but the third 

player sloughed the Four of Spades, because he had no Clubs in his hand. If there 

is no trump or a suit other than spades is trump, the second player will win the trick 

with the Ace. But, if spades are trump, then the third player will win with the four.

 We cannot cover every detail of every card game here. More details of 

these and many other games can be found from various sources. Currently http:

//www.pagat.com/ is probably the most comprehensive reference of card games 

available, covering many more games than found in so-called “dictionaries” of card 

games such as [Parlett, 1991], [Gibson, 1974] or [Hoyle, et al., 1991].

3.3.1 Hearts

 Hearts is usually played with four players, although there are variations for 

two or more players. In Hearts there is no trump suit, and points are assigned by the 

cards taken in your tricks. Players get 1 point for every heart taken and 13 points for 

the Queen of Spades, for a total of 26 points, and the goal is to minimize the number 

of points taken.

 In addition to these basic rules, there are several special rules in Hearts. At 

the beginning of each hand, cards are exchanged between the players on the table. 

Each player chooses 3 cards to pass, lays them down on the table, and then picks 

up the cards passed to them. Passing alternates from hand to hand, following a pass 

pattern such as “left, right, across, hold,” where a hold means that no cards are 

passed.
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 In Hearts one can also “shoot the moon”, or take all the points available. 

When one player does this, instead of getting 26 points, the other players in the 

game all get 26 points each, and the player who shot the moon gets 0 points. This 

creates a tension between minimizing oneʼs points, but also assuring that no one 

player is able to take all the points.

 Other variations that are sometimes played include getting -5 points for tak-

ing no tricks, getting -10 points for taking the Jack of Diamonds, having the player 

with the 2 of Clubs always lead. Some people allow a player who shoots the moon 

to get -26 points instead of giving other players 26 points. Hands are usually played 

iteratively until one playerʼs score reaches 100 points.

3.3.2 Spades (8-5-3 / Sergeant Major)

 Spades is usually played as a four-player game in two teams. But, there is a 

three-player version in which players are not in teams. There are other games such 

as 8-5-3, also called Sergeant Major, that are very similar to Spades, and are always 

played by three players.

 The basic goal of these games is to take as many points as possible, where 

each player gets one point for every trick taken. There is also a minimum number of 

tricks which must be taken to avoid some penalty.

 In Spades there is a simplistic bidding procedure that occurs after the cards 

have been dealt, but before play begins. Starting with the dealer, and continuing 

clock-wise around the table, players announce how many tricks they plan to take in 

the game. Some rule variations require that the last player cannot bid such that all 
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players can make their bids exactly. In three-player Spades each player has 17 cards, 

so this would require that the bids do not sum exactly to 17.

 If a player takes at least as many tricks as they bid, they get 10 points for ev-

ery trick taken, plus one point for each additional over-trick. If, in the course of the 

game, they accumulate 10 over-tricks, they take a 100 point penalty. If a player does 

not make their bid, they lose 10 points for every trick bid. So, if you bid 5 tricks and 

take 8 you will get 53 points. If you bid 8 and take five, you get -80 points. As the 

name suggests, Spades is always trump.

 In Sergeant Major or 8-5-3, each player must take a predetermined number 

of tricks (8, 5, or 3), and the person who needs to take the most number of tricks 

gets to declare trump. The number of tricks you need to take rotates each hand. If 

a player didnʼt make their minimum required score on the previous hand they must 

trade some of their cards to the player(s) who took the extra tricks. This is done by 

having the player who took the extra tricks give a single card to the losing player. 

This player then must pass the highest card in their hand from the same suit back to 

the winning player. Play can continue until a player reaches a fixed score, or until 

one player is able to take all the tricks.

3.3.3 Cribbage

 Cribbage is the first of the card games we consider that isnʼt trick based, 

although cards are played in sequence by players in the game until no player can 

make a legal move. Like the other card games weʼve described here, cribbage has 

variations for 2-4 players, and the 3-player version isnʼt played in teams. We cover 
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the rules for the 3-player game here. Cribbage has three stages, the “discard”, the 

“play”, and the “show”. In the first stage players are dealt five cards, one of which 

they discard face-down into a “crib”. One card is also dealt into the crib so that, 

along with the discards, an additional four-card hand is formed. After all players 

have discarded, one more card, called the “start” card is selected randomly from the 

deck and placed face up on the top of the undealt cards. All players use this card as 

part of their hand in the “show”.

 In the play, players play their cards out consecutively. Each time a card is 

played, a player says the sum of all cards played to that point. The sum of cards is 

not allowed to exceed 31. If a player has no cards left to play or cannot play without 

the sum exceeding 31 points he instead says “go”. When all players have said “go”, 

play continues with the sum reset to zero. During the play, points are awarded if 

consecutive plays form a run of three or more cards, if consecutive cards match, or 

if the sum of cards so far is 15 or 31. We demonstrate this in Figure 3.6.

 In this play of cards the first player would play their card and then say “four.” 

The second player would follow with their card saying “ten.” The third player 

would smile and say “15 for two (points) and a run of three for five (total points).” 

Figure 3.6: Sample play of cards from “the play” in cribbage.
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Whenever a set of consecutively played cards can be sorted into a run of three or 

more cards, a player scores one point for every card in that run, in this case 3 points. 

In addition, since the sum reached 15, another two points are awarded. The first 

player would then continue by playing their five, saying “twenty for two,” as the 

last two cards form a pair. Three-of-a-kind is worth 6 and four-of-a-kind is worth 

12. The second player continues with the jack saying “thirty.” If nobody has an ace, 

they will each say “go”, and the second player will collect one point for playing the 

last card.

 In the “show”, the players sum up the points from the cards they originally 

had along with the start card, with the dealer also scoring the hand formed by the 

cards that were discarded. Points are awarded similarly to the play except that play-

ers can use all arrangements of their hand that will give them points. These include 

straights, combinations of cards that add to fifteen, a four-card flush in your hand or 

a five-card flush in your hand including the start card. Additionally, the jack of the 

same suit as the start card is worth one point. For instance, if your four-card hand 

plus the start card contained the same cards as Figure 3.6, it would be worth 16 

points: two runs of three for 6, four ways to get fifteen for 8, and a pair for 2. The 

game ends as soon as any player reaches 121 points.

3.4 Other Games

 Besides the games considered so far, there are other popular games we will 

not consider in detail in this thesis. We describe them briefly here, both for the sake 
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of completeness, but also so that we can reference them when we speak to the ap-

plicability of different pruning techniques later in this thesis.

3.4.1 Pinochle

 Pinochle is a popular card game that has similarities to both Hearts and 

Spades. Like Spades, Pinochle has a bidding procedure, except in Pinochle the 

player winning the bid gets to set trump. In the main play of Pinochle, players are 

trying to maximize the number of points they take. But, more like Hearts, points are 

awarded based on the cards taken in each trick. Specifically, the Ace, Ten and King 

of each suit are worth one point, while all other cards are worth nothing.

3.4.2 Big-2 / Feudal Wars / Da Er

 This class of games has many variations played all over the world. It is es-

pecially popular in China. It has a flavor of trick-based games, but also a flavor of 

poker. The goal of the game is to play out all your cards as quickly as possible. Plays 

are made by leading out a set of cards that match one of the well-known hands found 

in five-card stud poker. These include singles, pairs, straights, full-house, and so 

on.

 The first player chooses their lead, and other players then follow in a manner 

that will always increase the value of the hand, matching a pair with a higher pair, a 

full house with a higher full house, etc. A player can pass at any time in a round and 

then join in later if the play returns to them. When all players pass, the last player to 

play gets to lead the next round. The game is called Big-2, because the two counts 

as the high card instead of low card.
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 There are variations on the game that allow for passing of cards similar to 

Sergeant Major and variations on what sets of cards can be played when. For in-

stance, some rules allow a flush to beat a straight, while other rules require that once 

a straight is played all players must follow with a straight.

3.4.3 Uno / Crazy 8ʼs

 Uno and Crazy 8ʼs are similar games in which players are simply trying to 

get rid of all the cards in their hand. Instead of following the lead in a trick, there is 

a single card showing at all times. When it is a playerʼs turn they must play a card of 

the same suit or rank on top of the showing card. If they cannot play a card they must 

draw cards until they can play. Play continues until someone runs out of cards. In 

Uno you must say “uno” when you have one card left, and there are wild cards, and 

cards which force your opponents to draw. In Crazy 8ʼs, the rules are similar except 

that when you play an eight you can call any suit as the next suit to be played.

3.4.4 Poker

 Poker is probably the most popular card game used in gambling. There 

are many variations played, and it is one of the few multi-player games on which 

researchers have focused. There are many interesting issues in writing a high-per-

formance Poker program, including handling imperfect information and opponent 

modeling. In fact, these issues dominate over the more traditional search techniques 

presented here. Because of this, we will not consider poker in this work. The current 

best Poker program is Loki, described in [Billings, et al., 1999] and [Billings, et al., 

2002].
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Chapter 4

Decision Rules

 The first thing needed to play any game is a strategy. From a game-theoretic 

perspective, a strategy usually requires that a player explicitly enumerate all pos-

sible states of a game that they could face, along with the decision they would make 

at those points. While this may be feasible for small games, it is not feasible for 

most real-life games. However, a strategy is defined implicitly for a game by a static 

evaluation function and a decision rule. The evaluation function assigns a value or 

utility to each leaf node in the game tree, and the decision rule dictates how the val-

ues are propagated up the game tree. A static evaluation function estimates the util-

ity of a state through human expert-level knowledge or through learned attributes. 

In chess, for instance, experts often speak of the material value of the pieces on the 

board, which is often used as part of an evaluation function. Each piece can be given 

a value, such as 1 for a pawn, 3 for a knight or bishop, 5 for a rook and 9 for a queen. 

A simple evaluation function would just return the difference in the material value 

between the two players. Thus, these two components are used together to dictate 

the strategy for play in a game.
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 The static evaluation function used in a game is very domain dependant, 

while decision rules are generic and can be applied across many domains. So, the 

most fundamental choice we must make when writing a program to play a game is 

what decision rule we will use to guide our moves in the game. Once this is done, 

we can use a variety of methods to craft the best evaluation function possible for any 

particular domain. We obviously would like to choose a decision rule with strong 

theoretical properties, although properties of a decision rule which are strong in 

theory may not be so in practice.

 We begin this chapter with a review of the standard 2-player decision rule, 

minimax. We then discuss decision rules that can be used for games with more than 

two players. In this chapter we will just discuss decision rules and their theoretical 

properties. Other features, such as pruning techniques, will be discussed in Chapter 

5 and following chapters.

4.1 Two-Player Minimax

 The minimax algorithm is a simple but powerful decision rule for searching 

two-player game trees. It can be used for playing strictly competitive (also called 

zero-sum) two-player games. In a zero-sum game the players have symmetric util-

ity functions for the leaf nodes in the tree. The minimax procedure has been studied 

in depth, and we will not cover all of its properties here. Many more details can be 

found in [Luce and Raiffa, 1957].

 We illustrate the minimax procedure in Figure 4.1, with explicit values for 
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each player. Each node is drawn as a box with the number of the player to move 

inside the box. Outside the box is the minimax value of each node.

 In Figure 4.1, Player 1 is a max-player and Player 2 is a min-player. At the 

node marked (a), Player 2 is to move, so Player 2 will consider the minimax values 

of his children, 1 and 3, and, as a min-player, choose the value that is minimum, 1. 

Player 2 is also to move at node (b), and again he will select the minimum value of 

his children, 5. Similarly, the node at the root is a max node, with child values of 1 

and 5. So, Player 1 will choose the maximum child value, 5, to be the minimax value 

of the game tree.

 The static evaluation function used to get the minimax values in the tree is 

only applied at the leaves of the trees. All other minimax values in the tree, shown 

in italics, come from backing up minimax values from the leaves of the tree.

 In the minimax algorithm, the competing players are commonly referred to 

min and max. At any node in the search tree, the minimax value of that node is de-

fined by one of three cases, shown in the pseudo-code for the algorithm:

Figure 4.1. A 2-player minimax tree fragment.
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minimax(node)
{
 if node is terminal
  return static evaluation function

 if node is min-node
  currentBest = ∞
  FOREACH child of node
   currentBest = min(currentBest, minimax(child))

 if node is max-node
  currentBest = -∞
  FOREACH child of node
   currentBest = max(currentBest, minimax(child))

 return currentBest
}

4.1.1 Theoretical Properties of Minimax

 Theoretically speaking, the minimax algorithm is calculating an equilibrium 

point [Luce and Raiffa, 1957] in the search tree. If the players in the game are using 

the same evaluation function and if they are searching the game tree in its entirety, 

this guarantees several properties. Most importantly minimax guarantees that re-

gardless of the strategy of oneʼs opponent, one will never do worse than the value 

returned by minimax. This can be equated in some sense with playing optimally, 

as it is the best strategy possible against an optimal opponent, but it might not take 

advantage of a suboptimal opponent.

 [Schaeffer, et al, 1992] noted that their Checkers program, Chinook, might 

have a choice between two moves that both will lead to draw, given an optimal 

opponent. But, one move might lead to an obvious draw, while the other move 

would lead to a draw most humans would miss. In this case, with a computer play-

ing against a sub-optimal opponent, there is a need to do more than calculate an 
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equilibrium point. There also needs to be a mechanism for forcing our opponents to 

play the most difficult line of play possible in order to beat us. As of yet there is no 

automatic way of doing this.

 Another point which detracts from the theoretical guarantees of the equilib-

rium point is that in most games we arenʼt able to search a game tree in its entirety. 

This means that the values being backed up are not actual evaluations of the state 

of the game, but heuristic approximations, and our opponent is not guaranteed to be 

using the same evaluation function that we are.

 Other objections against minimax as a basic decision can be found in [Russell 

& Norvig, 1995]. But, regardless of these arguments, the fact remains that minimax 

has been the decision rule used for most successful expert-level game implementa-

tions.

4.2 Paranoid Algorithm

The paranoid decision rule [Sturtevant and Korf, 2000] is the simplest multi-player 

algorithm, as it side-steps the issue of multiple players by reducing a game from 

an n-player game to a 2-player game. While this is not necessarily accurate, it is 

simple. Because of this reduction, paranoid is identical to minimax from a theoreti-

cal standpoint.

 The paranoid algorithm reduces a n-player game to a 2-player game by as-

suming that a coalition of n-1 players have formed to play against the remaining 

player. We demonstrate this in Figure 4.2. In a multi-player game each playerʼs 
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score is represented by an entry in a n-tuple, where the ith entry is the score for the 

ith player in the game. In this figure, the score for each player is found in the triple 

next to each node. To convert the game into a two-player zero-sum game, we change 

the evaluation triple to a single value, the difference between the score of the first 

player and the remaining players  ̓scores from the. At node (a), for example, Player 

1 has a score of 4, while Player 2 has 6 points and Player 3 has 0 points. Thus, the 

paranoid evaluation is 4-(6+0) = -2.

 We calculate the paranoid value of the game tree exactly as we did for mini-

max. At node (b), Player 2 chooses the best value for the coalition of Players 2 and 

3, -2. Similarly at node (c), Player 2 chooses the minimum of his children, -10. At 

the root of the tree, Player 1 can get a value of -2 from the left child and -10 from 

the right child, so he will choose to move towards the left branch, and the paranoid 

value of the game tree will be -2.

4.2.1 Paranoid Deficiencies

 As one may suspect, there will be cases where the paranoid algorithm makes 

poor decisions based on its paranoid view of the world. We demonstrate this with a 

Figure 4.2. A 3-player paranoid tree fragment.
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sample hand from the game of Hearts in Figure 4.3. In this example we show three 

possible ways that the tricks could play out, underlining the cards that will take 

tricks. We will do our analysis from Player 2ʼs perspective, assuming that Player 1 

has already led the 9 of spades. There are three relevant lines of analysis. The first 

line of play (a) is what we would expect to happen. In this line Player 2 ducks Player 

1ʼs lead with the 6, and Player 3 is forced to take the trick with the jack. At this point 

Players 1 and 2 can duck any card that Player 3 plays, so Player 3 should take the 

rest of the tricks and get all 17 points remaining in the game, four hearts and the 

Queen of Spades.

 But, the paranoid algorithm puts Players 1 and 3 in a coalition, so the line 

of play in (a) is the worst possible for the coalition. Instead, the paranoid algorithm 

would come up with the line of play in (b) or (c), as Player 1 and 3 will have lower 

combined scores in these lines of play. In the case of (b) Player 2 will duck the spade 

trick once again. Then, instead of ducking a heart trick, Player 1 will take the trick 

with his 5. This allows him to lead back spades until Player 2 is forced to take the 

Queen of Spades. The final score will be 13 points for Player 2 and 4 points for the 

coalition of Player 1 and 3. In this analysis, Player 1 is taking 3 points with his 5 of 

Figure 4.3: Paranoid worst-case analysis 1.

Possible Plays

(a)   9♠ 6♠ J♠ A♦ …          K♦ …  Q♦ …  4♥ …
(b)  9♠ 6♠ J♠ 4♥ 5♥ 2♥    8♠ Q♠ A♦ 2♦ K♦ … Q♦ …
(c)   9♠ Q♠ J♠ 2♥ 3♥ 4♥    A♦ …  K♦ …  Q♦ …

Player 1
9♠ 8♠ 7♠ 5♥ 3♥

Player 2
Q♠ 6♠ 2♠ 2♦ 2♥

Player 3
J♠ A♦ K♦ Q♦ 4♥
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Hearts to save Player 3 from taking the Queen, which he usually wonʼt be willing 

to do in practice. The line of play in (c) has the same result as line (b), except that 

Player 2 takes the Queen of Spades immediately instead of waiting to take it later.

 When using the paranoid algorithm, Player 2 will not accept line (a) as a 

possible outcome of the game, and will have to break the tie between lines (b) and 

(c). Because both line (b) and line (a) start identically, it is possible that if Player 2 

chooses to play line (b) that his opponents may end up playing out line (a) instead. 

(Particularly if they arenʼt really in a coalition.) Ideally a tie-breaking rule would 

always be able to tell us to choose line (b) over line (c), but it is possible for there to 

be more subtle interactions that wonʼt always be easily determined with a tie-break-

ing rule.

 Figure 4.4 is another even more extreme example of analysis by the paranoid 

algorithm. In this case we analyze the situation from the perspective of Player 1. In 

this example, the expected line of play is (a), where Player 3 is forced to take the 

Queen of Spades with the King, and then will take the rest of the tricks for a total of 

19 points. But, a paranoid analysis will come up with the line of play in (b), where 

Player 2 will take the Queen of Spades in order to lead back low clubs for Player 1 to 

Figure 4.4: Paranoid worst-case analysis 2.

Possible Plays

(a)   Q♠ 2♠ K♠ A♥ …          K♥ …  Q♥ …  J♥ …
(b)  Q♠ A♠ K♠ 2♣  … A♣   K♣ …  A♦ …  K♦…

Player 1
Q♠ A♣ K♣ A♦ K♦

Player 2
A♠ 2♠ 2♣ 3♥ 2♥

Player 3
K♠ A♥ K♥ Q♥ J♥
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take. In this case Player 1 will take 6 points, Player 2 will take 13 points, and Player 

3 will take none.

 The real difficulty comes when the paranoid algorithm compares this situa-

tion to another situation in which Player 1 is guaranteed to take 5 points no matter 

the opponent strategy. In such a case most human players would opt to risk taking 6 

points than be guaranteed to take 5, but the paranoid algorithm will always choose 

to take 5 guaranteed points over a risk of taking 6.

 A partial game tree behind this decision is in Figure 4.5. Using the paranoid 

decision rule at node (a) Player 2 (as maximizer) must choose between a score of 

-19 and -7, and will select the right branch with a score of -7. If Players 2 and 3 are 

truly in coalition this is the correct move. But, if not, Player 1ʼs paranoid model of 

Player 2 has Player 2 paying a high penalty (13 points) for staying in the coalition.

 Despite these issues, the paranoid algorithm still has some merits. Because it 

reduces a game to a two-player game, it will inherit all the properties of minimax, 

particularly the two-player notion of an equilibrium point. This can be used to pro-

vide a bound on oneʼs score, which could be very useful at times. For instance, you 

2

1

3
(0, 0, 19)

-19

3
(6, 13, 0)

-7

(a)

Figure 4.5: The paranoid game tree behind Figure 4.4.
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may just need to take less than 10 points to win the game, and the paranoid algo-

rithm could provide a line of play with that guarantee. In addition, it has desirable 

pruning properties that we will consider in Section 5. Finally, in a game in which it 

is difficult for players to collude, the paranoid algorithm will end up approximating 

the maxn algorithm, which we consider in the next section. This may seem counter-

intuitive, but in a game where there is no advantage for the players to collude, there 

is also no disadvantage in assuming oneʼs opponents are in a coalition. So if, in such 

a game, assuming everyone is in a coalition allows us to prune more, we can do so 

with no loss to the model of how our opponents behave. Of course if our play is truly 

independent, then we arenʼt actually playing a competitive game.

4.3 Maxn

 The maxn algorithm [Luckhardt and Irani, 1986] is the generalization of min-

imax to a game with n players. For two-player games, maxn reduces to minimax. In 

a maxn tree with n players, the leaves of the tree are n-tuples, where the ith element 

in the tuple is the ith playerʼs score. At the interior nodes in the game tree, the maxn 

value of a node where player i is to move is the maxn value of the child of that node 

2 2 2
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(1, 3, 5)

3
(6, 3, 1)

3
(6, 4, 0)
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(3, 5, 2)

3
(6, 4, 0)
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(1, 4, 5)

(3, 5, 2) (6, 4, 0)

(6, 4, 0)

(c)(b)

Figure 4.6: A 3-player maxn game tree
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for which the ith component is maximum. This can be seen in Figure 4.6.

 In this tree fragment there are three players. The player to move is labeled 

inside each node. At node (a), Player 2 is to move. Player 2 can get a score of 3 by 

moving to the left or right. We break ties to the left, so Player 2 will choose the left 

branch, and the maxn value of node (a) is (1, 3, 5). At (b), Player 2 selects between 

4 and 5, so the maxn value there is (3, 5, 2), and at (c) Player 2 breaks another tie 

to select (6, 4, 0). Finally, at the root, Player 1 will select the child which has the 

greatest first component, (c), with (6, 4, 0) as the maxn value of the entire tree. The 

pseudo-code for maxn is as follows:

Maxn(Node, Player)
{
 IF Node is terminal
  RETURN static value
 Best = Maxn(first Child, next Player)
 FOR each remaining Child of Node
  Curr = Maxn(Child, next Player)
  if (Curr[Player] > Best[Player])
   Best = Curr
 RETURN Best
}

4.3.1 Equilibrium Points

 The idea of equilibrium points exists in multi-player games as well as in two-

player games. [Nash, 1951] introduced and proved the existence of an equilibrium 

point for any game, while [Jones, 1980] provided a method for calculating equilib-

rium points in multi-player games, which eventually resulted in the maxn algorithm 

[Luckhardt and Irani, 1986].

 In a n-player game, an equilibrium point exists when, given a strategy that 

leads to a particular maxn value, “no player finds it is to his advantage to change to 
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a different strategy so long as he believes that the other players will not change.” 

[Luce and Raiffa, 1957]. But, this ends up being much weaker than the same con-

cept in a two-player game.

 In a multi-player game there are multiple equilibrium points that may have 

completely different equilibrium values and strategies. Some discussion of the 

weakness that results from multiple equilibrium points can be found in [Luce and 

Raiffa, 1957]. We extend these ideas and make them concrete with a few points on 

the practical consequences of multiple equilibrium points.

 We begin with an example of multiple equilibrium points in Figure 4.6 at 

node (c). At this node Player 2 can choose either of his children, as both will lead to 

the same score for Player 2. But, if Player 2 chooses (1, 4, 5) as the maxn value of 

node (c), Player 1 will choose the result from node (b), (3, 5, 2) to be the maxn value 

of the tree. Thus, the maxn values (6, 4, 0) and (3, 5, 2) are both the result of valid 

equilibrium strategies in the tree.

 In section 4.1.1 we discussed that, in a two-player game, minimax is the best 

strategy we can use against an optimal opponent. In addition, no matter what strat-

egy the minimizer uses, minimax will always provide a lower bound on the score of 

the maximizer. In multi-player game this is not the case. In fact, unless our model 

of our opponent is perfect, the maxn decision rule can make no guarantees about our 

score in the game.

Theorem 4.1. In a multi-player game, if a player incorrectly models their oppo-

nents  ̓ tie-breaking rule, we cannot bound the error between the calculated maxn 
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value and the actual maxn value of the tree.

Proof: Figure 4.7 contains a generic maxn tree. We have represented Player 2ʼs pos-

sible scores by x and y. At node (a), Player 2 can decide whether Player 1 will get 0 

points or 5 points on that branch. Similarly, at node (b), Player 2 can decide whether 

Player 1 will get 0 points or ∞ points. So, by adjusting his tie breaking, Player 2 can 

give Player 1 a score of 0, 5, or ∞. These values can be chosen arbitrarily, so the 

theorem holds. ®

 This result doesnʼt mean that maxn is a worthless algorithm. A game tree with 

no ties will have a single equilibrium point and a single maxn value. In addition, 

each possible maxn value that results from a particular tie-breaking rule will lead to 

Figure 4.8: Tie breaking situation

Possible Plays

(a)   A♠ K♠ 8♣          3♣  Q♠ 5♣
(b)  A♠ Q♠ 8♣          3♣  K♠ 5♣
(c)   3♣  K♠ 8♣          5♣  A♠ Q♠

Player 1
A♠ 3♣

Player 2
K♠ Q♠

Player 3
8♣ 5♣

1

(∞, y, …) or
(0, x, …)

Figure 4.7: Generic tie-breaking in a maxn game tree
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a reasonable line of play, given that all players use that tie-breaking rule. But, in a 

real game we rarely know the tie-breaking rule that our opponent is using. In fact, 

the choice of a tie-breaking rule is part of a strategy for play. In Hearts, for instance, 

good players will often save the Queen of Spades to play on the player with the best 

score. Thus, it is reasonable, and perhaps even required, that we take into account 

our opponents strategy if we wish to write an actual expert-level program.

 We illustrate the implications of theorem 4.1 in Figure 4.8. Each player holds 

2 cards, as indicated, and three possible outcomes of the play are shown. The win-

ning card of each trick is underlined. If cards are played from left to right in your 

hand by default, Player 1 can lead the A♠, and Player 2 will not drop the Q♠, as 

in play (a). However, if Player 2 breaks ties differently, this could be a dangerous 

move, resulting in Player 1 taking the Q♠, as in (b). But, if Player 1 leads the 3♣, as 

in (c), Player 3 will be forced to take the Q♠.

 We demonstrate the exact same situation in a game tree in Figure 4.9. In this 

figure Player 2 is indifferent to how he breaks the tie at (a), because either way he 

will get 0 points. But, if Player 1 assumes he will break it to the left at node, and he 

Figure 4.9: Maxn game tree for Figure 4.8.
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instead breaks it to the right, Player 1 will take 13 points. But, if Player 1 chooses 

the move towards node (b), he is guaranteed to get 0 points, regardless of Player 2ʼs 

tie-breaking rule.

 One possible tie-breaking rule we have found effective for such situations has 

been to assume that our opponents are going to try to minimize our score when they 

break ties. This obviously has a flavor of the paranoid algorithm, and it will cause us 

to try to avoid situations where one player can arbitrarily change our score.

 Explicit tie-breaking rules, however, have detrimental effects on the pruning 

algorithms considered in Chapter 5. An alternate approach to tie-breaking is to order 

moves based on how we estimate ties should be broken. In Hearts, for instance, we 

would always consider playing the Queen of Spades first, if a higher spade was al-

ready in the current trick. Similarly, if no higher spades have been played, we should 

always consider playing the Queen of Spades last. This provides an advantage in that 

we donʼt need to explicitly worry about ties when searching a game tree, but we do 

need to incorporate tie-breaking into our move-ordering function. This will be effec-

tive as long as we can accurately estimate how ties should be broken before searching.

4.4 Conclusions

 In this chapter we have demonstrated two different decisions rules that can 

be used for multi-player games, and also demonstrated some of the theoretical and 

practical properties of these algorithms. In Chapter 5 we will continue by analyzing 

how we can calculate these decision rules as efficiently as possible.
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Chapter 5

Pruning Algorithms

 Closely connected with the choice of decision rules for search is the effi-

ciency by which we can calculate a given decision rule. Since the games we are in-

terested in usually have game trees that grow exponentially in depth, any techniques 

that will allow us to search deeper into the game tree while preserving the result of 

the decision rule will be very worthwhile. In general, the deeper we can search the 

more accurate our evaluation is going to be, so a deep search with a simple decision 

rule usually outperforms a shallow search with a more complicated decision rule. 

Furthermore, if we can search to the end of a game tree, we can base our decision on 

exact outcomes rather than heuristic estimates.

5.1 Alpha-Beta Pruning

 Alpha-beta pruning was first developed in the context of two-player games. 

An early implementation is described in [Newell et al., 1958], but comprehensive 

analysis if its effectiveness was not done until later [Knuth and Moore, 1975]. Al-

pha-beta pruning is based on a derived window of values between which a playerʼs 

scores are guaranteed to fall. Because the paranoid algorithm reduces a multi-player 
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game to a two-player game, alpha-beta pruning works under the paranoid algorithm 

as it does under any two-player game. The only difference is the asymptotic analysis 

of the performance of paranoid. So, we present alpha-beta pruning and its analysis 

here in the context of the paranoid algorithm.

 An example of alpha-beta pruning is seen in Figure 5.1. The values in this 

figure are the same as in Figure 4.2. Player 1 at the root is trying to maximize his 

score while the other players are trying to minimize it. After searching the subtree 

at (a), Player 1 knows he can get -2 points by moving to (a). This means that the 

minimax/paranoid value of the root of the tree will be no lower than -2. So, the win-

dow of possible values for the tree has been reduced to the interval [-2, ∞]

 After searching (b), Player 2 computes a partial minimax/paranoid value of 

-10 for Player 1. Since Player 2 is trying to minimize the score, we know that he 

will never select a move that has a value greater than -10 for node (b). But, at the 

root, Player 1 will never select a node that has value less than -2. Thus, Player 1 will 

never choose to move towards node (b), and we can prune away the remaining chil-

dren of (b), because any value there can never affect the minimax/paranoid value of 

Figure 5.1. A 3-player paranoid tree fragment.

≥ -2

2 2

1

(b)
≤ -10

3
(4, 6, 0)

-2

(a)
-2

(b) max

min

min 3
(5, 2, 3)

0

3
(0, 6, 4)

-10



43

the tree.

 Given a game tree that we are searching to depth d, which has a branching 

factor of b, we would normally have to search bd nodes to calculate the minimax 

value of the game tree. However, using the alpha-beta pruning algorithm we can 

reduce this to bd/2 in the best case and b3d/4 in the average case. [Pearl, 1984]

5.1.1 Best-Case analysis of Paranoid

 The analysis of the best-case performance for the paranoid algorithm 

[Sturtevant and Korf, 2000] is similar to the analysis of the best-case performance 

of alpha-beta. However, instead of just having a max and min player in the game, 

the min player is actual a coalition of multiple players.

 To calculate the minimum number of nodes that need to be examined within 

the game tree, we need to consider a strategy for min and a strategy for max. Min 

and max will play on the compressed tree in Figure 5.2, where max is to move at 

the root, with a branching factor of b, and min moves next, with a branching factor 

of bn-1. Min is the combination of the n-1 players playing against the first player. As 

will always be the case, the max-player is first to move, with a branching factor of 

Figure 5.2: Best-case analysis of alpha-beta pruning in paranoid algorithm.
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b. The n-1 opponents each have a choice of b moves, so as a combined player they 

will in general have to consider all possible ordering of moves between them, which 

total bn-1. In some domains such as card games it may be possible for the coalition to 

reduce this branching factor by reasoning about how their moves combine, but we 

canʼt make this assumption in general.

 Since max can define its own strategy, the max player must only look at one 

successor of each max node in the tree. The min strategy is not known, so all pos-

sible successors of each min node must be examined. Suppose the compressed tree 

is of depth D. Max will expand 1 max node and bn-1 min nodes at alternate levels, 

meaning that there are b(n-1)·D/2 leaf nodes in the optimal max-player strategy. Simi-

larly, when min searches the tree, the min strategy must look at only one successor 

of each min node, and all successors of each max node, so min will look at bD/2 leaf 

nodes in the optimal min-player search tree. We assume that each player has an 

equal number of turns in the game tree. Given two players in the compressed game, 

D must be even, meaning we donʼt have to consider the floor or ceiling in the expo-

nent.

 The minimum number of leaf nodes examined by both strategies combined 

will be b(n-1)·D/2 + bD/2 - 1 nodes. We subtract one because there must be one common 

leave node between the two strategies. Asymptotically this is O(b(n-1)·D/2), which is 

the result for searching a standard minimax tree. But, D is the depth of the tree of 

Figure 5.2, which has all the players in the paranoid coalition combined together. 

Instead we would like our results in terms of the real tree that we will search.
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 For every 2 players in the compressed tree, there are n players in the original 

tree. So, to convert D to the actual depth of the tree, we multiply by n/2. If d is the 

actual depth of the tree, d = D·n/2, and D = 2·d/n. Thus, we can re-write the as-

ymptotic value as O(b(n-1)·d/n). For the case of n = 2, this is still bd/2, the results of the 

analysis of standard two-player alpha-beta. For n = 3, we get O(b2·d/3), and in general 

as the number of players increases the best-case performance will decrease.

 Therefore, one of the best reasons to consider the paranoid algorithm is that it 

can provide large gains in search depth through pruning, and it is possible that those 

gains may offset the drawback of an unrealistic decision rule.

5.2 Maxn Immediate Pruning

 Immediate pruning is the most basic form of pruning that can occur in a 

maxn game tree. It occurs when a player gets the maximum possible score (a win), 

and thus does not need to search any remaining children of the node it is currently 

searching. For multi-player games, this terminology was introduced in [Korf, 1991]. 

In most games, however, we cannot search deep enough to evaluate nodes as a win 

or a loss, and some games, such as card games, do not usually evaluate directly to a 

win or a loss.

5.2.1 Best-Case Analysis of Immediate Pruning in Maxn

 To our knowledge, the best-case analysis of immediate pruning has not yet 

been done, so we present the analysis here. We assume that on every leaf node ex-

actly one player will get a win, and all remaining players will lose. A value of 1 will 
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represent a win, while a value of 0 is a loss.

 First, we consider possible upper bounds on the best case. If all leaf-nodes 

are a win for Player 1, the game tree will look exactly like it does in the best case 

of the paranoid algorithm, with Player 1 always only considering 1 move, and play-

ers 2 though n always considering all their moves. This would reduce the effective 

branching factor from b to bn-1/n. However, as we will see in the next section, the best 

case for shallow pruning reduces the branching factor to b1⁄2 for large b [Korf, 1991], 

so immediate pruning should clearly be able to do at least this well.

 We can tighten the best-case upper bound using a greedy strategy to deter-

mine how to choose the best values for pruning in the game tree. That is, we will 

always choose values that will allow us to prune as high in the game tree as possible. 

We also assume that ties are broken to the left. Consider the tree in Figure 5.3. The 

highest prune we can make in the tree is at the root node, and to do so, Player 1 must 

have a win at that node. In the best case, this value will come from the left-most leaf 

2

1

1
(1, 0, 0)

1
(0, 0, 1)

1
(1, 0, 0)

3 3
(1, 0, 0)

(b)

(1, 0, 0)
(a)

(0, 0, 1)

(1, 0, 0)

Figure 5.3: Analysis of immediate maxn pruning.
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in the game tree, and so on the left-most branch Player 1 will always be able to im-

mediately prune, while the remaining players will never be able to prune, because 

they must return a win for Player 1 as their maxn value.

 After pruning the right branch of the root of the tree, the next highest node 

that might be pruned in the tree is (a), Player 2ʼs node on the second level of the 

game tree. Every value at this node must be a loss for Player 2, so that the win is 

returned from the first branch of (a) for Player 1 at the root. So, the most immediate 

pruning that can occur at this node is for each remaining child to be a win for Player 

3, so that Player 3 must only search one branch of each of his children. At node (b) 

on the third level of the tree, Player 3 is in a similar situation to his parent, except 

that all his children will be Player 1 nodes, and thus each value there should be a win 

for Player 1.

 We first analyze the 3-player case, and then generalize it to n players. We do 

this by writing a recurrence for the number of nodes at any level in the tree in terms 

S

F

F
…

S
…

F
…

T F(b)

(a)

Figure 5.4: Generic analysis of immediate maxn pruning.
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of first-level (F) nodes, second-level (S) nodes and third-level (T) nodes. We dem-

onstrated these three classes of nodes in Figure 5.4. This figure corresponds to Fig-

ure 5.3, except that nodes are labelled by their type instead of the player to play.

 First-level nodes are nodes for which the left-branch is a win for the player 

moving at that node, and all remaining branches can be pruned. An example of a 

first-level node is the root of the tree in Figure 5.3. Second-level nodes are nodes for 

which the parent won on their first branch, so the remaining children besides the first 

child will win on their first branch. Node (a) in Figure 5.3 is a second-level node. 

Third-level nodes, are nodes for which all our children will win on the first branch. 

Node (b) in Figure 5.3 is a third-level node.

 For each first-level node, we generate a single second-level node. Each 

second level node generates a single third-level node and (b-1) first level nodes. 

Finally, each third-level node generates b first-level nodes. So:

 F(n) = (b - 1)·S(n - 1) + b·T(n - 1)

 S(n) = F(n - 1)

 T(n) = S(n - 1)

Which simplifies to:

 F(n) = (b - 1)·F(n - 2) + b·F(n - 3)

To solve this recurrence, we must solve this equation for x:

 x3 - (b - 1)·x - b = 0

 An exact solution can be calculated for any b through use of the standard 

equation for the roots of a third order polynomial. But, in general, as b grows large, 
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the solution will grow on the order of O(b1/2). One way to verify this is to notice that 

the last term of b is guaranteed to be asymptotically smaller than the (b - 1)·x term. 

Because we are interested in the asymptotic growth, we can ignore this term and 

solve:

 x3 - (b - 1)·x = 0

 x2 = (b - 1)

 x ≈ b1/2

 For an n-player game there will be n different types of nodes to consider. In 

the same way as the three-player analysis, a first-level node will generate a single 

second-level node. Each node type between 2..n-1 will generate a single node of the 

next level along with (b - 1) first-level nodes. Finally, the nth level node will generate 

b first-level nodes. So, the general recurrence will be solved by the equation:

 xn - (b - 1)·xn-2 - (b - 1)·xn-3 … - (b - 1)·x - b = 0

 Again, we can see that the first two terms are the most significant asymptoti-

cally, and solving just for these terms we see that as b grows large the solution for 

x will grow on the order of O(b1/2). This means that in the best case there are sig-

nificant gains possible from immediate pruning in multi-player games; on the same 

order as the gains from alpha-beta pruning for two-player games. Additionally, we 

can show that this is the optimal way to choose values to prune the game tree.

Theorem 5.1: No assignment of values to a maxn game tree can produce more im-

mediate pruning than the greedy assignment strategy.

Proof: Suppose there is a node n to which a greedy strategy assigns a winning maxn 
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value, but some better algorithm does not. Let n also be the first (highest) such 

node that occurs in the game tree. First, the other strategy cannot gain more pruning 

above this node in the search because, by definition, the greedy strategy has already 

pruned any nodes that could possible be pruned. Thus, for this new strategy to be 

better than greedy it must somehow be able to prune more nodes below n by not 

pruning n immediately than it could if it just pruned n.

 There are two ways this might happen. First, by choosing a value for the first 

child for n that will not result in an immediate prune, but choosing same later value 

that will result in an immediate prune. We demonstrate this in Figure 5.5. It should 

be obvious from the figure that if we are going to immediate prune a node we should 

always do so on the first branch, since we will never have to search the loss branch 

if we do. Not doing so is just guaranteed to make us expand more nodes.

 The second thing an algorithm can do is not prune n at all. In this case it must 

expand all b children of n. For each of these children, any algorithm must expand 

at least the first child of each of these nodes as well. In this scenario there are guar-

anteed to be at least b children and therefore b grandchildren of n, since every node 

has at least one child. This means there will be at least 2·b nodes in the two levels 

Figure 5.5: Sub-optimal ordering for immediate pruning a maxn tree.
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following n. However, if we prune n immediately, there will only be one child of 

n and b grandchildren for (b + 1) nodes in the two levels following n. In addition, 

the pruning on each of these grandchildren is independent, so there is no way to use 

analysis from one grandchild of n to help prune another. This same argument fol-

lows for any number of levels following n. Following this analysis, not pruning n is 

guaranteed to create a larger subtree. Thus, there is no strategy for choosing values 

to prune a maxn tree better than the greedy strategy, and our best-case analysis is the 

optimal case for immediate pruning. ®

 In the worst-case, even if every terminal nodes evaluates to a win or loss it is 

not difficult to build a tree for which immediate pruning will never be able to prune. 

The general strategy for building such a tree is that each player gets a loss on their 

first (b-1) children, and a win on their last child. This causes the final return value 

for each player to be a win for that player and a loss for the parent of that node so 

that pruning will never occur.

5.3 Shallow Maxn Pruning

 [Luckhardt and Irani, 1986] originally noted that a single player makes his 

decision based only upon his own component of the maxn value their children, disre-

garding the other components. So, pruning was originally conceived in the context 

of delaying the evaluation of some components in an n-tuple. While this is a reason-

able idea in theory, in practice it is usually of little value. This is because it usually 

takes little or no additional work to compute all components of the maxn value once 
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one component has been computed. This is particularly true if one playerʼs score in 

a maxn n-tuple is based the other players  ̓scores, meaning that it may not be possible 

to do the calculations separately, and that calculating the maxn value for one player 

explicitly gives you the maxn value for all players. Finally, delaying evaluation of all 

components of the maxn value means that we must know the state to which the maxn 

value corresponds, which, in most cases, is more complicated than just calculating 

the actual maxn value.

 [Korf, 1991] first proposed a shallow pruning algorithm for pruning away 

entire nodes in a maxn tree, given simple restrictions on the actual maxn values in-

volved.  Shallow pruning refers to cases where a bound on a node is used to prune 

branches from the child of that node.

 The minimum requirements for pruning a maxn tree with shallow pruning are 

a lower bound on each players  ̓score and an upper bound, maxsum, on the sum of 

all players  ̓scores. We demonstrate this in Figure 5.6. In this figure, all scores have 

a lower bound of 0, and maxsum is 10.

 Player 1 searches the left branch of the root in a depth-first manner, getting 

Figure 5.6: Shallow pruning in a 3-player maxn tree.

maxsum = 10

2 2

1

(5, 4, 1)
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the maxn value (5, 4, 1). Thus, we know that Player 1 will get at least 5 points at the 

root. Since there are only 10 points available, we know the other players will get no 

more than 5 points at this node. At node (a), Player 2 searches the left branch to get 

a score of 6. Because maxsum is 10 we know that Player 1ʼs score will never exceed 

4 at node (a), so Player 1 will never choose to move towards (a) at the root, and the 

remaining children of (a) can be pruned.

 In the best case, shallow pruning will reduce the asymptotic branching factor 

from b to 1⁄2·(1+√¯¯4b-3¯¯), which converges to bd/2 as b gets large, while in the average 

case, no asymptotic gain can be expected from shallow pruning a game with more 

than two players. [Korf, 1991] The basic problem with shallow pruning is that it 

works by comparing the scores of only 2 out of n players in the game, and it is un-

likely that 2 players will have the sum of their scores exceed maxsum. This contrasts 

with the large average-case gains available from alpha-beta pruning in 2-player 

minimax.

 Given this, it is worth considering whether it is in practice possible to achieve 

the best case for shallow pruning. In section 5.3 we will consider this problem, fol-

lowed in section 5.4 by a discussion of what the limits are to shallow maxn pruning 

in practice.

5.4 Achieving Shallow Pruning Best Case

 It is not difficult to determine that there is a game tree for which the best-case 

for shallow pruning occurs in practice. Furthermore, the exercise provides useful 
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insight into the nature of maxn game trees. In fact, it will lead us to show that for 

many real games it is impossible for the best case to occur in practice. We assume, 

without loss of generality, that the game tree must be constant-sum. If this isnʼt the 

case the result of the analysis still holds, it is just slightly more complicated.

 To begin our analysis we consider the tree in Figure 5.7. In this tree the play-

ers get arbitrary scores on the left branch. Then, given these scores, Player 2 must 

get a score of y + z at (a) so that Player 1ʼs score of x at the root and Player 2ʼs score 

at (a) sum to maxsum. Maxn pruning can only occur in a sub-tree that has this basic 

structure, meaning that the relevant portions for pruning will never involve a larger 

or smaller subtree. This means that we can and must duplicate this tree structure to 

build larger game trees that are pruned optimally. In a larger tree we always choose 

the maxn values for the tree so that we can prune. We do this in Figure 5.8.

 In this figure we have not drawn a complete game tree. Instead we have 

drawn multiple copies of the subtree from Figure 5.7 as it would occur in a larger 

optimal tree. This tree provides the minimum framework necessary for understand-

2 2

1maxsum = x+y+z

3

(x, y, z)

(x, y, z)

(a)
( , y+z,  )

( , y+z,  )

Figure 5.7: Basic structure for shallow maxn pruning.
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Figure 5.8: Best case tree for shallow maxn pruning.

2 2

1maxsum = 9

3

(3, 3, 3)

(a)
(3, 3, 3)

(b)
(2, 6, 1)

(c)
(2, 6, 1)

1 1

2

(2, 6, 1)

(d)
(8, 0, 1)

(e)
(8, 0, 1)

3 3

1

(8, 0, 1)

(f)
(0, 0, 9)

 (g)
(0, 0, 9)

2 2

3

(0, 0, 9)

(h)
(0, 9, 0)

 

(0, 9, 0)



56

ing what will happen to a maxn game tree in general if we are to choose the maxn 

values so that we get the best case for shallow pruning.

 Beginning at the root of Figure 5.8, we have a duplicate of Figure 5.7 at node 

(a) in the tree. We can choose any value for the maxn value of the game tree, but we 

start with values that are evenly split among the players in the game to help illustrate 

our point. Because Player 1 can get 3 points after searching the left branch of (a), we 

know that Player 2 must get at least 6 points at (b) to be able to shallow prune the 

children of (b). Given that, the maxn value of (c) must be chosen such that Player 2 

gets at least 6 points. We choose to give Player 1 two points and Player 3 one point, 

although the ultimate results in the tree will be the same regardless of how we split 

the values. Node (c) also happens to be the root of a new subtree which resembles 

Figure 5.7.

 Since Player 3 has 1 point at (c), Player 1 must have at least 8 points at (d) to 

be able to shallow prune at (d), and Player 1ʼs maxn value at (e) must be at least 8. 

In this case we chose to give Player 2 zero points and Player 3 one point. Because 

Player 2 has 0 points at node (e), Player 3 must have 9 points (maxsum) at node (f) 

to be able to prune there. Finally, because Player 1 has 0 points at node (g), Player 2 

must get 9 points at node (h).

 This succession of moves illustrates that in a tree for which shallow prun-

ing always occurs when possible, the scores for the players in the tree will always 

converge to 0 and maxsum. Although we chose the maxn values in this example to 

make the values converge on maxsum as quickly as possible, it will always occur, 
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regardless of how we choose our maxn values. If, for instance, we change Player 2ʼs 

score to 1 at node (e), then instead having the values at (f) converge to maxsum, they 

will converge on the left branch of (e).

 There are two consequences to this result. First, the best-case analysis of 

shallow pruning assumes that immediate pruning never occurs. However, given a 

discrete evaluation function we have shown that if we build a large enough best-

case tree for shallow pruning, immediate pruning will always occur. Since we are 

interested in using computers to generate such trees, this will generally be the case. 

This means that the previous analysis of the best case of shallow pruning is only 

an upper bound on the best case, as it does not consider the pruning that must oc-

cur from immediate pruning in the tree. While both shallow pruning and immediate 

pruning have the same asymptotic growth, immediate pruning will produce smaller 

trees in practice.

 Secondly, this guarantees that in many games the best-case can never occur 

in practice. This is easy to see for trump-based games such as Spades, based on 

Figure 5.8, assuming we can search the entire game tree. At node (g), Player 3 must 

have taken all the points in the game, but at node (h), Player 2 must have taken all 

the points in the game. But, in most trump games this is impossible, assuming we 

are searching a reasonably large portion of the game tree. This is because the player 

with the highest card in the trump suit must take at least one trick, as there is no 

higher card in the deck. So the highest card in the trump suit will always win the 

trick on which it is played. Thus, it is impossible for the player holding this card to 
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get 0 points, which conflicts with the situation either at node (g) or (h).

 In a sense these results are not surprising. The average-case model in [Korf, 

1991] predicts that the maxn values in the tree will average out as the search gets 

closer to the root of the tree, and thus no pruning will occur at the top of the tree. 

From this analysis we see that the only way this can be prevented is if most of the 

other values in the tree converge on 0 or maxsum.

 In the next section we continue our discussion of shallow pruning by devel-

oping general bounds that describe additional constraints on whether shallow prun-

ing will occur in a game tree in practice.

5.5 Shallow Pruning Limits

 While the necessary requirements for shallow pruning are a lower bound 

on each players score and an upper bound on the sum of all players  ̓scores, these 

bounds alone are not sufficient to allow pruning in any game tree. To maximize 

the potential pruning it must be the case that the maximum possible player score is 

equal to the maximum sum of scores [Sturtevant and Korf, 2000]. This is the case in 

a game like Spades, but it isnʼt for Hearts. Because this isnʼt necessarily intuitively 

obvious, we will spend some time discussing the surrounding issues. In our discus-

sion we assume that the static evaluation function for these games is based on the 

number of points taken in the game. While it is possible to base the evaluation func-

tion on other game attributes, we hope that this discussion will show that the issue 

is larger just how we tune our evaluation function.
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5.5.1 Minimization versus Maximization

 Throughout this thesis we deal with games that are usually described in terms 

of either maximization or minimization. Since minimization and maximization are 

symmetric, we briefly present here how the bounds used by pruning algorithms are 

transformed when we switch from one type of game to the other type.

 There are four values we can use to describe the bounds on players  ̓scores 

in a game. Minp and maxp are a playerʼs respective minimum and maximum pos-

sible score at any given node. Minsum and maxsum are the respective minimum and 

maximum possible sum of all players scores. In Hearts, minp is 0 and maxp = max-

sum = minsum = 26. In Spades, minp is also 0 and in a complete game tree maxp = 

maxsum = minsum = 17. To prune in any game, shallow pruning requires that minp 

and maxsum are bounded. We are interested in how these bounds change when the 

goal of a game is changed from minimization to maximization. The transformation 

does not change the properties of the game, it simply allows us to talk about games 

in their maximization forms without loss of generality.

 The one-to-one mapping between the minimization and maximization ver-

Table 5.9: The transformation between a maximization and minimization problem, and examples 
for a 3-player Hearts game.

minimization variable s
1

s
2

s
3

maxp
min

minp
min

maxsum
min

 & minsum
min

Hearts example
minimization value

3 10 13 26 0 26

transformation -s
i
 + maxp

min
-maxp

min
 + maxp

min
-minp

min
 + maxp

min
-maxsum

min
 + n·maxp

min

Hearts example
maximization value

23 16 13 0 26 52

maximization variable s1 s2 s3 minp
max

maxp
max

maxsum
max

 & minsum
max
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sions of a game is shown in Table 5.9. The first row in the table contains the variable 

names for a minimization problem, followed by sample values for a Hearts game, 

where n, the number of players, is 3. The transformation applied to the values are in 

the third row: the negation of the original value plus maxpmin. This re-normalizes the 

scores so that minp is always 0. Since Hearts and Spades are constant-sum games, 

maxsum is always the same as minsum. The final rows contain the new score after 

transformation and the new variable names. The process can be reversed to turn a 

maximization game into a minimization game. In general this process corresponds 

exactly with changing the goal in Hearts from minimizing your own points to maxi-

mizing your opponents points.

 Given the symmetry of minimization and maximization, there is also a dual-

ity in pruning algorithms. That is, for any pruning algorithm that works on a maxi-

mization tree, we can write the dual of that algorithm that works the same under 

the equivalent minimization tree. However, just changing the goal of a game from 

minimization to maximization does not create an isomorphic game that will have 

the same properties under minimization or maximization. The other parameter, 

maxsum, must also be calculated. Given these observations, we have not explicitly 

shown dual algorithms for pruning. Unless otherwise stated, all trees and algorithms 

presented here will be for maximization trees.

5.5.2 General Bounds for Shallow Maxn Pruning

 Figure 5.8 shows a generic maxn tree. In this figure we have only included the 

values needed for shallow pruning. Other values are marked by a ʻ•ʼ. When Player 1 
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gets a score of x at node (a), the lower bound on Player 1ʼs score at the root is then x. 

Assume Player 2 gets a score of y at node (c). Player 2 will then have a lower bound 

of y at node (b). Because of the upper bound of maxsum on the sum of scores, Player 

1 is guaranteed less than or equal to maxsum - y at node (b). Thus, no matter what 

value is at (d), if maxsum - y ≤ x, Player 1 will not choose to move towards node (b) 

because he can always do no worse by moving to node (a), and we can prune the 

remaining children of node (b).

 In the 3-player maximization version of Hearts in Table 5.9, maxsum is 52, 

and x and y will range between 0 and 26, meaning that we can only prune when 52 

- y ≤ x, which is only possible if x = y = 26. But, in this case we donʼt need shallow 

pruning to prune, because immediate pruning already tells us we can prune when a 

player gets maxp, which is 26 in this case. In Spades, maxsum is 16, and x and y will 

range from 0 to 16, meaning that we can prune when 16 - y ≤ x.

 Given these examples, we extract general conditions for pruning in multi-

player maximization games. We will use the following variables: n is the number of 

players in the game, maxsum is the upper bound on the sum of players scores, and 

Figure 5.10: Shallow pruning in a 3-player maxn tree.
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maxp is the upper bound on any given players score. We assume a lower bound of 

zero on each score without loss of generality. So, by definition, maxp ≤ maxsum ≤ 

n·maxp.

Theorem 5.2: To shallow prune in a maxn tree, maxsum < 2·maxp.

Proof: We will use the generic tree of Figure 5.10. To prune:

 x ≥ maxsum - y

By definition:

 2·maxp ≥ x + y

So,

 2·maxp ≥ x + y ≥ maxsum

 2·maxp ≥ maxsum

However, if maxsum = 2·maxp, we can only prune when both x and y equal maxp. 

But, if y = maxp, we can also immediate prune. Because of this, we tighten the 

bound to exclude this case, and the theorem holds. ®

 We can now verify what we suggested before. In the maximization version 

of 3-player Hearts, maxsum = 52, and maxp = 26. Since the strict inequality of 

Theorem 5.1, 52 < 2·26, does not hold, we can only immediate prune in Hearts. In 

Spades, the inequality 17 < 2·17 does hold, so we will be able to shallow prune a 

Spades maxn tree. In fact, if maxsum = maxp, there will always be a legal maxn value 

for our child that will enable us to shallow prune the children of that node, so this is 

the ideal value weʼd like for a game.
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5.5.3 Intuitive Approach

 Speaking in terms of the games as they are normally played, it may seem odd 

that we canʼt prune in Hearts and we can prune in Spades, when it seems that the 

biggest difference in the games is that it one you try to minimize your score, and in 

the other you try to maximize it. While the preceding theorem explains the differ-

ence mathematically, there is another explanation that may be more intuitive.

 To begin this discussion, let us consider the game of Hearts from two points 

of view. First, we consider the game as it is normally played, excluding the rule for 

shooting the moon. In this game one wishes to minimize their points, so we will call 

it heartsmin. Then, we will consider the game with the exact same rules, except that 

the goal is to maximize your points. We will call this game heartsmax. In heartsmin we 

will not be able to use shallow pruning while in heartsmax we will. The question is, if 

the only difference between heartsmin and heartsmax is the question of maximization 

or minimization, why can we use shallow pruning for one game and not the other?

 The reason is that these are completely different games and are not isomor-

phic to each other. One way to see this is by considering the strategy you would use 

to play heartsmax and the strategy you would use to play heartsmin. We demonstrate 

Figure 5.11: Different strategies for minimizing and maximizing.

Possible Plays

(a)   A♠ A♣               2♥ A♥
(b)  A♠ A♥                2♥ A♣

Player 1
A♠ 2♥

Player 2
A♣ A♥
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in Figure 5.11. Given that Player 1 leads the Ace of Spades, in heartsmax the correct 

strategy is (a), where Player 2 can take 2 points by saving the Ace of Hearts to take 

the second trick. But, in heartsmin the best strategy is (b), where Player 2 will take 

no points. If two games are isomorphic, the same strategy for optimal play must be 

present across the isomorphism. Additionally, in a card game, an isomorphic map-

ping must somehow preserve the notion of leading and following within suits. In 

line (a) Player 1 follows suit on the second trick, while he doesnʼt in line (b). Thus, 

these lines of play cannot be preserved across an isomorphic mapping of games, 

so heartsmax and heartsmin must be fundamentally different games. Additionally, in 

heartsmax maxsum is 26 and maxp is 26, so we will be able to shallow prune, while 

we have already shown that you canʼt shallow prune in heartsmin.

 Given that they are different games, let us consider what one isomorphic dual 

of each game actually is. In heartsmax you are trying to maximize your score, while 

the minimization dual is the game where you want to minimize the sum of your op-

ponents scores. But, this is still exactly the same game. Similarly in heartsmin you 

want to minimize your score, and the dual is the game where you want to maximize 

your opponents score.

 So, while the most simple explanation of the difference between heartsmax 

and heartsmin is that one is a maximization game and the other is a minimization 

game, this is a deceptive description, as it leads one to think that the games are iso-

morphic to each other, when in fact they are two completely different games.
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5.6 Deep (Pair-wise) Pruning

 Deep pruning refers to when the bound at a node is used to prune a grand-

child or lower descendant of that node. There is more than one way one might try to 

do this. In this section we will discuss the pruning methods that have been devised 

where we compare the maxn value of two non-consecutive players within the game 

tree. In later sections we will discuss other methods where we consider the bounds 

for more than two players. To help distinguish these methods, we refer to the meth-

ods discussed here as pair-wise pruning.

 [Korf, 1991] shows that, in the general case, deep pruning can incorrectly 

affect the maxn value of the game tree. We demonstrate this in Figure 5.12. After 

searching the first branch at the root, Player 1 is guaranteed at least a score of 5 at 

the root, and the other players are guaranteed a score no greater than 5. Then, after 

searching the left branch of node (b), Player 3 is guaranteed 5 points, and Player 1 

is guaranteed no more than 5 points at node (b). So, we can conclude that the maxn 

value of node (b) will never be the maxn value of the game tree, because Player 1 is 

(b)

(a)
2 2 2

1

(5, 4, 1) (3, 1, 6)

(6, 4, 0) or (5, 4, 1)

3 3 3

(4, 1, 5)

(4, 0, 6)
or

(0, 4, 6)
1

(3, 3, 4) (6, 4, 0)

Figure 5.12: The failure of deep pruning.
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already guaranteed a score of 5 at the root, and he can do no better than that at node 

(b). It is still possible, however, that the maxn value at (b) can affect the final maxn 

value of the tree.

 For instance, if the actual maxn value of (b) is (4, 0, 6), Player 2 will prefer 

the move (6, 4, 0) at node (a), and this will be the maxn value of the game tree. But, 

if the maxn value of (b) is (0, 4, 6), Player 2 will prefer this value, and so Player 1 

will choose (5, 4, 1) to be the maxn value of the game tree. Thus, in general deep 

pruning is not valid in a multi-player game.

5.7 Optimality of Maxn

 The invalidity of deep (pair-wise) pruning raises the question of what the 

best possible maxn pruning algorithm is. [Korf, 1991] showed that given no addi-

tional constraints, “Every directional algorithm that computes the maxn value of a 

game tree with more than two players must evaluate every terminal node evaluated 

by shallow pruning under the same ordering.” A directional algorithm [Pearl, 1984] 

is defined as one that examines the successors of any node in a fixed order without 

returning to re-search any branch of the tree. We assume for now that we do not 

know if we are on the last branch of a node, although we wonʼt always make this 

assumption for a directional algorithm.

 While maxn may be optimal under these conditions, we will now cover ad-

ditional pruning techniques that we have developed which depend on additional 

constraints on the game tree or non-directional search to prune.
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5.8 Depth-First Branch-and-Bound Pruning

 Branch-and-bound pruning is a common technique from single-agent and 

two-player [Prieditis and Fletcher, 1998] search which can be used to prune maxn 

game trees. It requires a monotonic heuristic, but many card games have natural 

monotonic heuristics. In Hearts and Spades for example, once you have taken a 

trick or a point you cannot lose it. Thus, an evaluation can be applied within the tree 

to give a bound on the points or tricks to be taken by a player in the game. We use 

the notation h(i) ≥ j to indicate that the monotonic heuristic is giving a lower bound 

score of j for player i, and h(i) ≤ j to indicate that the monotonic heuristic is giving 

an upper bound of j on player iʼs score. Suppose, for a Spades game, Players 1, 2 

and 3 have taken 3, 2, and 6 points respectively. Then, h(1) ≥ 3 because Player 1 has 

taken 3 points. Also, h(1) ≤ 9 because maxsum (17) minus the other players  ̓scores 

(8) is 9.

5.8.1 Single Agent Branch-and-Bound

 The branch-and-bound algorithm is most commonly used in a depth-first 

search to prune single-agent minimization search trees, such as the trees that arise 

Figure 5.13: A single-agent depth-first branch-and-bound search tree.
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in the Travelling Salesman Problem. In Figure 5.13, for example, we are trying to 

find the shortest path to a leaf from the root, where edges have non-negative costs as 

labelled. Since all paths have positive length, the cost along a path cannot decrease, 

giving a lower bound on the cost to a leaf along that path. Each edge is labelled with 

the cost of that edge. The heuristic limits on each node are the sum of the edge costs 

to that node. If unexplored paths through a node are guaranteed to be greater than 

the best path found so far, we can prune the children of that node in the tree.

 In order to draw parallels between alpha-beta pruning, we will describe the 

pruning that occurs in the same terms that we use to describe alpha-beta pruning: 

immediate, shallow and deep pruning. In a two-player game, immediate pruning 

occurs when we get the best score possible, a win. In the presence of a heuristic, the 

best score possible is the best that we can get given the heuristic. In Figure 5.13, the 

heuristic at node (a) says the best score we can get is 2. Since we have a path to a 

leaf node of total cost 2 through the first child, we can prune the remaining children, 

as we have found the best possible path.

 After finding the path with cost 2, we use that cost as a bound while search-

ing subsequent children. At node (b), our monotonic heuristic tells us that all paths 

through (b) have cost higher than the bound of 2, so all children of (b) are pruned. 

This is like shallow pruning, since the bound comes from the parent of (b). Finally, 

at node (c) we can prune based on the bound of 2 from the best path so far in the tree 

and the monotonic heuristic cost at (c), which is like deep pruning.
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5.8.2 Multi-Player Branch-and-Bound

 Branch-and-bound pruning can be used to prune a maxn tree as well, but 

under maxn it is limited by the same factors as alpha-beta pruning, namely we can-

not use the bound at a node to prune its great-grandchild. As with deep alpha-beta 

pruning, while the maxn value of the pruned nodes will never be the maxn value of 

the tree, they still have the potential to affect it. We will demonstrate this here, but 

because the proof is identical to the proof of why deep alpha-beta pruning does not 

work [Korf, 1991], we omit the proof.

 In Figure 5.14 we show a portion of a maxn tree and demonstrate how branch-

and-bound can prune parts of the tree. Immediate pruning occurs at node (a). At the 

left child of (a), Player 2 can get a score of 9. Given the monotonic heuristic value 

of node 2, h(2) ≤ 9, we know Player 2 cannot get a better score from another child, 

and the remaining children are pruned.

 Shallow pruning occurs at node (b) when the bound from the parent combines 

Figure 5.14: Branch-and-bound pruning in a maxn tree.
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with the monotonic heuristic to prune the children of (b). Player 1 is guaranteed 7 or 

more at the root. So, when Player 1ʼs monotonic heuristic at (b) guarantees a score 

of 5 or less, we prune all the children of (b), since Player 1 can always do better by 

moving to node (a).

 Finally, deep branch-and-bound pruning, like deep alpha- beta pruning, can 

incorrectly affect the calculation of the maxn value of the game tree. The partial 

maxn value at the root of the tree in Figure 5.14 guarantees Player 1 a score of 7 or 

better. At node (c), Player 1 is guaranteed less than or equal to 5 points by the mono-

tonic heuristic. Thus, we might be tempted to prune the children of (c), since Player 

1 can do better by moving to node (a). But, this reasoning does not take into account 

the actions of Player 2.

 Depending on which value we place at the child of (c), (5, 8, 3) or (5, 3, 8), 

Player 2 will either select (5, 8, 3) from node (c) or (10, 5, 1) from node (d)ʼs right 

branch to back up as the maxn value of node (d). Player 1 would then choose the root 

maxn value to be either (7, 9, 0) or (10, 5, 1). So, while the bounds on node (c) will 

keep it from being the maxn value of the tree, it has the potential to affect the maxn 

Figure 5.15: Alpha-beta Branch-and-Bound pruning in a 3-player maxn tree.
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value of the tree.

5.9 Alpha-Beta Branch-and-Bound Pruning

 Now that we have two relatively independent techniques for pruning a multi-

player game tree, we show how these techniques can be combined. Shallow pruning 

makes comparisons between two players  ̓backed up scores to prune. Branch-and-

bound pruning compares a monotonic heuristic to a playerʼs score to prune. Alpha-

beta branch-and-bound pruning uses both the comparison between backed up scores 

and monotonic heuristic limits on scores to prune even more effectively.

 Looking at Figure 5.15, we see an example where shallow pruning applies. 

We have bounds on the root value of the tree from its left branch. After searching 

the first child of node (a) we get bounds on the maxn value of (a). We place an upper 

bound of 7 on Player 1ʼs score, because Player 2 is guaranteed at least 3 points, and 

10 (maxsum) - 3 = 7. This value does not conflict with the partial maxn bound on the 

root, so we cannot prune. We also have a bound from our monotonic heuristic, but 

because it is not Player 3ʼs turn and because the lower bound on Player 3ʼs score, 2, 

does not conflict with the upper bound, 7, we cannot use that by itself to prune ei-

ther. But, if we combine this information, we can tighten our bounds. We know from 

backed up values that Player 2 will get at least 3 points and from our heuristic that 

Player 3 will get at least 2 points at (a). So, the real upper bound on Player 1ʼs score 

at (a) is maxsum - score(2) - h(3) = 10 - 3 - 2 = 5. Since Player 1 can get 6 points on 

the left branch at the root of the tree, we then know he will never get a better score 

from (a), and we can prune the remaining children of (a).
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 So, in a n-player game where we normally only compare the scores of two 

players, we can now instead compare bounds for all n players by using the mono-

tonic heuristic value for n-2 players and the results of the search for the other two 

players. That is, if we have a lower bound on Player iʼs score from our parent, and 

Player j is to play at the current node, the upper bound on Player iʼs score at the next 

node is maxsum - score(j) - ∑h(x) {for x ≠ i or j}. The technique of combining the 

monotonic heuristic values of some players with the backed-up evaluation of other 

players only works in a multi-player game, because in a two-player game there are 

no additional players for which to consider, reducing it to just plain alpha-beta. Fol-

lowing is the pseudo-code for alpha-beta branch-and-bound pruning.

ABBnB(Node, Player, parentScore)
{
 IF Node is terminal RETURN static value

 /*  shallow branch-and-bound pruning  */
 IF (hup(Prev Player) ≤ parentScore)
  RETURN static value
 Best=ABBnB(first Child, next Player, 0)
 
 /* Calculate our opponents guaranteed points  */
 Heuristic = ∑hlow(n) [n≠Player or prev. Player]

 FOR each remaining Child
  IF (Best[Player]+parentScore+Heuristic ≥ maxsum) OR
     (Best[Player] = hup(Player))
   RETURN Best
  Current = ABBnB(next Child, next Player, Best[Player])
  IF (Current[Player] > Best[Player])
   Best = Current
 RETURN Best
}

5.10 The Constant-Sum Property in Multi-Player Games

 In two-player games, we always assume that a game is strictly competitive 

and zero-sum. This means that a move that is good for our opponent will be equally 
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bad for us, and vice-versa. In multi-player games we instead expect a game to be-

come constant-sum, where the sum of all players  ̓scores are constant. Most games 

are constant sum when you consider the final outcome, however they may not be 

during the actual search.

 In Hearts, for instance, there can be as few as 0 and as many as 17 points 

played on the first two tricks. If we need a game to be constant-sum and our static 

evaluation function is non-negative, we can simply use the ratio of each playerʼs 

score to the sum of all scores to make the maxn value of each node constant sum. 

But, it is not implicitly wrong if our evaluation isnʼt constant sum. The decisions 

made by maxn will simply reflect our evaluation function. In the case of Hearts, if 

our evaluation function is just the number of points taken so far, it can be considered 

that there is a implicit extra player in the game whose static evaluation is the number 

of points not yet played.

 For the remainder of our discussion of pruning algorithms, we will assume 

that games are constant sum, knowing that we can usually make a game constant-

(b)

(a)
2 2 2

1

(5, 4, 1) (3, 1, 6)

(6, 4, 0) or (5, 4, 1)

3 3 3
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1

(3, 3, 4) (6, 4, 0)

Figure 5.16: The failure of deep pruning.
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sum if needed. In fact, it will usually be advantageous to do so, given the pruning 

benefits that are possible in a constant-sum game tree. We also assume that players  ̓

scores are bounded, which is usually the case when we run on a computer.

5.11 Limiting Maxn Value Propagation

 In order to develop effective new algorithms that can prune deeper into a 

maxn tree, we must return to the analysis of why deep pruning failed in the first 

place. Deep pruning failed because nodes that couldnʼt be the maxn value of the 

game tree could still affect the maxn value of the tree. Thus, if we can restrict how 

maxn values will affect each other within the search tree, we may be able to prune 

more. The last-branch and speculative pruning algorithms both do this, however 

they take different approaches when they prune these nodes. Last-branch pruning 

is a directional special case of speculative pruning, which is a non-directional algo-

rithm.

 Looking at Figure 5.16 (which is the same as Figure 5.12), we know that 

Figure 5.17: Combining maxn scores to limit value propagation.
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Player 1 will never get a better value than 5 at node (b). But, to prune at (b) correctly, 

we must show that Player 1 cannot get a better maxn value at the root from either 

node (b) or node (a), as the values at (a) may interact with unseen values at (b) to 

affect Player 2ʼs, and thus Player 1ʼs move. In this case, deep pruning failed because 

the value at the right child of (a) was better for Player 2 than a previous child of (a). 

If the children of (a) were ordered optimally for Player 2, or if there was no right 

child at (a), the deep prune could not have affected the maxn value of the tree.

 While shallow pruning only considers two players  ̓bounds when pruning, 

we can actually use n players  ̓bounds in a n-player game. We demonstrate this in 

Figure 5.17. Before we search the second child of node (b) each player has already 

searched one or more branches. This provides a lower bound on each playerʼs score. 

In this case, Player 1 has a lower bound of 5 from the left branch of the root, Player 

2 has a bound of 3 from the left branch of (a), and Player 3 has a bound of 2 from 

the left branch of (b). The sum of these bounds is 10, which is greater than or equal 

to maxsum. We can thus show that any unseen value at (b) cannot be the maxn value 

Figure 5.18: Combining scores to limit value propagation in general.
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of the tree.

Theorem 5.3: Assuming we break ties to the left in a maxn game tree, if the sum 

of lower bounds for a consecutive sequence of unique players meets or exceeds 

maxsum, the maxn value of any child of the last player in the sequence cannot be the 

maxn value of the game tree.

Proof: We provide a proof by contradiction. Figure 5.18 shows a generic 3-player 

game tree. In this figure Player 1 has a lower bound of x at the root, Player 2 has a 

lower bound of y at (a), and Player 3 has a lower bound of z at (b). Given that these 

values sum to maxsum, assume there is a value v at the right child of (b) which will 

be the maxn value of the game tree.

 Let v = (x1, y1, z1). For v to become the maxn value of the tree, each player 

must prefer this move to their current move. Since ties are broken to the left, z1 must 

be strictly better than z, y1 must be strictly better than y, and x1 must be strictly better 

than x. Thus, z1 > z, y1 > y and x1 > x. So, x1 + y1 + z1 > x + y + z ≥ maxsum, and x1 + 

y1 + z1 > maxsum. But, by the definition of maxsum, this is impossible. So, no value 

at the right child of (b) can be the maxn value of the game tree. By the same logic, 

where z1 = z, the left child of (b) also cannot be the maxn value of the game tree. 

While this is the 3-player case, it clearly generalizes for n players. ®

 While we have shown that we can combine n players  ̓scores to prove a maxn 

value will not propagate up a maxn tree, we must also show that a prune in this case 

will not affect the maxn value of the entire game tree. Last-branch and speculative 

pruning address this problem in similar ways. Neither algorithm, however, will 
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prune more than n levels away from where the first bound originates.

5.12 Last-Branch Pruning

When a sequence of players have bounds appropriate for pruning under Theorem 

5.3, last-branch pruning guarantees that the prune will be correct by only pruning 

when the intermediate players in the sequence are searching their last branch.

 We can see this in Figure 5.17. To prune correctly, we observe that after 

searching all the left children of node (a) Player 2 has only two choices: the best 

maxn value from a previously searched branch of (a), or the maxn value from (b). If 

Player 2 chooses the best maxn value from a previously searched child of (a), (3, 3, 

4), Player 1 will get a lower score at (a) than his current bound at the root. Theorem 

5.2 shows that the best maxn value at (b) for Player 3 and can be better than the cur-

rent bound for Player 2 or for Player 1, but not for all three players. So, if Player 2 

chooses a value from (b), it must also have a lower maxn value for Player 1 than his 

bound at the root. Thus, Player 1 will not get a better score at (a), and we can prune 

the children of node (b).

 For last-branch pruning to be correct, in addition to the conditions from 

Theorem 5.3, Player 2 must be on his last branch, and the partial maxn value from 

Player 2ʼs previously searched children must not be better for Player 1 than his cur-

rent bound at the root. In the n-player case, all intermediate players between the first 

and last player must be searching their last branches, while Players 1 and n can be 

on any branch after their first one.
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 Last-branch pruning has the potential to be very effective, particularly in 

trees with low branching factor. Instead of only considering 2 players  ̓ scores, it 

compares n players  ̓scores. In fact, when all nodes in the tree have the exact same 

evaluation, last-branch pruning will always be able to prune when players reach 

their last branches, while shallow pruning will never be able to.

 The only drawback to last-branch pruning is that it only prunes when inter-

mediate players between the first and last player are all on the last branch of their 

search. For a game with branching factor 2 this is already the case, but otherwise we 

can use speculative pruning.

5.13 Speculative Pruning

 Speculative pruning is identical to last-branch pruning, except that it doesnʼt 

wait until intermediate players are on their last branch. Instead, it prunes speculatively, 

re-searching if necessary.

 We demonstrate this in Figure 5.19. At the root of the tree, Player 1 is guar-

anteed 5 points. At node (a), Player 2 is guaranteed 3, and at node (b), Player 3 is 

2 2 2
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(5, 4, 1) (3, 1, 6)

3 3 3

(3, 5, 2)
1

(3, 3, 4) (4, 4, 2)
or

(6, 4, 0)

Figure 5.19: Speculative pruning a maxn game tree.
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guaranteed 2. Because 5 + 3 + 2 ≥ maxsum = 10, we could prune the remaining 

children of (b) if node (b) was the last child of node (a).

 Suppose we do prune, and then come to the final child of node (a). If the final 

child of node (a) has value (4, 4, 2), we know Player 1 will not move towards (a), be-

cause no value there can be better for Player 1. But, if the value at (a) ends up being 

(6, 4, 0), the partially computed maxn value of (a) will be (6, 4, 0). With this maxn 

value, Player 1 will choose to move towards node (b). Because this has the potential 

to change the maxn value at the root of the tree, we will have to search node (b) again 

using new bounds. This occurs when Player 2ʼs nodes are ordered sub-optimally. 

With an optimal node ordering we will never have to re-search a subtree.

 In general, we have to re-search pruned nodes if, on a mid-level branch, we 

find a new value for which both that player and the first player have better scores. If 

we wish to preserve the order of tie-breaking in the tree, we must also retain some 

information about the order of nodes expanded. Nodes that can be pruned by last-

branch pruning will be always be pruned as part of speculative pruning. Following 

is the pseudo-code for speculative pruning:
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specmaxn(Node, ParentScore, GrandparentScore)
{
 best = NIL; specPrunedQ = NIL;
 if terminal(Node)
  return static eval(Node);

 for each child(Node)
  // check to see if parent prefers this move
  if (best[previous Player] <= ParentScore)†
   result = specmaxn(next child(Node),
     best[current Player], ParentScore);
  else
   result = specmaxn(next child(Node),
     best[current Player], 0);
  if (best == NIL)
   best = result;
  else if (result == NIL) // child was spec. pruned
   add Child to specPrunedQ;
  else if (best[current Player] < result[current Player])
   best = result;
   // if we find a better move we have to re-search 
   if (best[previous Player] > ParentScore)
    re-add specPrunedQ to child list;
  if (GrandparentScore+ParentScore+
     best[current Player] > maxsum)
   return NIL; // speculatively prune
 return best;
}

 As can been seen, it is reasonably simple to perform speculative pruning in 

practice. In the 3-player implementation, the specmaxn function takes 3 arguments, 

the current node, the best score at the parent node, and the best score at the grand-

parent node.

 At the line marked † we check to see if our parent can get a better score from 

the partial maxn value of this node than from one of his previously searched nodes. 

If this is the case, we cannot use the parentʼs bounds to help prune the children of 

the current node.

 When a node is speculatively pruned, the specmaxn function returns NIL. All 

nodes that have speculatively pruned children are added to a list of pruned nodes, 

and if a child is found with a maxn value that better for both the current node and the 
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parent node, then the speculatively pruned nodes will have to be re-searched. This 

pseudo-code assumes that players always alternate plays in the tree, as in Chinese 

Checkers. In card games, where this may not be the case, we must also check to see 

if the last n-1 consecutive players in tree are unique.

5.14 Last-Branch and Speculative Maxn Best-Case Asymptotic Analyses

 To analyze the best-case performance of speculative maxn pruning, we form 

a recurrence based on the type of nodes that occur in the search. We will do the 

analysis first for the case of 3-players, and then generalize it to n players. In the case 

of a 3-player game, we consider three types of nodes, which are irrespective of who 

is playing at that node. We have First-level nodes, Second-level nodes, and Third-

level nodes. A node that has no bounds from its parents is a first-level node. A node 

with a bound from just its parent is a second-level node, while a node with bounds 

from both its parent and grandparent is a third-level node. We demonstrate this in 

Figure 5.20.

 The left child of every node is a first-level node, because there are never 
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Figure 5.20: Analysis of speculative maxn pruning.
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bounds on the first child of any node. The remaining children of a first-level node 

are second-level nodes. In the optimal case a third-level node will only have to ex-

pand its left-most child, and the remaining children will all be pruned. If we write 

out the ratio of nodes from one level to the next as a recurrence, we get the following 

equations, where b is the branching factor of the tree before pruning:

 F(n) = F(n - 1) + S(n - 1) + T(n - 1)

 S(n) = (b - 1) · F(n - 1)

 T(n) = (b - 1) · S(n - 1)

Solving in terms of F(n), we get:

 F(n) = F(n - 1) + (b - 1) · F(n - 2) + (b - 1)2 · F(n - 3)

The solution to this recurrence is the solution to the equation:

 x3 - x2 - (b-1)·x - (b-1)2 = 0

 The solution of this equation will give us the asymptotic branching factor as 

b grows large. Analyzing the general solution for a cubic equation will show that 

for large b this will approach b2/3. In practice do not reach the limit until b is larger 

than most games we consider in practice. We give sample values for b given an op-

b b2/3 asymptotic b
2
3
4
5
10

1000

1.5874
2.0801
2.5198
2.9240
4.6416
100.00

1.8393
2.4675
3.0000
3.4755
5.4191
103.61

Table 5.21: Branching factor gains by speculative maxn in a 3-player game.
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timal ordering of nodes in a 3-player game in Table 5.21. The first column contains 

sample values for b, the second column contains b2/3, and the third column contains 

the actual optimal value of b.

 For a general n-player game, our tree and recurrence will be similar. Each 

type of node in the game will produce a single first-level node, and (b - 1) nodes of 

the next level classification. So, the equation which solves the general recurrence 

is:

  xn - xn-1 - (b-1)1·xn-2 - (b-1)2·xn-3 - … (b-1)n-1 = 0

As b grows large the solution for x in this equation will be on the order of O(bn-1/n). 

The easiest way to see this is to consider which terms are asymptotically largest in 

the equation. Because in a recurrence of this form x will grow towards bk, where k 

< 1, the largest terms must be the first term and the last term. Reducing to just these 

terms and solving yields the asymptotic result above.

 In the case of b = 2, last-branch and speculative pruning are identical, so we 

can use these recurrences to solve for the best case of last-branch pruning when b 

=  2. Specifically, for the 3-player case in the best case our branching factor will be 

reduced to the solution of:

 x3 - x2 - x - 1 = 0

Solving for x, we get 1.839. The general solution to these equations are related to 

the Fibonacci sequence.

 The average case analysis of speculative and last-branch pruning is more 

complex. Assuming maxn convergence, we will still get some pruning, as we will 
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expect consecutive playerʼs scores to sum to maxsum, but we have not analyzed 

how the requirements for re-searching nodes will affect the average case complex-

ity.

5.15 Discrete Evaluation Functions

 For all these pruning techniques, it is possible to use tighter bounds for prun-

ing when the evaluation function has discrete as opposed to continuous values. For 

speculative and last-branch pruning we can infer this from the proof of Theorem 

5.3, but it will also work for shallow and branch-and-bound pruning. In this proof 

we see that, for a value to affect the maxn value of the tree, x1 > x, y1 > y, and z1 > z. 

Suppose the minimum delta of a playerʼs score is µ. Since all players in the game 

must do strictly better than their previous maxn value to change their move to a new 

maxn value, we can combine this into our bounds.

 We demonstrate this in Figure 5.22. At the root of the tree, Player 1 is guaran-

teed a score of 5, and at node (a) Player 2 is guaranteed 3 points. In this example µ = 

Figure 5.22: Discrete cut-off evaluations

2 2 2

1

(5, 4, 1) (3, 1, 6)

(5, 4, 1)

3 3

(5, 4, 1)
(7, 3, 0)

1

(3, 3, 4)

(b)

(, ≥3, )

(≥5, , )
maxsum = 10

1
(6, 4, 0)
(6, 4, 0)

(a)



85

1, so for these players both to prefer to move towards (b) they must get at least 6 and 

4 points respectively. Because maxsum is 10, we know if Player 3 gets more than 0 

points, Players 1 and 2 canʼt both get better than their current best scores. So, instead 

of pruning when Player 3 gets 10 - 5 - 3 = 2 points, we can prune when Player 3 gets 

1 point. It follows from this that we can always prune if ∑scores ≥ maxsum - µ·(n 

- 2), where ∑scores are the current bounds for the players in the tree. 

 We can then use our tie-breaking rule to improve this. Because ties are bro-

ken to the left, we can prune if Player 3 gets 0 points at the left branch of (b) and 

Player 1 and 2 donʼt get 6 and 4 points respectively. If, for instance, the score is (7, 

3, 0), Player 2 wonʼt choose this value over the left branch of (a). In addition, Player 

3 will only choose a better value than 0 from the unexpanded children of (b), which 

will meet our earlier conditions for pruning. Thus, we can also prune if ∑scores ≥ 

maxsum - µ·(n - 1) and if on the first branch of the node whose children are being 

pruned the other n - 1 players donʼt all have better scores than their current best 

bound.

5.16 Optimality of Last-Branch and Speculative Pruning

 Given new pruning algorithms for maxn, we naturally must ask if they are 

the best possible, or if it is possible to do better. It ends up that both last-branch and 

speculative pruning are not optimal, in that there are similar techniques which can 

prune nodes which these techniques will not prune. But, whether these techniques 

can provide any real games in practice is another question. We demonstrate this for 



86

last-branch pruning with tree in Figure 5.23. In this tree it is never the case that three 

consecutive players have bounds that sum to maxsum (20), but the best bounds from 

all players anywhere in the tree do sum to maxsum. These bounds come from Player 

1 at the root, 6, Player 3 at (a), 6, and Player 2 at (b), 8. Also, each player always 

has a better score on their left branch than their current (partially computed) score 

on their right branch. Finally, we will make no assumptions about a minimum µ by 

which scores can change.

 In this case, we can try any legal value for the right child of (b), and it will 

not become or affect the maxn value of the game tree. The most interesting value 

to consider is (5.3, 8.3, 6.4). This value can propagate up to the top of the tree, but 

Player 1 will not choose it over (6, 7, 7) at the root. There are similar methods that 

we can use for speculative pruning, but we will not demonstrate them here. The 

Figure 5.23: Legal pruning example not covered by last-branch pruning.
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main interest for exploring such algorithms would be to define the optimal maxn 

pruning algorithm.

5.17 Approximate Deep Pruning

 While effective, the descriptions of last-branch and speculative pruning here 

still do not prune more than n-branches away from where any bound originates, un-

like alpha-beta which can prune an arbitrary distance away from the node at which 

the bound originated. The issue is further complicated in games like card games, 

as players will not always play consecutively. (Each time a trick is taken, the lead 

jumps to the player who won the trick.) When this happens, the bounds must be 

reset, and so pruning is more limited. Also, the more players in the game, the more 

complicated the process becomes.

 It is also possible to come up with many special cases in which bounds can 

be passed across more than n levels, such as when a player plays at two consecutive 

levels in the tree. However, this can be quite complicated in practice. While we can 

describe many such algorithms, we would not want to implement any of them.

 A solution to this dilemma is to simplify the speculative pruning procedure 

so it looks more like alpha-beta pruning:
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approxdeepmaxn(Node, allBest)
{
 myBest = allBest;
 if terminal(node)
  return static eval(node);

 for each child(Node)
  myBest[Node->player] = approxdeepmaxn(next child(Node),
        myBest);
  if (∑myBest ≥ maxsum)
   return myBest[Node->player];
 return myBest[Node->player];
}

 This implementation of the algorithm eliminates re-searching and it keeps 

one set of bounds for all players that is copied and passed down through the game 

tree. Such an implementation is simple, and it allows us to prune beyond n-levels 

from where a bound originated, but it isnʼt guaranteed to be correct, meaning it isnʼt 

guaranteed to correctly compute the maxn value of the game tree.

 If our nodes are ordered close to optimally, this approximate procedure will 

calculate the maxn value of the game tree correctly. But, in practice this isnʼt guar-

anteed.

 Thus there is a trade-off at stake. Approximate deep maxn will be able to 

search deeper into a maxn tree than any other known algorithm at this point, but in 

doing so, it might make a mistake in its calculations. On the other hand, searching 

deeper is one of the best ways to improve play. So, the end question will be whether 

the gains found in deeper search offset the possibility of returning the incorrect maxn 

value of the tree. We will address this question further in our experimental section.
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5.18 Summary of Multi-Player Game Pruning Algorithms

 As we have covered a large variety of pruning techniques in this chapter, we 

conclude with a summary of the techniques in Table 5.24. This table lists each of the 

techniques that we have developed, along with the known analysis for each algo-

rithm. Although we have not listed or mentioned it before, each of these algorithms 

uses a depth-first search strategy for asymptotic space usage of O(b·d), and has a 

worst-cast performance of O(bd)

 The best case of branch-and-bound algorithms comes from the fact that if our 

heuristic has perfect knowledge of the tree, and we have perfect ordering, we will 

only need to search the left branch of the tree, as everything else will be pruned. 

Obviously this will not usually occur in practice. We have not analyzed the average 

case.

 We also have not yet been able to analyze the average case of last-branch 

or speculative pruning. But, because they compare the bounds of all players in the 

game, they should have better average case performance than shallow pruning.

 In the bottom of the table we have listed sample games and the techniques 

which can be used in those games. Note that we are only listing whether a technique 

can or cannot be used; this says nothing about the effectiveness of the technique. 

As we have shown, for instance, Shallow pruning will work in Spades, but we can 

never achieve the best case in practice. For card games, we are assuming that the 

static evaluation function is related to the points taken in the game, which is usually 

the case.
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Chapter 6

Additional Techniques for Improving Performance

 Besides the pruning algorithms considered in Chapter 5, there are many other 

techniques that have been developed to improve the performance of game programs. 

Not all these techniques have interesting new properties in multi-player games. We 

will discuss some of the techniques that are more interesting in multi-player games 

here, including iterative deepening, zero-window search, move ordering, opening 

books, end-game databases and transposition tables.

6.1 Iterative Deepening

 Iterative deepening is a common technique used in search algorithms of all 

sorts. The basic idea is to break the search process into multiple iterations over the 

same tree, each of which is to a greater depth than the previous iteration. In a card 

game, for instance, we might search 1 trick deep on the first iteration, 2 tricks on the 

second iteration, and so on. Because most if not all of the search problems tackled 

in AI have exponentially large search spaces, we can search iteratively deeper into 

the tree with no asymptotic cost, as the cost of the last iteration will outweigh all 
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previous iterations.

 Since we may not know ahead of time how expensive any search will be, this 

method has been widely used to guarantee that an answer from a shallow search is 

always available, and it means that we can cut off search at any time, and have the 

best answer we were able to calculate in the time provided.

 Obviously this answer will only be as good as the quality of the search and 

evaluation function used for play. For games like chess, techniques like quiescence 

search were developed to account for some of the anomalies that resulted from fixed 

search depths. But, in general, we would expect the result of an intermediate search 

to be an approximation of the deeper search. Particularly for two-player search in 

trick-based card games, the result of a partial search can be quite strong.

 Let us consider a two-player game for which we have a monotonically in-

creasing evaluation function that increases at most 1 at each iteration in the search 

tree. An example of this would be if our iterative deepening corresponds to tricks 

in Spades, so that 1 trick would be available at the first iteration, 2 tricks at the sec-

ond iteration, and so on. In an evaluation function with this property, there will be 

exactly one point available in the first iteration, exactly two in the second iteration, 

and exactly n points in the nth iteration.

Theorem 6.1: Given the conditions to follow, the minimax value of a game tree will 

only increase by some delta µ or stay the same over successive iterative deepen-

ing searches. This occurs when players  ̓scores are monotonically increasing in the 

game, that there is a minimum delta, µ, by which scores can change, and that the 
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sum of all scores changes by exactly µ on each successively deeper iteration into 

the game tree.

Proof: The key to this proof is that on each successive iteration, a player cannot find 

a new line of play on the new iteration that will be better by a margin greater than 

µ.

 We prove this is the case by induction. On the first iteration, there will only 

be µ points available in the game. Since µ is also the minimum change any score can 

make, by definition one player will get µ points, and the rest will get 0.

 Now, after searching some depth d, assume we have a score of x, and our op-

ponent has a score of y. (It will be the case that x+y = d·µ.) If we search to depth d+1, 

the resulting scores should either be x+µ and y, or x and y+µ. This argument is sym-

metric, so we will show this by contradiction for the player with x points. Assume 

that at a search d+1 the player gets a score greater than x+µ. Since the additional 

search depth can only increase his score by µ, there then must be a path of depth d 

by which he is getting at least x+µ. But, if that is the case, this player would have 

played this line at depth d to get x+µ at that depth. Since minimax is guaranteed to 

find the best path available, this canʼt be the case, and the theorem holds. All other 

cases are symmetric, so the proof holds. ®

 Unfortunately Theorem 6.1 doesnʼt hold for a multi-player game using the 

maxn algorithm. Consider the hands in Figure 6.1. This is for the game of Spades, 

where players are trying to take as many tricks as possible. In (a) we consider the 

line of play that results from a search of depth 5. Player 1 can take the first 2 tricks, 
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but after that he canʼt take any more, and so he doesnʼt care what card he plays. In 

this case we assume he plays the 2 of clubs, allowing Player 2 to take 3 tricks. So, 

the maxn value at this depth is (2, 3, 0). But when searching to depth 6, Player 1 dis-

covers that he prefers to have Player 3 win the next trick after he wins the first two 

tricks. By doing so, Player 3 will eventually have to lead back a low heart, allowing 

Player 1 to take an extra trick. In this case, on the next iteration, the maxn value of 

the game tree (3, 0, 3). Although the sum of all players  ̓scores only increased by 1, 

Player 2ʼs score decreased by 2 and Player 3ʼs score increased by 3.

 In general, it is not possible to predict ahead of time how the scores in the 

game will change, and who might lose or win points. The reason this occurs in maxn 

game trees is due to tie-breaking. In line of play (a) in Figure 6.1 Player 1 has a tie 

in his analysis of what card to play on the third trick. But, on the next iteration of the 

game there are no ties in Player 1ʼs analysis.

 Searching to a different depth in a maxn game tree is going to change some 

maxn values in the game tree. This means that nodes that had their maxn value deter-

mined by a tie-breaking rule before may no longer be, and positions that didnʼt have 

ties before may have new ties introduced. Since changing a tie-breaking rule can 

Figure 6.1: Effect of iterative deepening in maxn.

Possible Plays

(a)   A♦ 3♦ 7♦  K♦ 6♣ 8♦   2♣ 9♣ … 8♣ …  7♣ …
(b)  A♦ 3♦ 7♦  K♦ 6♣ 8♦   9♥ A♥ 2♥
       K♥ J♥ 7♣  9♦ 2♣ 8♣    5♥ Q♥ 9♣

Player 1
A♦ K♦ 2♣ Q♥ J♥ 9♥

Player 2
3♦ 9♣ 8♣ 7♣ 6♣ 2♥

Player 3
9♦ 8♦ 7♦ A♥ K♥ 5♥
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vastly affect the maxn value of the game tree, it follows that searching to a different 

depth in the tree can have the same effect.

 In two-player games if we donʼt have a monotonic evaluation function there 

can be wide variations in node evaluation from one level to the next. This problem 

has generally been solved with quiescence search. That is, a search is not cut-off as 

long as there are pending actions that can greatly affect the static value of the node. 

Such actions would include moves into check or capture moves. But this additional 

search is needed because of the features of the game being considered.

 Under maxn the volatility of maxn values with search depth is partly a prop-

erty of the algorithm we use to search. This means that techniques like quiescence 

search are less likely to be effective under maxn.

6.2 Zero-Window search

 Zero-window search, originally called Scout search [Pearl, 1984], originated 

in two-player games. The idea behind zero-window search is to turn a game tree 

with a range of evaluations into a tree where every leaf terminates with a win or a 

loss. This is done by choosing some value v, and treating a terminal node as a win 

for max if its evaluation is > v, and as a loss if it is ≤ v. Combining this approach 

with a binary search will suffice to find the minimax value of a game tree to any 

precision. This assumption results in highly optimized searches in win-loss trees, 

where we can prune away most of the game tree. We will first demonstrate here how 

zero-window search can be combined with iterative deepening for highly effective 
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iterative searches. Unfortunately, we cannot use zero-window search in a multi-

player maxn tree, but we can use it in a paranoid search tree.

6.2.1 Zero-Window Iterative Deepening

 Consider a two-player game which meets the requirements of Theorem 6.1, 

namely that for a given player they will either get the same score as the previous 

search or the previous score plus some constant µ.

 This theorem means that when we are doing iterative searches in a suit-

able game tree, we do not need to do a binary search to find the minimax value of 

the game. Instead we can do a single search at each iteration. We demonstrate this 

with a decision tree in Figure 6.2. This tree is used to decide which bound to use 

on each successive iteration of a zero-window search. The value inside each node 

is the zero-window search limit used at that depth, and the left and right branches 

represent whether we won or lost at the previous depth. So, at the root of the tree 

we begin by searching depth 1 with a zero-window limit of 1. If the result is a win, 

we move down the left branch, and we will search depth 2 with a limit of 2. If we 

lose, we will still use a limit of 1 at search depth 2. In this way we can always use 

Figure 6.2: Decision tree for zero-window search limit.
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depth 2

depth 3
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a single zero-window search at each depth and still be guaranteed to calculate the 

exact minimax value of the tree at that depth.

 Unfortunately this technique will not work with the maxn algorithm, as we 

cannot bound how a playerʼs score changes from one depth to the next in a maxn 

tree. In fact, we canʼt even use zero-window search to determine whether a playerʼs 

score will be above or below some bound, as we can in a two-player game.

6.2.2 Failure of Zero-Window Maxn Search

 While there are limitations on pruning during the calculation of the maxn 

value of a tree, it is not immediately obvious that we cannot somehow prune more 

if we just try to calculate the bound on the maxn value of a tree, instead of the actual 

maxn value.

 Suppose we want to consider all scores > 2 as a win. We illustrate this in 

Figure 6.3. Since Player 2 can get a score of 5 by moving to the left at node (a), 

Player 2 will prune the right child of (a), and return a maxn value of (w, w, l), where 

w represents a win and l represents a loss. However, at node (b), Player 1 would then 

infer that he could win by moving towards node (a). But, the exact maxn value of (a) 

Figure 6.3: Finding bounds in a maxn game tree
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3
(2, 2, 6)
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3
(3, 5, 2)

3
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(a)

(w, w, l)
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pruned
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is (1, 8, 1), and so in the real game tree, Player 1 should prefer node (c) over node 

(a).

 So, the only bounds we can get on the maxn value of a tree are those that 

come from a search with shallow pruning, which, given no additional constraints, is 

already optimal among directional algorithms.

 [Korf, 1991] shows that “Every directional algorithm that computes the maxn 

value of a game tree with more than two players must evaluate every terminal node 

evaluated by shallow pruning under the same ordering.” We can now expand this 

statement:

Theorem 6.2. Given no additional constraints, every directional algorithm that 

computes either the maxn value or a bound on the maxn value of a multi-player 

game tree must evaluate every terminal node evaluated by maxn with shallow prun-

ing under the same ordering.

Proof: [Korf, 1991] has already shown that shallow pruning is optimal in its com-

putation of the maxn value of a tree. If we replace backed-up maxn values in a game 

tree with just bounded maxn values, there may be ties between moves that were 

not ties in the original maxn tree, such as at node (a) in Figure 6.3. In fact, for any 

bound it is a trivial task to create a tree for which ties are broken differently with 

that bound than in the original tree. However, if we add new ties into the game tree, 

no tie-breaking rule will be able to always make the same choices for breaking ties 

in the new tree, as it did in the old tree. Thus, the underlying maxn value that we are 

trying to bound may change, and we can no longer guarantee an accurate bound on 
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its value. ®

6.3 Move Ordering for Pruning Algorithms

 In two-player games, alpha-beta pruning has an average case performance of 

b3·d/4, but a best-case performance of bd/2. Thus, there is an incentive to order the suc-

cessors of each node as well as possible, as it is the successor ordering that makes 

the difference between the average and best-case performance. Much discussion and 

previous research went into alpha-beta pruning to estimate the size of game trees 

so that researchers would know whether or not the node ordering was sufficient for 

alpha-beta pruning to prune the game tree optimally.

 As for multi-player games, node ordering can increase the amount of pruning 

that occurs under shallow pruning. But, given the average case model of shallow 

pruning and the fact that shallow pruning will never occur in many games no mat-

ter what ordering we use, we havenʼt invested very much effort in improving node 

ordering for shallow pruning. However, in speculative pruning we can guarantee 

better pruning results if we can order our successors closer to optimally.

 While the obvious solution to this problem is to add domain-specific knowl-

edge to order moves within a game tree, there have been other proposals. One such 

proposal is the History Heuristic [Schaeffer, 1989]. The history heuristic was first 

applied in the game of Chess. This is essentially a learning method that uses the 

result of offline play to learn the best ordering possible. It works by first building a 

table of all possible moves in the game. In Chess there are 64 possible piece posi-
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tions on a board. For the chess implementation a table was set up for each possible 

from and to positions of a move, regardless of the piece that was moving.

 Then, each time a search algorithm returns from a node with the best possible 

move at that node, it re-weights the returned move within the table. It then uses the 

weighting of nodes within the table to order the successors of a node. The weighting 

of moves in the table was initially zero. After a search to depth d had returned a par-

ticular move as the best move at that node, the table entry for that node was updated 

by adding 2d to the current sum at that table entry. This is because the deeper the 

search that led to a certain move the more likely it is to be a good move in general. 

When new moves were considered, they were sorted from largest to smallest values 

based on the results in the table. Values should be learned offline through self-play 

at the same depths that will be used for online search.

 [Schaeffer, 1989] reports that this technique was able to learn an ordering 

that was as good as the best hand-tuned ordering produced from expert knowledge 

of the game. Given the simplicity of this method, similar results in other domains 

would be welcome.

 We implemented this for trick-based card games in the following manner. We 

created 53 tables of 52 values each. Each table represents the current winning card 

in the trick when the player in question is about to move, with one extra table for 

which card to play when they are in the lead. Each table entry began at 0 and was 

updated through self-play. We did not adjust the table when we were at a node that 

only had a single legal move. After playing multiple games we analyzed the tables 



101

and found that it had learned fairly reasonable tables. We demonstrate some of the 

values in Table 6.4. This table shows values for the game of Hearts when the Ace 

of Spades has been lead. The first-choice card to play in this situation is the Queen, 

followed by the King. If you canʼt follow suit, the best plays are the Ace through 

Jack of Hearts. These are the expected ordering that should be learned.

 Despite this, there are several issues that arise, particularly in multi-player 

games, when attempting to use such methods to order successors. First, for Hearts 

this set of tables is not sufficient to conveniently represent the information we might 

want to use when ordering our moves. If we know, for instance, that the only spades 

left are the ace and king, it is a reasonable move to lead the Queen of Spades. This is 

an easy situation to check with a custom ordering function, and will almost always 

be the correct move, but there is no simple way for such a method to learn this au-

rank ♠ ♦ ♣ ♥

A 0 15846 16378 316562

K 5081366 10732 3472 129116

Q 8392112 7630 4774 58678

J 3247574 5472 4402 51348

10 2931582 3212 12992 11432

9 2396322 7220 2820 24566

8 1540746 4122 1966 9246

7 1455590 3502 3086 8950

6 992640 764 1116 2070

5 490956 5872 1488 6730

4 431818 1546 1556 1450

3 145032 1296 280 910

2 56600 1152 832 620
Table 6.4: Learned move ordering for Hearts given an A♠ lead.
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tomatically. Similarly if the Queen of Spades has already been played, the order in 

which we consider moves may change drastically. The Queen of Spades is a special 

card in Hearts, and we can build multiple tables to account for whether it has been 

played or not, but there are still other issues beyond this.

 The bigger issue is that ordering our moves to search the minimum sized 

maxn tree may actually cause us to play suboptimally. This goes back to one of fun-

damental issues with maxn, which is that randomly breaking ties in the tree can ran-

domly affect the maxn value of the tree. If we want to prune the tree most effectively 

our tie-breaking rule must be implicitly defined by the way we order our successors. 

Thus, our successor ordering is relevant to both the tie-breaking rule we want to use 

in the game and whether our ordering can create a minimal search tree.

 Let us specifically consider a situation in a multi-player game where there 

are multiple ways that we can a break tie within a game tree. Suppose we have two 

moves with the same maxn value, but in practice one move is much better than the 

other. Depending on the situation, the better move may require more analysis than 

the worse move. Thus, if our goal is to build the smallest search tree, we may end 

up preferring the worse move.

 It is important to note that these arenʼt criticisms of the history heuristic, and 

it indeed learned something reasonably close to our own ordering. But, these issues 

will be relevant to any attempt to order nodes optimally in a multi-player game 

tree.

 This isnʼt as much of an issue in two-player games because the way we break 
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ties canʼt change the minimax value of the game tree, so ordering our moves to cre-

ate the minimal game tree is equivalent to ordering our moves from best to worst.

 In experiments run with the history heuristic, there was no discernible differ-

ence in performance or node expansions while using the heuristic when compared 

to our static ordering function. We postulate that because it is quite easy to order our 

successors well in card games the history heuristic will not provide easy benefits. In 

Chinese Checkers, where we have done well ordering moves by how far they move 

our pieces across the board, we also expect that the history heuristic will not provide 

major benefits. But, in a game like Abalone, where the moves are more complicated 

and less easy to evaluate, the history heuristic may provide greater benefits. Our ini-

tial experiments in Abalone have proved promising, however we have not resolved 

all the issues involved well enough to present definitive results.

6.4 Memory Usage

 All the search algorithms discussed in this thesis use relatively little memory, 

on the order of the search depth times the branching factor of the tree, O(b·d). That 

is because they only keep the current search path in memory at any one time. This 

means that the search can operate in a few kilobytes of memory, while a current 

computer will often have 500-1000 megabytes of main memory, and hundreds of 

gigabytes of disk storage. Since searching with these algorithms is not going to 

come close to using the full resources of the computer, we would like to develop 

techniques that will take advantage of the large memory of the computer to help 
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speed the search process.

 We note, however, that processor speeds are currently growing much faster 

than memory bus speeds, meaning that the cost of accessing main memory is be-

coming more and more expensive, and there is no reason to expect that to change in 

the near future. Thus, there can be a high performance penalty for accessing main 

memory too often, if the consequent savings are too small.

 There are three related techniques that have been used to take advantage of 

free memory on the computer, opening books, end-game databases, and transposi-

tion tables. Opening books and end-game databases are simply large tables of pre-

computed positions and their relative values, while transposition tables are dynami-

cally calculated tables of values. We will discuss all three methods here within the 

context of multi-player games.

6.4.1 Opening Books

 Opening books were first used in the context of Chess, where an analogous 

concept exists for human Chess players. There are sets of standard openings and re-

sponses that have been well analyzed, and expert players usually memorize as many 

such openings as they can. Thus, a computer can also take advantage of such tables, 

as they usually involve much more detailed computation than a computer will usu-

ally be able to make on any given move. This helps avoid making simple mistakes 

early in the game. In addition to using pre-made human tables, it is also possible to 

do offline search before tournament or other competitive play that can be saved in 

the form of an opening book.
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 Opening books are useful because many games always begin in the same 

starting position. This means that there are a relatively small number of calculations 

that can be done ahead of time. Opening books can also be used to help tune static 

evaluation functions. But games like Scrabble, or card games, which have no fixed 

starting position, will generally see little or no gain from an opening book, because 

the number of possible openings is related to the possible hands you can begin with, 

and enumerating these hands is much more expensive than doing the analysis from 

any given starting position.

 The most obvious multi-player games for which opening books would be 

useful are Chinese Checkers and Abalone. In Chinese Checkers, the players usually 

have a few moves before their pieces begin to interact with each other, so one ap-

proach, besides doing a full search from the initial state, is to build an opening book 

from the single-agent space of moves for the optimal first few moves, and then to 

analyze those moves in relation to your opponents moves.

 The biggest difficulty introduced by multi-player games is the issue of op-

ponent modelling. The issue of opponent modelling cannot be completely ignored 

in a multi-player game, and an opening book will make implicit assumptions about 

the strategies our opponents are using. If our strategy and model of our opponents is 

adaptive over a game we will not be able to compute opening books for each com-

bination of adaptive strategies.

 This issue as a whole is beyond the scope of this thesis, but recognizing such 

a trait in game play, particularly repetitive game play, and adjusting to it, may invali-
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date the calculations found in an opening book.

6.4.2 End-Game Databases

 A similar method by which the memory of the computer can be leveraged to 

help search is in closing books. This method was most successfully applied in the 

implementation of Chinook [Schaeffer, et al, 1992], the best Checkers program in 

the world. One of the core pieces of this program is a closing book that contains all 

possible board positions in which there are 8 or fewer pieces on the board, and the 

exact win, loss, or draw value of those positions. This can be done efficiently using 

retrograde analysis. This is done by building a table of all the positions we wish to 

analyze. States for which the minimax value is known are marked. Then, for un-

known states, the successors of that state are checked to see if they are a win, loss or 

draw. These values can be progressively backed up into the table until it is full.

 Closing books are especially valuable in games where the number of com-

binations of pieces is small compared to the way that those pieces can play out the 

rest of the game. In Chess or Checkers it is possible that it will take a large search 

tree with many moves to finally play out a game position to a win or loss, but if 

those computations can be done offline, they can be stored at relatively little cost in 

comparison to the actual search. This contrasts greatly with games like card games, 

where the number of ways a game can be played out becomes much smaller as 

the game nears the end, but the total possible ways it could happen in any game is 

huge.

 This brings us to the primary issues of closing books in multi-player games, 
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as compared to two-player games. At the close of a perfect information game, mini-

max is guaranteed to back up exact game-theoretic values. For minimax, this means 

that no matter what strategy our opponent uses, if we calculate a win, we are guar-

anteed to be able to win the game. For multi-player games, we will show how this 

might not be the case.

 If we use the paranoid algorithm to do retrograde analysis, we have the same 

theoretical properties as minimax. So if such analysis indicates we will win, we 

are guaranteed a win no matter the strategy of our opponents. But, a loss under the 

paranoid algorithm is not a guaranteed loss. Instead, we must consider each of our 

opponents separately. Only a win for our opponent is a loss for us. This means there 

can be states for which we can never guaranteed a win or loss for any player in the 

game, because the actual result will depend solely on our opponents strategy.

 If we choose to use the maxn algorithm for our retrograde analysis, every 

state in our table will evaluate exactly. But, implicit in our analysis is the tie-break-

ing rule that we use. It may be the case that a player that cannot win the game can 

decide by their actions who does win. What is more, we should probably distinguish 

between states in which a secondary player can make such a decision, and a state 

where we can guarantee ourselves a win.

 Thus, while we can use closing books in a multi-player game, the issues sur-

rounding closing books are more complicated than in two-player games. The exact 

resolution to these issues will be determined by the game being played. For the sake 

of illustration, we will discuss what we might do to create a closing book for the 
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three-player version of Chinese Checkers.

 In Chinese Checkers we cannot distinguish the end-game by the number of 

pieces on the board, as players  ̓pieces are never removed from the board. Addition-

ally, for every winning state for each player there are roughly 2 trillion ways the oth-

er players can arrange their pieces on the board. So, it is infeasible to directly build 

a table like can be done in Checkers. Instead there are a few alternate approaches.

 The approach we favor is to look at the single-player variation of Chinese 

Checkers. In this game only one player has their pieces on the board, and the goal 

is to simply get your pieces across the board in as few moves as possible. For a 

variation of Chinese Checkers with a slightly smaller board (49 legal positions 

and 6 pieces for each player), we have solved this problem exactly with a 14MB 

database of positions. Then, returning to the multi-player version of the game, this 

database can be used as both a partial opening and closing book for the game. As 

playerʼs pieces close in on the end-game state, this table will have the exact number 

of moves needed to finish the game, and for states close to the end of the game, it 

will have a close approximation of that value. For the full-size game board (81 legal 

positions and 10 pieces for each player) such a table would take about 1.9 TB. This 

is on the upper range of the capacity of many modern machines, but it isnʼt out of 

the question.

 Other possible approaches could require most of oneʼs pieces to be in one 

half of the board, but allow a few pieces to be anywhere on the board, or to do simi-

lar analysis with several of oneʼs opponent pieces also on the board. None of these 
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methods look exactly like what we would find in traditional end-game databases, 

but they use the main idea behind the technique, and should boost the performance 

of a game implementation.

6.2.3 Transposition Tables

 Although we often speak of game trees, most games are actually graphs. 

That is, there are states that can be reached by more than one path from the root. 

Thus, it is advantageous to be able to detect these states in order to avoid redundant 

searches. We demonstrate this in Figure 6.5.

 This figure shows one portion of a Chinese Checkers game state. Only one 

playerʼs pieces are shown on the board, as this example could be for a game with 

any number of players. We can see that in each of the four quadrants, there are two 

moves by the player that lead to the same final state of the board. While we might 

not be able to detect the moves that lead to the same state in advance, we can save 

the result of any calculations that occur below this state in the game tree, and when 

we return to the state again, instead of re-searching, we retrieve the saved results.

 Not all moves will result in transpositions in the search space, so it is essen-

Figure 6.5: Four possible combinations of moves to get to the same state in Chinese Checkers.

4 4

4 4
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tial that the cost of lookup be small. This can normally be done by storing the entries 

in a hash table, which has constant-time lookup. It is important, however, that the 

search does not try to lookup or store nodes near the leaves of the search, as there 

will be little benefit to finding those states in the table, but there will be high latency 

costs from looking up and memory costs of storing the state in main memory. In ad-

dition, the state of the algorithm when searching a particular node must be stored, 

as the bounds from pruning that were in affect when the node was pruned must be 

compared to the current bounds being used.

 In terms of multi-player games, transposition tables work essentially the 

same as they do in two-player games, with a few caveats. First, the order that moves 

are considered must be the same in all portions of the game tree. This is due to the 

fact that tie-breaking has the ability to arbitrarily affect the maxn value of the game 

tree. If we are not consistent in the way we break ties from one part of the tree to the 

next, transpositions from one part of the tree will potentially be stored with different 

results than would be found in the other part of the game.

 Another issue in multi-player games is that it takes transpositions much lon-

ger to manifest themselves than in two-player games. In a three-player game of Chi-

nese Checkers, for instance, the first possible transposition occurs after a player has 

their second move, or depth 4 in the game tree. Given no pruning, if we artificially 

limit the branching factor to 10 (it is well over 100 in the mid-game), we will have 

to search 10,000 moves before we begin to detect transpositions. If we are limited 

to 1 million moves per turn, each transposition will save a maximum of 100 moves, 
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and in a four-player game it would only save 10 moves.

 Before speculative pruning was developed the maxn algorithm, due to its 

lack of pruning in Chinese Checkers, saw little gain from transposition tables. But, 

speculative pruning can greatly benefit from transposition tables, as they will mini-

mize the cost of re-searching the children of a node.

 To summarize, there are three things to note about transposition tables in 

multi-player game trees. First, they require that we be consistent with our node-or-

dering. Second, they can be less effective than in two-player games, due to the fact 

that it takes more moves for a transposition to occur. Finally, speculative pruning 

can benefit from transposition tables, as they can offset the cost of re-searching por-

tions of the game tree.
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Chapter 7

Experimental Results

 Although the theoretic properties of decision rules and pruning algorithms 

are interesting on their own, we would also like to write programs which use these 

algorithms to play games well. In this chapter we first describe the framework we 

have developed for testing multi-player games and algorithms, and then describe the 

results of experiments on those games. If the reader is not interested in a high-level 

description of the implementation, they may skip to section 7.2.

7.1 Experimental Framework

 To be able to implement algorithms and games as easily as possible we have 

developed a set of specialized C++ classes for this task. There are many design deci-

sions involved in writing such a framework, a few of which we discuss here. First 

and foremost, our framework is structured to make it as easy as possible to share 

code between different domains.

 This is crucial when we want to run a set of similar experiments across many 

different domains. It is not only tedious to re-write new code for every algorithm in 

every new domain, but it is also error prone. As the number of algorithms consid-
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ered grows, it also becomes difficult to maintain consistent implementations across 

different domains.

 Given our framework, 80-95% of the code used for any game is completely 

generic. This means that the bulk of the code for running and testing any game only 

has to be written once. Even more importantly, once an algorithm is working cor-

rectly, we donʼt have to worry about re-implementing it for any new game we come 

up with, as the current implementation will work fine. It also means, however, that 

more thought must be put into the code and design to assure that it can robustly 

handle variations is the number of players in the games or other such things that can 

vary from domain to domain.

 The cost of this design decision is that our code will never be the fastest code 

possible, as it must be able to handle any game. So, we will not be able to optimize 

our code to take advantage of some domain-specific features. In a card game, for 

instance, we can represent a move with an 8-bit value, while a move in Chinese 

Checkers needs a 16-bit value, and there are other games where we need even larger 

values to represent moves.

 There are four major abstract components that are used for any game. These 

are a game, a game state, an algorithm, and a player. We describe each briefly 

here.

 Game: The Game class is one of the simplest in our architecture. A game 

deals with the high-level play of a game, managing the addition of players, overall 

game scoring, the repetition of hands, and other similar activities. The generic im-
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plementation of a game will automatically play multiple hands until scoring levels 

are met. In Hearts, for instance, hands will automatically be played until one player 

has 100 points, while Cribbage will continue until a player has 121 points.

 Game State: A Game State is the description of exactly one state of a game. 

A game state is modified by applying and undoing moves on that game state, and it 

also keeps track of whose turn it is in the game. The game state class also provides 

a list of legal moves for the current player.

 Algorithm: The algorithm class is used for implementing decision rules. 

There is common code for doing iterative deepening searches, so that a simple al-

gorithm implementation will automatically do iterative searches. An algorithm pro-

vides many of the same functions that a game state does, passing the calls through 

to the game state. But, in the process it keeps track of the number of moves applied, 

the depth of search, and other similar metrics.

 The standard algorithm code also provides three ways to limit a search. 

Any search can be limited by search depth, search time, or the number of nodes 

expanded. When a search iteration is cut off, the results of the previous iteration are 

returned.

 Because algorithms are generic, we have also defined a Monte-Carlo simu-

lation algorithm that takes as an argument another algorithm, and the number of 

samples to use. The Monte-Carlo algorithm then runs the algorithm passed to it on 

the game state as many times as specified, averaging the results together and return-

ing the best overall move.
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 Player: The role of a player in the game is to define the custom static evalu-

ation function used in the game. The player must also define any heuristics that can 

be used to prune a search. This makes it easy to implement multiple evaluation func-

tions and test them against each other as separate players in the game.

7.2 General Experimental Setup

 To test multi-player games experimentally we have written a game engine 

as described in the last section that contains a number of algorithms and techniques 

such as the paranoid algorithm, maxn, zero-window search, transposition tables and 

monotonic heuristic pruning. New games can easily be defined and plugged into the 

existing architecture without changing the underlying algorithms.

 We first present the general outline of our experiments applicable to all the 

games, and then we will present the more specific details along with the results.

 Our experiments involve 3, 4, and 6-player games while comparing 2 differ-

ent algorithms. In a 3-player game, there are 23 = 8 different ways we could assign 

the algorithm used for each player. However, for competitive analysis we are not 

Player 1 Player 2 Player 3

1 maxn maxn paranoid

2 maxn paranoid maxn

3 maxn paranoid paranoid

4 paranoid maxn maxn

5 paranoid maxn paranoid

6 paranoid paranoid maxn

Table 7.1. The six possible ways to assign paranoid and maxn player types to a 3-player game.
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interested in games that contain exclusively maxn or exclusively paranoid players, 

leaving 6 ways to assign each player to an algorithm. These options are shown in 

Table 7.1. So, we ran our 3-player experiments 6 times, once with each distribution 

in Table 7.1. For card games, that means that the same hand is played 6 times, once 

with each possible arrangement of cards. For Chinese Checkers, this varies who 

goes first, and what player type goes before and after you.

 Similarly, in a 4-player game there are 24 = 16-2 = 14 ways to assign player 

types, and in a 6-player game there are 26 = 64-2 = 62 ways to assign player types.

7.3 Chinese Checkers

 We ran our experiments in Chinese Checkers on two different versions of the 

game. Our early experiments were run on a slightly smaller board than is normally 

used, where each player has 6 pieces instead of 10. Boards this size are commer-

cially available, but as common as the full size board. Our more recent experiments 

have been performed on the regular board as described in Chapter 2.

7.3.1 Simplified Chinese Checkers

 In the version of Chinese Checkers with a smaller board a player will have, 

on average, about 25 possible moves (in the 3-player game), with over 50 moves 

available in some cases. The full game often has more than 100 possible moves dur-

ing the mid-game.

 Besides reducing the branching factor, this smaller board also allowed us to 

create a lookup table of all possible combinations of a single playerʼs pieces on the 
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board, and an exact evaluation of how many moves it would take to move from that 

state to the goal assuming no opponent pieces on the board. The table is the solution 

to the single-agent problem of how to move your pieces across the board as quickly 

as possible. This makes a useful evaluation for the two-player version of Chinese 

Checkers. However, as additional players are added to the game, this information 

becomes less useful, as it doesnʼt take into account the positions of oneʼs opponents 

on the board. It does have other uses, however, such as measuring the number of 

moves a player would need to win at the end of the game.

 Because only one player can win the game, Chinese Checkers is a zero-sum, 

or constant-sum game. However, within the game, the static evaluation is not nec-

essarily constant-sum. Our static evaluation function is based on the distance from 

each piece to the goal, the proximity of pieces to each other, the number of pieces in 

the goal area, and the maximum distance from any piece to the goal.

 In our 3-player experiments, we played 600 games between the maxn and 

paranoid algorithms. To avoid having the players repeat the same order of moves in 

every game, ties near the root of the search tree were broken randomly. We searched 

the game tree iteratively, searching one level deeper in each successive iteration. 

These results are originally from [Sturtevant, 2002], so they were not run with 

speculative pruning. 

 We report our first results at the top of Table 7.2. We played 600 games, 100 

with each possible configuration of players. If the two algorithms played evenly, 

they would each win 50% of the games, however the paranoid algorithm won over 
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60% of the games it played.

 Another way to evaluate the difference between the algorithms is to look at 

the state of the board at the end of the game and measure how many moves it would 

have taken for each player to finish the game from that state. When tabulating these 

results, weʼve removed the player who won the game, who was 0 moves away 

from winning. The paranoid player was, on average, 1.4 moves ahead of the maxn 

player.

 Finally, we can see the effect the paranoid algorithm has on the search depth. 

The paranoid player could search ahead 4.9 moves on average, while the maxn play-

er could only look ahead 3.1 moves. This matches the theoretical predictions made 

in section 3.2; Paranoid is able to look ahead about 50% farther than maxn.

 We took the same measurements for the 4-player version of Chinese Check-

ers. With 4 players, there are 14 configurations of players on the board. We played 

50 games with each configuration, for a total of 700 games. The results are in the 

Paranoid Maxn

3-player
250k nodes

games won 60.6% 39.4%

moves away 3.52 4.92

search depth 4.9 3.1

4-player
250k nodes

games won 59.3% 40.7%

moves away 4.23 4.73

search depth 4.0 3.2

6-player
250k nodes

games won 58.2% 41.8%

moves away 4.93 5.49

search depth 4.6 3.85

Table 7.2. 6-piece Chinese Checkers statistics for maxn and paranoid
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middle of Table 7.2. Paranoid won 59.3% of the games, nearly the same percentage 

as in the 3-player game. In a 4-player game, paranoid should be able to search 33% 

farther than maxn, which these results confirm, with paranoid searching, on average, 

4-ply into the tree, while  maxn was able to search 3.2-ply on average. Finally, the 

paranoid players that didnʼt win were 4.23 moves away from winning at the end of 

the game, while the maxn players were 4.73 moves away. This gave maxn a chance 

to get closer to the goal state before the game ended.

 In the 6-player game, we again see similar results. We played 20 rounds on 

each of 64 configurations, for 1280 total games. Paranoid won 58.2% of the games, 

on average 4.93 moves away from the goal state at the end of the game, while maxn 

was 5.49 moves away on average. In the 6-player game, we expect paranoid to 

search 20% deeper than maxn, and that is the case, with maxn searching 3.85 moves 

deep on average and paranoid searching 4.6 moves on average.

 Because of this, we conducted another experiment with the 3-player games. 

In this experiment we again played 600 total games, limiting the branching factor 

of each algorithm, so that only the six best moves were considered at each branch, 

Paranoid Maxn

250k 
nodes, fixed 
branching 

factor

games won 71.4% 28.6%

moves away 2.47 4.4

search depth 8.2 5.8

fixed depth 
search

games won 56.5% 43.5%

moves away 3.81 4.24

Table 7.3. 3-Player 6-piece Chinese Checkers statistics for maxn and paranoid.
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according to the move ordering function. We chose to limit the branching factor to 

six moves because this allows reasonable depth searches without an unreasonable 

limitation on the possible moves. If we limited the branching factor to just two 

moves, for instance, there wouldnʼt be enough variation in moves to distinguish the 

two algorithms.

 The results from these experiments are found in Table 7.3. Under these con-

ditions, we found that paranoid did even better than maxn, winning 71.4% of all the 

games even though maxn was able to search much deeper than in previous experi-

ments. The paranoid algorithm could search 8.2 moves deep as opposed to 5.8 for 

maxn. At the end of the game, paranoid was, on average, only 2.47 moves away from 

finishing, as opposed to 4.4 for maxn.

 Finally, we played the algorithms against each other with a fixed depth 

search. In this experiment, both algorithms were allowed to search 4-ply into the 

tree, regardless of node expansions. In these experiments the paranoid algorithm 

again was able to outperform the maxn algorithm, albeit by lesser margins. Paranoid 

won 56.5% of the games played, and was 3.81 moves away at the end of the game, 

as opposed to 4.24 moves for maxn.

 These results show that the paranoid algorithm plays better Chinese Checkers 

both because it can search deeper, and because its analysis produces better play.

7.3.2 Full-Board Chinese Checkers

 We did similar experiments with the full game of Chinese Checkers. Because 

the branching factor is fairly high, at each node we only considered the 10 best 
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moves according to our move ordering function. This is a reasonable restriction 

to make, as this ordering heuristic often gives us an optimal ordering when using 

speculative maxn.

 On the larger Chinese Checkers board we ran two experiments. First, we 

played speculative pruning against paranoid with a 500k node limit, and then we 

played approximate deep pruning against paranoid, also with a 500k node limit. Ap-

proximate deep pruning is not guaranteed to calculate a correct maxn value for the 

game tree, but it can prune more than speculative maxn. Our program expands 35-

45k nodes per second on a 500Mhz G4 processor. The results of these experiments 

are in Table 7.4. We include the estimated cost for a losing player to get his pieces 

into the goal state after the game ended, along with the average search depth.

 In these experiments paranoid won 65 percent of the games it played against 

speculative maxn, while only 52 percent of the games it played against approximate 

deep maxn. On average paranoid could search depth 8.0 against either algorithm, but 

approximate deep maxn could search 7.56 ply on average, while speculative maxn 

could only search 6.24 ply into the game tree.

 We can see that approximate deep pruning did much better relative to para-

3-Player Full Chinese Checkers

percent wins avg. remaining cost avg. search depth

Speculative Maxn 35% 6.66 6.24

Paranoid 65% 3.54 8.05

Approx. Deep Maxn 48% 5.53 7.56

Paranoid 52% 4.75 8.04
Table 7.4: Maxn variations versus paranoid in Chinese Checkers.
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noid than speculative maxn. There are two reasons why this is occurring. First, in 

Chinese Checkers our node ordering is very good among the 10 best moves, so the 

chance of incorrectly pruning a node drops. Second, approximate deep pruning has 

an average search depth of 7.56, while speculative maxn has an average search depth 

of 6.24. This is important, because at depth 7 a player can look ahead from his first 

move to his third move. Particularly in the opening and end-game this is very im-

portant, allowing the computer to set up more complex jump moves not seen when 

the average search depth is less than 7. This is much more important that the extra 

ply that paranoid can search over approximate speculative maxn.

 In addition to comparing the performance of paranoid to speculative maxn, 

we also used Chinese Checkers to measure how effectively pruning each algorithm 

can prune in practice. We did this by measuring the number of node expansions at 

depth 6 by both plain maxn with no pruning, speculative maxn, approximate deep 

maxn and paranoid. The results are in Table 7.5. On average, speculative maxn ex-

panded an order of magnitude fewer nodes than regular maxn, reducing node ex-

pansions at depth 6 from 1.2 million to 100k. In many cases speculative maxn was 

examining the minimum possible game tree. Approximate deep maxn expands even 

Chinese Checkers expansions at depth 6

Plain Maxn 1.2 million

Speculative Maxn 100k

Approx. Deep Maxn 61k

Paranoid 25k
Table 7.5: Average expansions by various algorithms in Chinese Checkers.
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fewer nodes, only looking at 61k nodes on average, while paranoid only looks at 

25k nodes on average at this depth.

7.4 Abalone

 Abalone is similar to Chinese Checkers, in that they are both perfect-infor-

mation games. However, Abalone is in some ways a much more complicated game 

than Chinese Checkers. First, the average branching factor is much higher. (There 

are over 40 possible opening moves in the 3-player game.) But, more importantly, 

it is much more difficult to order moves in the game. This means that when we at-

tempted to artificially lower the branching factor of the game, we ended up ignoring 

the best moves in the game, resulting in very poor play. We are not experts in the 

game of abalone, so we recognize that there may be useful components missing 

from the static evaluation function we used in the game. Regardless, it is useful to 

have another data point for comparison.

 We ran two different experiments to compare paranoid and maxn in 3-player 

abalone, a fixed-depth search and a node-bounded search. We performed a fixed-

3-Player Abalone

percent wins average score average depth

fixed depth 4
Speculative Maxn 58% 3.93 -

Paranoid 42% 4.04 -

500k node limit
Speculative Maxn 36% 3.41 4.01

Paranoid 63% 4.04 4.79

500k node limit
Approx. Deep Maxn 39% 3.55 4.09

Paranoid 61% 3.99 4.77
Table 7.6: Maxn variations versus paranoid in Abalone.
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depth search 4-ply into the game tree; from a playerʼs first move to their second. For 

the node-bounded search, we bounded node expansions at 500k nodes. Our evalu-

ation function is based on the number of pieces we have, the number of pieces we 

have pushed off the board, the proximity of our pieces to the center of the board, 

the proximity of our pieces to the edge of the board, and how well our pieces are 

grouped together.

 The results of these experiments are in Table 7.6. The average score is the 

number of pieces that a player manages to push off the board during each game. (6 

pieces is a win.) At fixed depths maxn won a larger percent of the games played, 

although its average score was slightly lower than paranoid. This is because the 

standard deviation of maxnʼs score, 1.62 is larger than the standard deviation of 

paranoidʼs score, 1.38. Maxn seems to be a slightly stronger decision rule than para-

noid at fixed depths, which makes sense, as it is easy for two players to gang up on 

the third in Abalone. But, with a 500k node search limit, paranoid is able to search 

deeper than maxn, leading to a large improvement in wins. Because our search depth 

is limited, approximate deep maxn can search marginally deeper than speculative 

maxn for a small gain in performance, winning 39% of the games as opposed to the 

36% that speculative maxn won.

7.5 Perfect-Information Card Games

 For the card games Hearts, Spades and Cribbage we deal a single hand and 

then play that same hand six times in order to vary all combinations of players and 
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cards. If maxn and paranoid play at equal strength, they will have equal scores after 

playing the hand 6 times. For both games we used a node limit of 500k nodes per 

play. These games were played with all cards in each hand face up, allowing all 

players to see all cards.

 For the 3-player games of Hearts and Spades we played 100 hands, 6 times 

each for a total of 600 games. In Hearts we also run experiments with the 4-player 

version of the game. For the 4-player game we used 70 hands, played 14 times for 

each arrangement of players, for 980 total games. Our search was iterative, as in 

Chinese Checkers. But, since points are only awarded when a trick is taken, we 

didnʼt search to depths which ended in the middle of a trick. We used a hand-crafted 

heuristic to determine the order that nodes were considered within the tree.

 In Spades we either prefer to lead high or lead low. If we are following a lead, 

we first consider the lowest card that will win the trick. If we canʼt win, we play 

low. Our static evaluation function is based on the tricks taken, plus an analysis of 

the card left in your hand, estimating which ones will take tricks and which ones 

wonʼt.

 In Hearts we order our successors so that we will drop the Queen of Spades 

when we can, and we avoid leading the Ace or King of Spades when the Queen is 

still out. Our static evaluation function take into account the points taken so far, and 

a analysis of how many card we have that are expected to take tricks, and how many 

cards we have that can duck tricks.
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7.5.1 Hearts

 We ran several different experiments in Hearts, the first of which was to com-

pare paranoid and speculative maxn. In all our experiments with Hearts, we included 

shooting the moon as part of the rules, although the computers didnʼt explicitly try 

to shoot the moon until they could search the remaining game tree to completion.

 We first played paranoid against speculative maxn in three-player Hearts. 

Before we developed speculative maxn, paranoid was able to play better than maxn, 

but with the addition of speculative pruning maxn was then able to out-perform para-

noid. For more on this, see [Sturtevant, 2002] and [Sturtevant, 2003]. The results of 

our experiments are in Table 7.7. After 100 games, played once for each combina-

tion of players on the table, paranoid averaged 8.82 points per game, while specula-

tive maxn averaged 8.22 points per game. (Lower scores are better.) In the 4-player 

version of Hearts we got similar results. Over the games speculative maxn averaged 

6.33 points per hand, while paranoid averaged 7.04 points per hand.

 We measure the standard deviation to see if these differences are statistically 

significant. It is important, however, that we donʼt measure the standard deviation of 

each hand played, as that will just measure the variance in the cards dealt. Instead, 

3-Players
average score

4-Players
average score

Speculative Maxn 8.22 6.33

Paranoid 8.82 7.04

Speculative Maxn 8.11 -

Maxn 8.94 -
Table 7.7: Speculative maxn versus paranoid and maxn in Hearts.



127

we need to look at all 6 games played on a particular deal of cards in the three-player 

version of hearts and the 14 games played per deal in four-player hearts. When 

we do this, we see that in 3-player hearts maxnʼs score had a standard deviation of 

1.84, and paranoid had a standard deviation of 1.87. In four-player hearts maxn had 

a standard deviation 1.03 points per hand while paranoid had a standard deviation 

of 1.27 points per hand. The means that there is a greater statistical separation on 

scores in the four-player version, and that maxn is more likely to shoot the moon that 

paranoid, leading to a larger standard variation on paranoidʼs score.

 In addition to these experiments, we also did a similar experiment to com-

pare maxn with a tie-breaking rule to speculative maxn. The goal of this experiment 

was to see if a search with no pruning but a sophisticated tie-breaking rule would be 

able to outperform a deeper search with a less sophisticated tie-breaking rule. For 

the plain maxn implementation we broke ties to minimize the score of the player at 

the root of the tree, as this was experimentally seen to be quite effective of improv-

ing the play of maxn. This is because it will allow us to avoid situations like those we 

saw in Figure 4.9. The results from these experiments are also in Table 7.7. It ended 

up that in our actual experiments the added search depth was much better than a tie 

breaking rule, with speculative maxn averaging 8.11 points per hand, while maxn 

with a good tie-breaking rule averaged 8.94 points per hand.

7.5.2 Spades

 We ran experiments in Spades similar to Hearts, but in Spades we are only 

interested in the three-player version of the game, because the four-player version is 
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played in two teams. We played 100 games with all possible arrangements of play-

ers at the table, using a 500k node search limit. Table 7.8 shows that the difference 

between the two decision rules in Spades is negligible. This is despite the fact that, 

on average, paranoid can search about 10 ply deeper than speculative maxn. It seems 

that this occurs because the general strategy is always to take tricks with high cards. 

We suspect that Spades, and the similar games like 8-5-3 are interesting because of 

the other interactions in the game, such as the passing of cards or the bidding, which 

we didnʼt model in these experiments.

7.5.3 Cribbage

 In Cribbage we can search the entire game tree quite quickly, so the only 

comparison that needs to be made is between the maxn decision rule and the para-

noid decision rule. We ran two sets of experiments. In the first set of experiments we 

just played out single hands and compared the scores of all players. In the second 

set of experiments we played out full games to 121 points. The results are in Table 

7.9 and are similar for both experiments. In an average hand maxn got 6.89 points 

average hand score average game score

3-players
Speculative Maxn 6.89 96.1

Paranoid 6.55 91.4
Table 7.9: Speculative maxn versus paranoid in Cribbage.

average score

3-players
Speculative Maxn 5.65

Paranoid 5.68
Table 7.8: Speculative maxn versus paranoid in Spades.
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while paranoid only got 6.55 points, with a standard deviation of 1.73. In full games, 

maxn averaged 96.1 points, while paranoid averaged 91.4 points, with a standard 

deviation of 12.97 for maxn and 12.14 for paranoid. On the full game, each algo-

rithm averaged about 13.95 times their score in the partial game. These are small 

differences, but in the two-player game most games are decided by six points or less 

[Colvert, 1997], so this is actually a reasonably large gap.

7.6 Imperfect Information Card Games

 Because we really play most card games as imperfect information games, in 

addition to our experiments with the perfect information variants of these games, we 

also have done experiments for the real version, using Monte-Carlo simulations to 

make our moves.

7.6.1 Hearts

 We ran Monte-Carlo experiments in Hearts with two variations in sample 

size. In the first set of experiments we gave the computer 0.5 seconds to analyze 

each of 40 models, and in the second experiment we gave the computer 1 second 

average score

3 players

40 models,
0.5 sec./model

Speculative Maxn 6.91

Paranoid 10.32

20 models,
1.0 sec/model

Speculative Maxn 6.43

Paranoid 10.92

Approx. Deep Maxn 7.25

Paranoid 9.98

4 players
20 models,

1.0 sec/model
Speculative Maxn 5.34

Paranoid 8.81
Table 7.10: Speculative maxn versus paranoid in Hearts.
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to analyze 20 models. We played 50 three-player games once for each possible 

ordering of players at the table, for a total of 300 games. The results from Hearts 

are in Table 7.8. When we used 40 models, speculative maxn averaged 6.91 points 

per hand, while paranoid averaged 10.32 points per hand. When we used 20 mod-

els, speculative maxn averaged 6.43 points, while paranoid averaged 10.92 points 

per hand. In the same table, we have results from playing approximate deep maxn 

against paranoid, where approximate deep maxn averaged 7.25 points a game to 

paranoidʼs 9.98 points. This is good, but it is not as good as speculative maxn.

 While speculative maxn did slightly better than paranoid in perfect informa-

tion games, it did much better in imperfect information games. When we analyze 

the hands played we donʼt see paranoid repeatedly making obviously bad moves. 

Instead it just seems that speculative maxn is consistently able to do analysis that 

gives it a slight advantage over paranoid, and in the long term this pays off well for 

speculative maxn.

 We got similar results for the 4-player version of Hearts. These results are in 

the bottom of Table 7.10. In the 4-player game paranoid averaged 8.81 points per 

game, while speculative maxn averaged 5.34 points per game.

average score search depth
20 models

1 sec/model
Speculative Maxn 5.81 11.95

Paranoid 5.52 13.04
Table 7.11: Maxn versus paranoid in Spades.
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7.6.2 Spades

 In Spades running with imperfect information we saw our first difference 

between maxn and paranoid. These results are in Table 7.11. We gave each player 20 

seconds to analyze 20 models on a G4 500Mhz machine before making a play. Maxn 

averaged 5.81 points per hand, while paranoid averaged 5.52, with a standard devia-

tion of 0.36. Given the search limits, maxn had an average search depth of 11.95, 

while paranoid had an average search depth of 13.04.

7.6.3 Cribbage

 We ran Monte-Carlo experiments in Cribbage for both full games and single 

hand play. In both experiments we used 30 samples. Table 7.12 shows the results 

of these experiments. While there was a small advantage for maxn in perfect-in-

formation cribbage games, that advantage becomes statistically insignificant in the 

true imperfect information game, with maxn averaging 7.16 points per hand, while 

paranoid averaged 7.12 points. On the larger game there was a small advantage for 

paranoid, which averaged 114.07 points per game versus 113.74 for maxn.

 Because Cribbage has a relatively small search tree in the play, it is a game 

that might benefit from other imperfect-information techniques. For instance, in-

stead of just generating Monte-Carlo models, it should be feasible in some cases to 

average hand score average game score

30 models
Speculative Maxn 7.16 113.74

Paranoid 7.12 114.07
Table 7.12: Maxn versus paranoid in Cribbage.
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calculate the exact probabilities of our opponent holding certain cards. Addition-

ally, it may be worthwhile to do some level of meta-reasoning, where we model our 

opponents model of ourselves. In the perfect information version of Cribbage we 

know exactly what cards our opponents hold, so we know exactly how to get points 

or avoid taking points. In each Monte-Carlo model we use we will have the same 

perfect information. This means that we will never try to deceive our opponents, be-

cause we always expect them to know the cards we have. This is currently too com-

putationally expensive to consider in other games, but Cribbage is a good candidate 

for further research on this topic, both for two-player and multi-player games.

7.7 Discussion

 We have presented a lot of results here, and it can be somewhat difficult to 

digest and understand them all. While each result may bring to light particular de-

tails that may need to be explored in a particular domain, we want to look to broader 

trends in the data.

 First, a larger question that we would like to answer is which algorithm is 

preferable, standard maxn, paranoid, or approximate deep maxn. We canʼt answer the 

question decisively, but we do have some intuition from these results. For the para-

noid algorithm, it seems that as search depth increases, the benefit of a deeper search 

lessens. This is directly attributable to the fact that the deeper that paranoid searches, 

the more ways it will discover that its opponents are able to collude against it. Since 

true collusion is not taking place in any of our experiments, this is a flawed strategy. 
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But, in games like Chinese Checkers or Abalone where we are not searching very 

deep, our opponents have few opportunities to collude. Thus, paranoid provides a 

reasonably defensive line of play coupled with deeper search than is found in maxn. 

We expect that if we were able to search 10-20 ply into a Chinese Checkers or Aba-

lone game that the advantage of paranoid would be greatly diminished if not lost 

completely.

 Despite this, we have not been able to show that paranoid actually does 

worse as it searches deeper. We performed many different experiments where we 

varied the search depth of paranoid, and we were never able to find paranoid doing 

worse as it searched deeper. Instead it just seems that maxn takes better advantage of 

the additional search in a game tree.

 With regard to pruning algorithms for maxn, it seems that approximate deep 

pruning has only limited potential, as it never outperformed both paranoid and 

regular maxn. The domains where it is most likely to be useful are those where we 

have a high-quality ordering function, which will reduce the errors made by incor-

rect pruning, along with those domains for which there is a large benefit to an extra 

ply or two of search, the benefit of which may outweigh the cost of the mistakes we 

make in our search.

 However, in general it seems to make more sense to use an algorithm that has 

guaranteed theoretical properties such as maxn or paranoid than to use an algorithm 

that has no guarantees on the validity or correctness of the result it calculates.



134

7.8 State of the Art Play

7.8.1 Hearts

 In addition to testing between different algorithms, we have also worked on 

optimizing a hearts program to be competitively stronger than any other program 

that bas been written. It is infeasible to compare against every shipping program, 

but we were able to run extensive tests against the commercially shipping program 

Hearts Deluxe™ (HD), by Freeverse software.

 The computer program used to play Hearts for these experiments was taken 

directly from game framework, without too much specific optimization for the game 

of Hearts. We did, however, re-write our static evaluation function for these tests. 

We incorporated the same features described in the experimental results, along with 

a few special rules for when and how the Queen of Spades should be played. For in-

stance, we reduce a playerʼs static evaluation more than usual for taking the Queen 

of Spades when they had other spades left in their hand.

 We also varied the number of models used for analysis during the game. For 

the first 10 tricks of the game we allowed the computer to search 280k nodes over all 

models. We began with 40 models and gradually decreased this to 13 models until 

there are 3 tricks left in the game, at which point we always search the game tree to 

completion on 30 models. Our computer program takes no more than a few seconds 

to make a move, which is reasonable for normal play. In practice we could probably 

extend this end-game analysis farther out, but we were primarily concerned with 

being able to quickly run these experiments, since we had to start and end each hand 
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and game manually.

 Our program exhibits reasonable planning near the end of the game. In many 

situations, for instance, it will take the tricks it canʼt avoid first, before giving the 

lead to another player. This behavior is something that expert card players will do, 

but that computer programs rarely do. Most computer programs and beginning play-

ers tend to play their low cards too early in the game, trapping them with their high 

cards at the end of the game. Since most points come out in the later stages of the 

game, this is an expensive approach.

 Our program gives some merit to preventing its opponents from shooting the 

moon in its evaluation function, but it doesnʼt actively try to model if an opponent 

is trying to do so. Instead, it gives a bonus to the player if they are able to split the 

points in the game. Similarly, the computer does not explicitly plan to shoot the 

moon from early in the game, but will do so later in the game if it finds it can.

 One deficiency we see in our program is that it doesnʼt have a model of what 

information its plays convey to the other players in the game. So, our player is per-

fectly happy to lead the Ace of Spades when he also holds the Queen, something 

humans will usually avoid, because of the information it reveals to the other players. 

But, the HD computer players donʼt seem to take advantage of such information. 

This means that this type of mistake will not hurt us when playing another computer, 

while it can hurt us when playing a human.

 The authors of Hearts Deluxe were kind enough to not only provide us with 

the source code to their computer players, they also worked to build a plug-in sys-
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tem that could be used to plug-in and test other players against their own. In addi-

tion, Apple Computer loaned us one of their top-of-the-line 1.42 GHz dual-proces-

sor machines for the sake of running our experiments. Because each Monte-Carlo 

experiment is independent, it is quite easy to parallelize a program for multiple 

processors.

 We report the result of our experiments against their computer players in 

Table 7.13. In these experiments our computer program played against 3 of the HD 

players. The HD players can be set to different skill levels, so we chose to set them 

to the highest skill available, with average aggression. (Other options are aggressive 

and conservative.) The rule variations we used included -26 for shooting the moon, 

but we didnʼt enable card passing. Each game was played until one player had 100 

or more points at the end of a hand. We played 90 games total, and our program 

averaged 55.8 points per round, while the other players collectively averaged 75.1 

points. In these rounds we played a total of 984 hands. Our program averaged 5.16 

points per hand, while our opponents collectively averaged 6.98 points per hand.

 There are a few areas we see that our program could improve. First, our static 

evaluation function could be improved. Our program tends to play the Ace and King 

of Spades earlier than necessary, which seems to lead to taking the Queen more of-

average score/game average score/hand

Our Program 55.8 5.16

Hearts Deluxe™ 75.1 6.98
Table 7.13: Our Hearts program versus the commercial Hearts Deluxe program
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ten that it might have to. Also, our program also tends to lead its high diamonds and 

clubs early in the game, when it sometimes should be playing spades to force out 

the queen. Our evaluation is completely hand tuned right now, but there is no reason 

that a better evaluation function couldnʼt be developed through a variety of learning 

methods.

 Besides Hearts Deluxe, we have not tested our program against other exist-

ing computer players. We have, however, asked the authors of some of the other 

leading Hearts programs how they build their computer players. The only author to 

respond to our query was Vytas Kliorys, author of Turbo Hearts, a popular program 

for Microsoft Windows. He indicated that his program uses a weighted rule-based 

system to decide how to play, and that it doesnʼt look ahead farther than the end of 

the current trick and the first card of the next trick.

 If these programs are indicative of the state of the commercial industry right 

now, which we suspect, there is no reason to believe that our program is playing at 

least as well, if not better than any program available.

7.8.2 Chinese Checkers

 We are not aware of many programs that play Chinese Checkers. The ACM 

has held competitions for 2-player Chinese Checkers programs in Hong Kong re-

cently, but it seems that almost no one has done work in variations of the game for 

three or more players. Thus, since we have what is essentially a perfect closing book 

for Chinese Checkers on the smaller board, we feel that it is not unreasonable to 

claim that our program which plays on this board is the best program in existence 
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for this domain. On the larger board we know there are improvements to be made, 

including the analysis of potential opening and closing books along with faster 

move generation.
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Chapter 8

Contributions, Conclusions, and Future Work

8.1 Overview of Results

 The work done for this thesis has greatly expanded our knowledge of the 

algorithms and techniques that can be used to play multi-player games. It has done 

this through the analysis of decision rules, the development of pruning algorithms, 

the analysis of other standard two-player game techniques, and experimental results. 

The work on decision rules has developed the properties of the maxn and paranoid 

algorithms, showing that in practice they both have deficiencies in play in practice. 

In addition, we have developed and analyzed pruning algorithms for these decision 

rules, including speculative maxn, the first pruning algorithm that provides consider-

able pruning gains for games such as Chinese Checkers which previously could not 

be pruned by any known methods.

 The pruning algorithms we have developed include multi-player branch-

and-bound pruning, alpha-beta branch-and-bound pruning, last-branch pruning, 

and speculative pruning. Alpha-beta branch-and-bound pruning combines previous 

work on shallow pruning [Korf, 1991] with monotonic heuristics to be able to prune 
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game trees well. Alpha-beta branch-and-bound pruning however, is not effective 

in many common multi-player games, being reduced simply to branch-and-bound 

pruning. But, last-branch and speculative pruning are the first algorithms that are 

expected to be effective in constant-sum multi-player game trees, together reduc-

ing the asymptotic branching factor of a n-player game from b to bd·(n-1)/n as b grows 

large. Not only can these algorithms be applied to any constant-sum game, they are 

also expected to provide asymptotic reductions in b in the average case, which pre-

vious techniques such as shallow pruning did not.

 We have also shown how tie-breaking is a pervasive issue in maxn game 

trees. If we incorrectly model how our opponents break ties within the game tree, 

we cannot bound the error that will result in our calculation of the maxn value of 

the game tree. Tie-breaking also means that we cannot use techniques like zero-

window search in a multi-player game, and iterative deepening search is weaker in 

multi-player games because of tie breaking when compared to the results possible 

in two-player games. Tie-breaking is also important in end-game databases, as any 

database calculated ahead of time must implicitly use a pre-calculated tie-breaking 

rule.

 Besides these theoretical results, we have used these techniques to build and 

test multi-player game programs in many domains, including state-of-the-art pro-

grams in Hearts and Chinese Checkers, where we have shown that our program does 

much better than the existing program Hearts Deluxe, averaging almost 20 points 

better per round then the regular computer players in that game.



141

8.2 Future Work

 There are still areas that need further research to fully understand the chal-

lenges involved in multi-player games. One of these areas is in the area of average-

case analysis of our pruning algorithms. While we have a vague idea that specula-

tive maxn will be effective in the average case, and alpha-beta branch-and-bound 

will not be as effective in the average case, concrete models for analysis need to be 

developed to solve and test for the average case.

 Solving the average case models will also be an important step in extend-

ing work in areas such as node-ordering, as we will be able to verify the relative 

effectiveness of node ordering algorithms based on the best-case and average-case 

performance models.

 Also, approximate deep maxn pruning seems to have some promise in some 

domains. The correctness of approximate deep maxn will also vary depending on 

the effectiveness of our node-ordering algorithms. More extensive tests need to be 

done to understand exactly when approximate deep maxn is a worthwhile algorithm 

to use.

 In the area of writing state-of-the-art programs for playing games, there are 

a few areas that need to be considered. The first area is in imperfect information. 

We have assumed that Monte-Carlo sampling is the best way to deal with imperfect 

information. This is a reasonable first-order approximation, but some recent work in 

Bridge [Ginsberg, 2001] has moved away from Monte-Carlo sampling in later stag-

es of the game. Similar strategies may be needed in multi-player games. Regardless 
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of if this is the case, our work still stands for imperfect information games.

 Another area we have not looked into are learning strategies for static evalu-

ation functions, and more specific opponent modelling strategies. Maxn is relatively 

flexible in its ability to model its opponents, and we should be able to use maxn to 

easily implement our own preferences for competing against multiple opponents.

8.3 Maxn versus Paranoid

 Minimax with alpha-beta pruning has generally dominated other two-player 

decision rules and algorithms, but there is no clear dominant algorithm in multi-

player games at this time. However, our experience in this field has led us to pos-

tulate that the paranoid algorithm will generally do well in games where the oppo-

nents cannot collaborate together effectively. This may be a result of minimal search 

depth or simply a property of a game. In card games, for instance, it is generally 

quite easy to collaborate, and in these domains the paranoid algorithm has a large 

search depth advantage over maxn, but no performance advantage.

8.4 Conclusion

 Multi-player games are fundamentally different from two-player games. 

They force us to consider the issue of opponent strategy, partially in the form of tie-

breaking issues within the game tree, while such issues have generally been ignored 

by Artificial Intelligence researchers in two-player games. In addition, the com-

plexity of an additional player in a game increases not only the amount of analysis 

needed for multi-player games, but also decreases the amount of pruning possible.
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 In this thesis we have presented a variety of new techniques to deal with 

this issues, perhaps most importantly developing the first widely-effective pruning 

techniques for multi-player game search. There are still many challenging and unan-

swered questions in this area, and we look forward to the research that will answer 

these challenges.
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