
UNIVERSITY OF CALIFORNIA

Los Angeles

Multi-Player Games: Algorithms and Approaches

A dissertation submitted in partial satisfaction of the

requirements for the degree Doctor of Philosophy

in Computer Science

by

Nathan Reed Sturtevant

2003

© Copyright by

Nathan Reed Sturtevant

2003

ii

The dissertation of Nathan Reed Sturtevant is approved.

 Adnan Darwiche

 Judea Pearl

 William R. Zame

 Richard E. Korf (Committee Chair)

University of California, Los Angeles

2003

iii

Contents

I. Introduction

1.1 Motivation. 1
1.2 Problem Overview . 3
1.3 Problem Approach . 4

II. Expert-Level Two-Player Game Programs

2.1 Two-Player games. 8
2.2 Extending Work Multi-Player Games. 11
2.3 Solving Perfect and Imperfect Information Games . 12

III. Multi-Player Games

3.1 Chinese Checkers . 15
3.2 Abalone . 16
3.3 Card Games. 17
3.3.1 Hearts . 19
3.3.2 Spades (8-5-3 / Sergeant Major) . 20
3.3.3 Cribbage . 21
3.4 Other Games . 23
3.4.1 Pinochle. 24
3.4.2 Big-2 / Feudal Wars / Da Er . 24
3.4.3 Uno / Crazy 8ʼs . 25
3.4.4 Poker . 25

IV. Decision Rules

4.1 Two-Player Minimax . 27
4.1.1 Theoretical Properties of Minimax . 29
4.2 Paranoid Algorithm. 30
4.2.1 Paranoid Deficiencies . 31
4.3 Maxn . 35
4.3.1 Equilibrium Points . 36
4.4 Conclusions. 40

iv

V. Pruning Algorithms

5.1 Alpha-Beta Pruning . 41
5.1.1 Best-Case analysis of Paranoid. 43
5.2 Maxn Immediate Pruning . 45
5.2.1 Best-Case Analysis of Immediate Pruning in Maxn . 45
5.3 Shallow Maxn Pruning . 51
5.4 Achieving Shallow Pruning Best Case . 53
5.5 Shallow Pruning Limits . 58
5.5.1 Minimization versus Maximization . 58
5.5.2 General Bounds for Shallow Maxn Pruning . 60
5.5.3 Intuitive Approach . 62
5.6 Deep (Pair-wise) Pruning . 64
5.7 Optimality of Maxn . 66
5.8 Depth-First Branch-and-Bound Pruning. 66
5.8.1 Single Agent Branch-and-Bound . 67
5.8.2 Multi-Player Branch-and-Bound . 68
5.9 Alpha-Beta Branch-and-Bound Pruning. 70
5.10 The Constant-Sum Property in Multi-Player Games . 72
5.11 Limiting Maxn Value Propagation. 73
5.12 Last-Branch Pruning . 76
5.13 Speculative Pruning . 78
5.14 Last-Branch and Speculative Maxn Best-Case Asymptotic Analyses. 80
5.15 Discrete Evaluation Functions . 83
5.16 Approximate Deep Pruning . 85
5.17 Summary of Multi-Player Game Pruning Algorithms . 87

VI. Additional Techniques for Improving Performance

6.1 Iterative Deepening. 89
6.2 Zero-Window search. 93
6.2.1 Zero-Window Iterative Deepening . 94
6.2.2 Failure of Zero-Window Maxn Search . 95
6.3 Move Ordering for Pruning Algorithms . 97
6.4 Memory Usage . 101
6.4.1 Opening Books . 102
6.4.2 End-Game Databases . 104
6.2.3 Transposition Tables . 107

VII. Experimental Results

7.1 Experimental Framework . 110

v

7.2 General Experimental Setup . 113
7.3 Chinese Checkers . 114
7.3.1 Simplified Chinese Checkers . 114
7.3.2 Full-Board Chinese Checkers . 118
7.4 Abalone . 121
7.5 Perfect-Information Card Games . 122
7.5.1 Hearts . 124
7.5.2 Spades . 125
7.5.3 Cribbage . 126
7.6 Imperfect Information Card Games . 127
7.6.1 Hearts . 127
7.6.2 Spades . 129
7.6.3 Cribbage . 129
7.7 Discussion . 130
7.8 State of the Art Play . 132
7.8.1 Hearts . 132
7.8.2 Chinese Checkers . 135

VIII. Contributions, Conclusions, and Future Work

8.1 Overview of Results . 137
8.2 Future Work . 139
8.3 Maxn versus Paranoid . 140
8.4 Conclusion . 140

vi

Index of Tables and Figures

Figure 3.1: A Chinese Checkers board with three players. 14
Figure 3.2: Move possibilities to start a game of Chinese Checkers. 15
Figure 3.3: A three-player abalone game board. 16
Figure 3.4: Example moves from the game of Abalone. 17
Figure 3.5: A sample card trick. 18
Figure 3.6: Sample play of cards from “the play” in cribbage. 22
Figure 4.1. A 2-player minimax tree fragment.. 28
Figure 4.2. A 3-player paranoid tree fragment. 31
Figure 4.3: Paranoid worst-case analysis 1. 32
Figure 4.4: Paranoid worst-case analysis 2. 33
Figure 4.5: The paranoid game tree behind Figure 4.4. 34
Figure 4.6: A 3-player maxn game tree . 35
Figure 4.7: Generic tie-breaking in a maxn game tree . 38
Figure 4.8: Tie breaking situation . 38
Figure 4.9: Maxn game tree for Figure 4.8. 39
Figure 5.1. A 3-player paranoid tree fragment. 42
Figure 5.2: Best-case analysis of alpha-beta pruning in paranoid algorithm.. 43
Figure 5.3: Analysis of immediate maxn pruning. 46
Figure 5.4: Generic analysis of immediate maxn pruning.. 47
Figure 5.5: Sub-optimal ordering for immediate pruning a maxn tree. 50
Figure 5.6: Shallow pruning in a 3-player maxn tree. 52
Figure 5.7: Basic structure for shallow maxn pruning.. 54
Figure 5.8: Best case tree for shallow maxn pruning.. 55
Table 5.9: The transformation between a maximization and minimization problem, and

examples for a 3-player Hearts game.. 59
Figure 5.10: Shallow pruning in a 3-player maxn tree. 61
Figure 5.11: Different strategies for minimizing and maximizing. 63
Figure 5.12: The failure of deep pruning. 65
Figure 5.13: A single-agent depth-first branch-and-bound search tree. 67
Figure 5.14: Branch-and-bound pruning in a maxn tree. 69
Figure 5.15: Alpha-beta Branch-and-Bound pruning in a 3-player maxn tree. 70
Figure 5.16: The failure of deep pruning. 73
Figure 5.17: Combining maxn scores to limit value propagation. 74
Figure 5.18: Combining scores to limit value propagation in general.. 75
Figure 5.19: Speculative pruning a maxn game tree. 78
Figure 5.20: Analysis of speculative maxn pruning.. 81
Table 5.21: Branching factor gains by speculative maxn in a 3-player game. 82
Figure 5.22: Discrete cut-off evaluations . 84

vii

Figure 5.23: Decision rules/algorithm complexity and domains for which they can be ap-
plied. 88

Figure 6.1: Effect of iterative deepening in maxn. 92
Figure 6.2: Decision tree for zero-window search limit. 94
Figure 6.3: Finding bounds in a maxn game tree . 95
Table 6.4: Learned move ordering for Hearts given an A♠ lead. 99
Figure 6.5: Four possible combinations of moves to get to the same state in Chinese

Checkers.. 107
Table 7.1. The six possible ways to assign paranoid and maxn player types to a 3-player

game.. 113
Table 7.2. 6-piece Chinese Checkers statistics for maxn and paranoid. 116
Table 7.3. 3-Player 6-piece Chinese Checkers statistics for maxn and paranoid. 117
Table 7.4: Maxn variations versus paranoid in Chinese Checkers. 119
Table 7.5: Average expansions by various algorithms in Chinese Checkers. 120
Table 7.6: Maxn variations versus paranoid in Abalone. 121
Table 7.7: Speculative maxn versus paranoid and maxn in Hearts. 124
Table 7.8: Speculative maxn versus paranoid in Spades. 126
Table 7.9: Speculative maxn versus paranoid in Cribbage. 126
Table 7.10: Speculative maxn versus paranoid in Hearts. 127
Table 7.11: Maxn versus paranoid in Spades.. 128
Table 7.12: Maxn versus paranoid in Cribbage. 129
Table 7.13: Our Hearts program versus the commercial Hearts Deluxe program 134

viii

VITA

June 17, 1974 Born, Ventura, California

1996 B.S., Electrical Engineering and Computer Science
 With Honors
 University of California, Berkeley
 Berkeley, CA

1998-99 Research Assistant
 Computer Science Department
 Univeristy of California, Los Angeles

1998-2001 Teaching Assistant (Spring Quarter)
 Computer Science Department
 University of California, Los Angeles

2000 M.S., Computer Science
 University of California, Los Angeles
 Los Angeles, CA

2000-03 Research Assistant
 Computer Science Department
 University of California, Los Angeles

PUBLICATIONS

Sturtevant, N., Tang, N., Zhang, L., The Information Discovery Graph: Towards a
Scalable Multimedia Resource Directory, Proceedings of the IEEE Workshop on
Internet Applications (WIAPP), July, 1999.

Sturtevant, N., Korf, R., On Pruning Techniques for Multi-Player Games, Proceed-
ings, AAAI-2000, Austin, Tx, pp 201-207.

Sturtevant, N., A Comparison of Algorithms for Multi-Player Games, Proceedings
of the 3rd International Conference on Computers and Games, 2002.

Sturtevant, N., Last-Branch and Speculative Pruning Algorithms for Maxn, Proceed-
ings, IJCAI-2003, Acapulco, Mexico.

ix

ABSTRACT OF THE DISSERTATION

Multi-Player Games:

Algorithms and Approaches

by

Nathan Reed Sturtevant

Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2003

Professor Richard Korf, Chair

Historically, much work in Artificial Intelligence research has gone

into designing computer programs to play two-player perfect-infor-

mation games such as Chess, Checkers, Backgammon, and Othello.

Comparatively little work, however, has gone into multi-player games

such as Chinese Checkers, Abalone, Cribbage, Hearts, and Spades. As

a result, we have highly optimized techniques for two-player games,

x

but very little knowledge of how they work in multi-player games.

 In this thesis we extend many of the standard techniques from

two-player games to multi-player games. We present two decision

rules, maxn [Luckhardt and Irani, 1986] and paranoid, examining

their theoretical properties. For maxn we also introduce several prun-

ing techniques, including Alpha-Beta Branch-and-Bound pruning

and Speculative pruning. Speculative pruning is the first multi-player

pruning algorithm that can prune any constant-sum multi-player

game, and provides an order of magnitude reduction in node expan-

sions over previous search techniques in games like Chinese Check-

ers.

 We also analyze the properties of common two-player game

techniques, such as zero-window search and iterative deepening,

showing how their properties change in multi-player games. Finally,

we present results of all these techniques in a variety of multi-player

domains, including Chinese Checkers, Abalone, Cribbage, Hearts

and Spades. These methods have allowed us to write state-of-the-art

programs for playing Hearts and a version of Chinese Checkers on a

smaller board.

1

Chapter 1

Introduction

1.1 Motivation

 Researchers in the field of Artificial Intelligence (AI) have always been inter-

ested in the question of how computers can be taught, can learn, or be programmed

to do the things that humans do. Things that are exceptionally easy for computers,

like mathematical computation and data storage, are very difficult for humans. But,

things that humans do well and often take for granted, such as carrying on a conver-

sation, are much more difficult for a computer.

 One difficult task that AI researchers have been interested in since before the

inception of the field is that of game playing. Shannon proposed a chess machine as

early as 1950 [Shannon, 1950], Turing wrote a program to play chess in 1951 [Tur-

ing et al., 1953], but never ran it on a computer, and Samuel had a quality checkers

player by the early 1960ʼs [Samuel, 1959]. While some may dismiss these as merely

“parlor” games, the video game industry currently makes more money each year

than Hollywood [Baird, 2003]. This in itself does not justify game research, but it

does mean that games are something that people have a fundamental interest in.

2

 For instance, Electronic Arts CTO, Steve Anderson, recently claimed that

Electronic Arts feels that developing good Artificial Intelligence systems for their

games is one of their major challenges for the next decade [Anderson, 2003]. As

the graphic capabilities of video game consoles have grown, it has become more

and more obvious how poor the character movement and decision systems in cur-

rent games actual are. In fact, many “artificial intelligence” systems in games are

just large finite state machines. The artificial intelligence technology used for such

systems is becoming more and more important in creating a realistic environments.

Finally, the development of high-performance graphic chips is beginning to free up

the CPU for other tasks such as improved AI.

 Beyond the game industry, games have also played a large part in social

structures throughout history. “Human fascination with game playing is long-stand-

ing and pervasive. Anthropologists have catalogued popular games in almost every

culture....Games intrigue us because they address important cognitive functions.”

[Epstein, 1999] This suggests, and we agree, that games have value beyond pure

entertainment, as they often form part of the social structures within a culture or

family group.

 While a great deal of research has gone into two-player games, many games

and most real-world domains involve more than two parties, whether in cooperation

or in competition. At first this may seem like a small difference, but as [Luce and

Raiffa, 1957] point out, “it has long been recognized in sociology, and in practical

affairs, that between two-person situations and those involving three or more per-

3

sons there is a qualitative difference which is not as simple as the difference between

2 and 3.” Obviously in a two-player strictly competitive game, the strongest player

will usually win. But, the introduction of a third player doesnʼt guarantee that the

strongest player will win. In fact, many have informally observed this in the recent

TV game show “The Weakest Link,” where the smartest players are usually voted

out of the game in the stages when they become a threat to the remaining players.

 Besides a recent surge of work on agent-based systems, relatively little work

has been done in what practical algorithms and techniques could actually be used to

play games with more than two players.

 In this thesis we lay the groundwork for extending research from two-player

games to multi-player games. It is our hope and goal that in addition to providing a

framework for work on multi-player games, this work would also be useful to the

greater domains of decision making in contexts with multiple competing agents.

1.2 Problem Overview

 If one wishes to write a high-quality two-player game playing program, there

is generally a straightforward set of steps by which it can be done, starting with

minimax and alpha-beta pruning, a customized evaluation function, and continuing

through a list of well-researched topics. AI researchers know the basic steps, and

new techniques are often just needed to fine-tune certain aspects of a game. There

are notable exceptions to this, particularly Go and Shogi (Japanese Chess), but as

we will discuss in later chapters, this formula has seen a fair amount of success.

4

 Compared to this, there are relatively few answers when it comes to multi-

player games. There is no standard algorithm that has been used for multi-player

games, and it is unclear exactly which techniques are worthwhile to use in multi-

player games.

 There are three categories of multi-player games that are most widespread

and that usually require computer opponents. The first category is the first-person

shooter (FPS). These games usually require quick movement and reflexes, but

movement and shots shouldnʼt be so precise as to make a human opponent always

lose. Games in this category include Doom, Quake, and Half-Life. Another category

is the real-time strategy (RTS) game. These games usually require you to coordinate

armies of units across a battlefield for real-time combat. This category of games

includes Starcraft, Warcraft, and Myth. Finally, there are board and card games in

which play is less frenzied, but can often be just as intense.

 Most people writing computer opponents for FPS and RTS games use fairly

ad-hoc methods, but even so it is usually easy for a computer opponent to annihilate

even the best human. Thus, the issue in these games is how to write a balanced op-

ponent. In board and card games, however, it is much more difficult to develop a

strong opponent, so this is where we focus our work.

1.3 Problem Approach

 An important element of any game is the choice of the decision rule which is

implemented by the algorithm used to search the game tree. The standard two-play-

5

er decision rule is minimax. In this thesis we consider two decision rules, paranoid

[Sturtevant and Korf, 2000] and maxn [Luckhardt and Irani, 1985]. The paranoid

decision rule results from the simplification of a multi-player game to a two-player

game by assuming that all our opponents are collaborating against us, while maxn is

a generalization of minimax to a n-player game.

 The choice of decision rule may be made on the theoretical strength of the

rule or its computational efficiency, but implicit in the decision rule is a model of

our opponents. If we choose to use the paranoid algorithm, we are using a model in

which we expect our opponents to collaborate, while the maxn decision rule assumes

every player is out for themselves. Although we will not discuss opponent modeling

in detail, it is important to realize that we cannot get away with the implicit assump-

tions we might have made in a two-player game. In a subtle way, this is an issue

behind many of the difficulties that arise in multi-player games.

 The minimax decision rule has dominated two-player game research because

of the efficiency of alpha-beta pruning [Knuth and Moore, 1975], which allows

minimax to be implemented much more efficiently than nearly any other algorithm

proposed for two-player games. In practice, unfortunately, most simple analogs to

alpha-beta pruning in multi-player games are either ineffective or not valid. The

best previous technique, shallow pruning [Korf, 1991] has a reasonable best-case

performance, but this cannot realistically be achieved in practice.

 Therefore, we introduce a set of new pruning techniques which are much

more effective in practice. These include branch-and-bound pruning, alpha-beta

6

branch-and-bound pruning [Sturtevant and Korf, 2000], last-branch pruning and

speculative pruning [Sturtevant, 2003]. We also extend the previous analysis of

immediate and shallow pruning, providing enhanced bounds on when they can be

applied along with their effectiveness.

 Besides pruning techniques, there have been many other methods used to

calculate decision rules and search game trees more efficiently. These often involve

extensive use of computer memory, while most decision rules require very little

memory for computation. We consider some of these techniques, such as transpo-

sition tables and opening and closing books, discussing how they can be used in

multi-player games, and some of the issues that we need to be aware of when using

them in multi-player games.

 Finally, we also implemented a range of practical games including Chinese

Checkers, Hearts, Spades, Cribbage and Abalone. We use these games as a test bed

to measure the efficiency and effectiveness of the techniques discussed here.

 We will begin Chapter 2 with an overview of games in which computer pro-

grams play well, along with some of the techniques used in those programs. This is

followed in Chapter 3 by a description of the multi-player games that we use in this

thesis, along with a few other popular multi-player games.

 In Chapter 4 we begin to present our new work as we cover the paranoid and

maxn decision rules, followed by various pruning techniques for these algorithms

in Chapter 5. Chapter 6 discusses some of the other techniques that have been used

in two-player games and how they can be applied to multi-player games. Chapter 7

7

describes the software package we have written to play and test multi-player games,

along with the results of these experiments. We conclude in Chapter 8 with a sum-

mary of our work and a description of different areas of open research.

8

Chapter 2

Expert-Level Two-Player Game Programs

 There are many different domains in which computer programs have been

written that exhibit expert-level play. The story of how this has occurred and how

humans have responded to the challenge is quite interesting, and we suggest that

anyone interested in the details of the story should see [Schaeffer, 2001].

 In this chapter, we will discuss these domains more briefly, looking for what

the key elements were that allowed these successes. This history will partly set the

stage for our discussion of multi-player games, as it provides a list of techniques that

have proven their worth in two-player games.

2.1 Two-Player games

 Chess dominated early game research, with a truly “expert” program seem-

ing to be about 10 years off [Newell, et al., 1958] for a long time. It wasnʼt until

IBMʼs work on specialized hardware for Deep Blue in the late 1990ʼs that the top

human chess player was defeated in an exhibition match. Recent efforts on pro-

grams such as Deep Fritz and Deep Junior have begun to produce similar results

on more commonly-available hardware. Expert chess programs rely on minimax

9

search with alpha-beta pruning, iterative deepening, opening books, end-game da-

tabases, transposition tables and quiescence (selectively deeper) search. The other

important factor has been highly tuned and accurate evaluation functions.

 Checkers is another game that received early consideration. Samuelʼs check-

ers program [Samuel 1959, 1967] used machine learning to come up with a good

evaluation function. But, it wasnʼt until the late 1980ʼs and early 1990ʼs when com-

puters offered serious challenges to humans. One of the primary reasons for this was

the development of a massive end-game database, containing all positions with 8 or

fewer pieces on the boards [Schaeffer, et al., 1992]. Chinook, the program written

based on this research, was the first computer program to ever win a game against

a human champion in formal match play, and it is the strongest Checkers player in

the world. Chinook used minimax and alpha-beta as the basic core of its search en-

gine.

 As in Checkers, expert Othello programs are currently known to be better

than all humans. The top Othello program, Logistello [Buro, 1997], learned an

extremely sophisticated evaluation function for play. In fact, it actually learned 13

different evaluation functions that were used separately across different stages of

the game. This, combined with traditional minimax and alpha-beta pruning has been

quite successful, allowing Logistello to strongly sweep the world champion in an

exhibition match in 1997.

 Each of these first three games has used very similar techniques, and they

also have very similar properties, all being two-player perfect information games.

10

The next three games we discuss are not perfect-information games.

 Backgammon is a non-deterministic game, as it involves the random roll of

dice. The best backgammon program, TD-Gammon [Tesauro and Sejnowski, 1989]

is similar to Logistello in that it uses a learned evaluation function for play. In back-

gammon this is even more important, since the random dice rolls greatly restricts

the amount of search possible in the game. TD-Gammon used temporal difference

learning [Tesauro, 1995] to learn its evaluation function. TD-Gammon is currently

playing at the level of the best backgammon players in the world.

 Scrabble is a word game in which imperfect knowledge of the state of the

game limits the possibility of deep search. In most of the game there are too many

possible moves, much less opponent hands, to consider them all. Thus, the best

Scrabble program, Maven [Sheppard, 2002], relies on sophisticated move-selection

algorithms, as well as limited sampling of possible opponent responses. In an exhi-

bition match against one of the best North American players in 1998, Maven won

9-5 [Schaeffer, 2001].

 Bridge is one of the domains for which good two-player game programs

have more recently been developed. GIB [Ginsberg, 2001] is generally considered

to be the best Bridge program in the world, although it hasnʼt played any sanctioned

matches against top world players, so it is difficult to know exactly where it stands.

The biggest issue in Bridge is the (lack of) knowledge about your opponents ̓hands.

GIB handles this using Monte-Carlo simulation, and more recently other imperfect

information methods, which we will discuss later in this chapter. GIB also uses so-

11

phisticated transposition tables.

 To summarize work in two-player games, all the games mentioned here use

the minimax decision rule with alpha-beta pruning for efficient search. They also

use a combination of transposition tables, opening/closing books, and hand-crafted

evaluation functions. There are still significant challenges in two-player games

which these techniques alone have not been able to solve. Specifically, games like

Go and Shogi are too complicated for standard search techniques. There is presently

a lot of research effort going into these games, which is not the case for multi-player

games.

2.2 Extending Work Multi-Player Games

 We can use some of the techniques from two-player games directly in multi-

player games without much thought. Methods for learning a static evaluation func-

tion are likely to be useful in both two-player and multi-player games, as well as

techniques like Monte-Carlo sampling.

 Despite this, there isnʼt a single multi-player game for which expert-level

programs have been written. Probably the most skilled program in a multi-player

game is Loki [Billings, et al., 2002], which plays Texas Hold ʻem Poker, although

it has not yet played against humans for money, which will be a true test of its skill.

Poker is one of the more widely played multi-player games, and we will discuss

briefly in the next chapter.

 Given the lack of work in multi-player games, there are many unanswered

12

question about how to play these games in practice. Prior to this work, there was

limited research into multi-player game tree search. Specifically, papers addressed

the maxn algorithm [Luckhardt and Irani, 1986], the introduction of shallow pruning

and the incorrectness of deep pruning [Korf, 1991], along with some work on show-

ing that maxn can suffer from game tree pathologies [Mutchler, 1993]. However,

this in itself is hardly sufficient to provide a basis for writing an expert-level multi-

player game. The later chapters of this thesis will extend many of the two-player

techniques found in the previous section to multi-player games.

2.3 Solving Perfect and Imperfect Information Games

 Most search algorithms are designed for perfect-information games such as

Chinese Checkers. To play imperfect-information games such as Spades or Hearts,

we must either modify the standard algorithms to allow for imperfect information,

or use new algorithms designed for imperfect-information games.

 If, in a card game, we could see our opponents ̓cards, we would be able to

use standard search algorithms such as minimax to play the game. While in most

games we donʼt know the exact cards our opponent holds, we do have an estimate

of the probability of our opponent holding any particular hand or card. Thus, we can

create a hand that should be similar to what our opponent holds, and use a perfect-

information algorithm to play against it.

 The full expansion of this idea results in Monte-Carlo sampling. Instead of

generating just a single hand, we generate a set of hands that are representative of

13

the actual hand we expect our opponent to have. In Bridge, for instance, we would

generate hands that are consistent with the bidding and play so far. We then solve

each of these hands using the standard minimax algorithm. When we have complet-

ed the analysis of each hand, we combine and analyze the results from each hand to

produce our next play. As play continues we update our models to reflect the plays

made by our opponent.

 Many of the imperfect information games we consider in this thesis are card

games, and so they resemble Bridge in terms of their imperfect information. Thus,

in much of our work we will discuss all games as if they are perfect information

games, making the assumption that, as in Bridge, we will be able to use perfect-in-

formation methods to play imperfect information games.

14

Chapter 3

Multi-Player Games

 There are a wide variety of multi-player games. We begin by covering many

of these games here, paying particular attention to the games we have spent more

time investigating. A secondary purpose is to catalogue some of the interesting

multi-player games which have not been studied in depth.

 It is important to note that many games such as Bridge are played with four

players in two teams. While these games have multiple players, the players are in

two coalitions, and so regular two-player game theory applies.

Figure 3.1: A Chinese Checkers board with three players.

15

3.1 Chinese Checkers

 Chinese checkers is a perfect information game for 2-6 players. A Chinese

Checkers board is shown in Figure 3.1. The goal of the game is to get 10 pegs or

marbles from oneʼs starting position to oneʼs ending position as quickly as possible.

The positions vary depending on how many players are in the game. Starting and

ending positions are always directly across from each other on the board, and play-

ers are placed as symmetrically as possible around the board. In a two-player game,

the players would start at the top and bottom of the board, while in a three-player

game the players begin in alternating corners of the board.

 Pegs are moved by stepping to an adjacent position on the board or by jump-

ing over adjacent pegs. One can jump over any playerʼs pegs, or chain together sev-

eral jumps, but pegs are not removed from the board after a jump. We demonstrate

this with a set of consecutive moves in Figure 3.2. The first move is a simple jump

Figure 3.2: Move possibilities to start a game of Chinese Checkers.

16

over a single piece. The second move is a double jump. The third move is a simple

move to an adjacent space, and the last move involves 4 hops. Players can chain

together as many jumps as they wish over both their own pieces and their opponents

pieces, as long as every segment of the jump is from an empty space to another

empty space over a single peg. There are no forced moves in Chinese Checkers, as

there are in Checkers.

3.2 Abalone

 Abalone, like Chinese Checkers, is a perfect-information board game for 2-6

players. Abalone is a more recent game which became popular in the mid-1990ʼs.

An example of an abalone board is shown in Figure 3.3. The goal of the game is to

push 6 of your opponents pieces off the edge of the board.

 A player can move 1-3 pieces on his turn. There are two classes of moves

allowed in an abalone game, which are illustrated in Figure 3.4. The first class of

moves are simple moves of oneʼs own pieces. This involves moving a row of one,

two, or three linearly contiguous pieces together one space along any axis. In the

Figure 3.3: A three-player abalone game board.

17

first example in Figure 3.4 each player has made a move of this class on the board.

The player at the top has moved a single pieces down and to the left. The player on

the bottom left has moved two pieces along the axis of those pieces one space up-

wards. The bottom right player has moved three pieces together up and to the left.

 The second class of moves allowed in abalone are push moves. These are il-

lustrated by the right half of Figure 3.4. The first move is made by the bottom right

player, using three of his pieces to push one of the upper players pieces upwards.

Then, the upper player responds by using three of his pieces to push his opponentʼs

piece off the board. When making push moves, one must push pieces along the same

axis of the pieces being moved, and you must always push less pieces than you are

moving yourself. So, three pieces can push one or two pieces, and two pieces can

push one piece, but you can never use four pieces to push three pieces.

3.3 Card Games

 Card games have many similarities which we will consider first before dis-

cussing any particular games in detail. We break them into two classes here, trick-

based games and non-trick-based games. Trick-based games include Hearts, Spades

Figure 3.4: Example moves from the game of Abalone.

44

18

and Pinochle, while Cribbage, Uno and others are not trick based.

 In a trick-based game, cards are dealt out to each player face down before the

game begins. The first player plays (leads) a card face-up on the table, and the other

players follow in order, playing the same suit as lead if possible. A play out of suit is

called a “slough.” When all players have played, the player who played the highest

card in the suit that was led “wins” or “takes” the trick. He then places the played

cards facedown in his discard pile, and leads the next trick. This continues until all

cards have been played. Some games contain “trump” suits. If a trick contains a

trump card, the highest trump card played will win the trick, regardless of the suit

lead. In trick games, points are assigned by either the number of tricks taken or the

point value of each card taken in a trick.

 Most trick games are divided into sets of hands. Each hand represents one

deal of the cards, and the play of those cards according to the rules of the game.

After a hand is played out, points are added to playerʼs total scores, the cards are

shuffled, dealt, and then the next hand begins. Players continue this process until at

the end of a hand one playerʼs score surpasses a predetermined limit, at which point

the game is over.

Figure 3.5: A sample card trick.

19

 We demonstrate a sample trick in Figure 3.5. In this trick, the first player has

lead the Jack of Clubs. The second player followed suit with the Ace, but the third

player sloughed the Four of Spades, because he had no Clubs in his hand. If there

is no trump or a suit other than spades is trump, the second player will win the trick

with the Ace. But, if spades are trump, then the third player will win with the four.

 We cannot cover every detail of every card game here. More details of

these and many other games can be found from various sources. Currently http:

//www.pagat.com/ is probably the most comprehensive reference of card games

available, covering many more games than found in so-called “dictionaries” of card

games such as [Parlett, 1991], [Gibson, 1974] or [Hoyle, et al., 1991].

3.3.1 Hearts

 Hearts is usually played with four players, although there are variations for

two or more players. In Hearts there is no trump suit, and points are assigned by the

cards taken in your tricks. Players get 1 point for every heart taken and 13 points for

the Queen of Spades, for a total of 26 points, and the goal is to minimize the number

of points taken.

 In addition to these basic rules, there are several special rules in Hearts. At

the beginning of each hand, cards are exchanged between the players on the table.

Each player chooses 3 cards to pass, lays them down on the table, and then picks

up the cards passed to them. Passing alternates from hand to hand, following a pass

pattern such as “left, right, across, hold,” where a hold means that no cards are

passed.

20

 In Hearts one can also “shoot the moon”, or take all the points available.

When one player does this, instead of getting 26 points, the other players in the

game all get 26 points each, and the player who shot the moon gets 0 points. This

creates a tension between minimizing oneʼs points, but also assuring that no one

player is able to take all the points.

 Other variations that are sometimes played include getting -5 points for tak-

ing no tricks, getting -10 points for taking the Jack of Diamonds, having the player

with the 2 of Clubs always lead. Some people allow a player who shoots the moon

to get -26 points instead of giving other players 26 points. Hands are usually played

iteratively until one playerʼs score reaches 100 points.

3.3.2 Spades (8-5-3 / Sergeant Major)

 Spades is usually played as a four-player game in two teams. But, there is a

three-player version in which players are not in teams. There are other games such

as 8-5-3, also called Sergeant Major, that are very similar to Spades, and are always

played by three players.

 The basic goal of these games is to take as many points as possible, where

each player gets one point for every trick taken. There is also a minimum number of

tricks which must be taken to avoid some penalty.

 In Spades there is a simplistic bidding procedure that occurs after the cards

have been dealt, but before play begins. Starting with the dealer, and continuing

clock-wise around the table, players announce how many tricks they plan to take in

the game. Some rule variations require that the last player cannot bid such that all

21

players can make their bids exactly. In three-player Spades each player has 17 cards,

so this would require that the bids do not sum exactly to 17.

 If a player takes at least as many tricks as they bid, they get 10 points for ev-

ery trick taken, plus one point for each additional over-trick. If, in the course of the

game, they accumulate 10 over-tricks, they take a 100 point penalty. If a player does

not make their bid, they lose 10 points for every trick bid. So, if you bid 5 tricks and

take 8 you will get 53 points. If you bid 8 and take five, you get -80 points. As the

name suggests, Spades is always trump.

 In Sergeant Major or 8-5-3, each player must take a predetermined number

of tricks (8, 5, or 3), and the person who needs to take the most number of tricks

gets to declare trump. The number of tricks you need to take rotates each hand. If

a player didnʼt make their minimum required score on the previous hand they must

trade some of their cards to the player(s) who took the extra tricks. This is done by

having the player who took the extra tricks give a single card to the losing player.

This player then must pass the highest card in their hand from the same suit back to

the winning player. Play can continue until a player reaches a fixed score, or until

one player is able to take all the tricks.

3.3.3 Cribbage

 Cribbage is the first of the card games we consider that isnʼt trick based,

although cards are played in sequence by players in the game until no player can

make a legal move. Like the other card games weʼve described here, cribbage has

variations for 2-4 players, and the 3-player version isnʼt played in teams. We cover

22

the rules for the 3-player game here. Cribbage has three stages, the “discard”, the

“play”, and the “show”. In the first stage players are dealt five cards, one of which

they discard face-down into a “crib”. One card is also dealt into the crib so that,

along with the discards, an additional four-card hand is formed. After all players

have discarded, one more card, called the “start” card is selected randomly from the

deck and placed face up on the top of the undealt cards. All players use this card as

part of their hand in the “show”.

 In the play, players play their cards out consecutively. Each time a card is

played, a player says the sum of all cards played to that point. The sum of cards is

not allowed to exceed 31. If a player has no cards left to play or cannot play without

the sum exceeding 31 points he instead says “go”. When all players have said “go”,

play continues with the sum reset to zero. During the play, points are awarded if

consecutive plays form a run of three or more cards, if consecutive cards match, or

if the sum of cards so far is 15 or 31. We demonstrate this in Figure 3.6.

 In this play of cards the first player would play their card and then say “four.”

The second player would follow with their card saying “ten.” The third player

would smile and say “15 for two (points) and a run of three for five (total points).”

Figure 3.6: Sample play of cards from “the play” in cribbage.

23

Whenever a set of consecutively played cards can be sorted into a run of three or

more cards, a player scores one point for every card in that run, in this case 3 points.

In addition, since the sum reached 15, another two points are awarded. The first

player would then continue by playing their five, saying “twenty for two,” as the

last two cards form a pair. Three-of-a-kind is worth 6 and four-of-a-kind is worth

12. The second player continues with the jack saying “thirty.” If nobody has an ace,

they will each say “go”, and the second player will collect one point for playing the

last card.

 In the “show”, the players sum up the points from the cards they originally

had along with the start card, with the dealer also scoring the hand formed by the

cards that were discarded. Points are awarded similarly to the play except that play-

ers can use all arrangements of their hand that will give them points. These include

straights, combinations of cards that add to fifteen, a four-card flush in your hand or

a five-card flush in your hand including the start card. Additionally, the jack of the

same suit as the start card is worth one point. For instance, if your four-card hand

plus the start card contained the same cards as Figure 3.6, it would be worth 16

points: two runs of three for 6, four ways to get fifteen for 8, and a pair for 2. The

game ends as soon as any player reaches 121 points.

3.4 Other Games

 Besides the games considered so far, there are other popular games we will

not consider in detail in this thesis. We describe them briefly here, both for the sake

24

of completeness, but also so that we can reference them when we speak to the ap-

plicability of different pruning techniques later in this thesis.

3.4.1 Pinochle

 Pinochle is a popular card game that has similarities to both Hearts and

Spades. Like Spades, Pinochle has a bidding procedure, except in Pinochle the

player winning the bid gets to set trump. In the main play of Pinochle, players are

trying to maximize the number of points they take. But, more like Hearts, points are

awarded based on the cards taken in each trick. Specifically, the Ace, Ten and King

of each suit are worth one point, while all other cards are worth nothing.

3.4.2 Big-2 / Feudal Wars / Da Er

 This class of games has many variations played all over the world. It is es-

pecially popular in China. It has a flavor of trick-based games, but also a flavor of

poker. The goal of the game is to play out all your cards as quickly as possible. Plays

are made by leading out a set of cards that match one of the well-known hands found

in five-card stud poker. These include singles, pairs, straights, full-house, and so

on.

 The first player chooses their lead, and other players then follow in a manner

that will always increase the value of the hand, matching a pair with a higher pair, a

full house with a higher full house, etc. A player can pass at any time in a round and

then join in later if the play returns to them. When all players pass, the last player to

play gets to lead the next round. The game is called Big-2, because the two counts

as the high card instead of low card.

25

 There are variations on the game that allow for passing of cards similar to

Sergeant Major and variations on what sets of cards can be played when. For in-

stance, some rules allow a flush to beat a straight, while other rules require that once

a straight is played all players must follow with a straight.

3.4.3 Uno / Crazy 8ʼs

 Uno and Crazy 8ʼs are similar games in which players are simply trying to

get rid of all the cards in their hand. Instead of following the lead in a trick, there is

a single card showing at all times. When it is a playerʼs turn they must play a card of

the same suit or rank on top of the showing card. If they cannot play a card they must

draw cards until they can play. Play continues until someone runs out of cards. In

Uno you must say “uno” when you have one card left, and there are wild cards, and

cards which force your opponents to draw. In Crazy 8ʼs, the rules are similar except

that when you play an eight you can call any suit as the next suit to be played.

3.4.4 Poker

 Poker is probably the most popular card game used in gambling. There

are many variations played, and it is one of the few multi-player games on which

researchers have focused. There are many interesting issues in writing a high-per-

formance Poker program, including handling imperfect information and opponent

modeling. In fact, these issues dominate over the more traditional search techniques

presented here. Because of this, we will not consider poker in this work. The current

best Poker program is Loki, described in [Billings, et al., 1999] and [Billings, et al.,

2002].

26

Chapter 4

Decision Rules

 The first thing needed to play any game is a strategy. From a game-theoretic

perspective, a strategy usually requires that a player explicitly enumerate all pos-

sible states of a game that they could face, along with the decision they would make

at those points. While this may be feasible for small games, it is not feasible for

most real-life games. However, a strategy is defined implicitly for a game by a static

evaluation function and a decision rule. The evaluation function assigns a value or

utility to each leaf node in the game tree, and the decision rule dictates how the val-

ues are propagated up the game tree. A static evaluation function estimates the util-

ity of a state through human expert-level knowledge or through learned attributes.

In chess, for instance, experts often speak of the material value of the pieces on the

board, which is often used as part of an evaluation function. Each piece can be given

a value, such as 1 for a pawn, 3 for a knight or bishop, 5 for a rook and 9 for a queen.

A simple evaluation function would just return the difference in the material value

between the two players. Thus, these two components are used together to dictate

the strategy for play in a game.

27

 The static evaluation function used in a game is very domain dependant,

while decision rules are generic and can be applied across many domains. So, the

most fundamental choice we must make when writing a program to play a game is

what decision rule we will use to guide our moves in the game. Once this is done,

we can use a variety of methods to craft the best evaluation function possible for any

particular domain. We obviously would like to choose a decision rule with strong

theoretical properties, although properties of a decision rule which are strong in

theory may not be so in practice.

 We begin this chapter with a review of the standard 2-player decision rule,

minimax. We then discuss decision rules that can be used for games with more than

two players. In this chapter we will just discuss decision rules and their theoretical

properties. Other features, such as pruning techniques, will be discussed in Chapter

5 and following chapters.

4.1 Two-Player Minimax

 The minimax algorithm is a simple but powerful decision rule for searching

two-player game trees. It can be used for playing strictly competitive (also called

zero-sum) two-player games. In a zero-sum game the players have symmetric util-

ity functions for the leaf nodes in the tree. The minimax procedure has been studied

in depth, and we will not cover all of its properties here. Many more details can be

found in [Luce and Raiffa, 1957].

 We illustrate the minimax procedure in Figure 4.1, with explicit values for

28

each player. Each node is drawn as a box with the number of the player to move

inside the box. Outside the box is the minimax value of each node.

 In Figure 4.1, Player 1 is a max-player and Player 2 is a min-player. At the

node marked (a), Player 2 is to move, so Player 2 will consider the minimax values

of his children, 1 and 3, and, as a min-player, choose the value that is minimum, 1.

Player 2 is also to move at node (b), and again he will select the minimum value of

his children, 5. Similarly, the node at the root is a max node, with child values of 1

and 5. So, Player 1 will choose the maximum child value, 5, to be the minimax value

of the game tree.

 The static evaluation function used to get the minimax values in the tree is

only applied at the leaves of the trees. All other minimax values in the tree, shown

in italics, come from backing up minimax values from the leaves of the tree.

 In the minimax algorithm, the competing players are commonly referred to

min and max. At any node in the search tree, the minimax value of that node is de-

fined by one of three cases, shown in the pseudo-code for the algorithm:

Figure 4.1. A 2-player minimax tree fragment.

5

2 2

1

(b)
5

1
1

(a)
1

(b) max

min

max 1
3

1
5

1
9

29

minimax(node)
{
 if node is terminal
 return static evaluation function

 if node is min-node
 currentBest = ∞
 FOREACH child of node
 currentBest = min(currentBest, minimax(child))

 if node is max-node
 currentBest = -∞
 FOREACH child of node
 currentBest = max(currentBest, minimax(child))

 return currentBest
}

4.1.1 Theoretical Properties of Minimax

 Theoretically speaking, the minimax algorithm is calculating an equilibrium

point [Luce and Raiffa, 1957] in the search tree. If the players in the game are using

the same evaluation function and if they are searching the game tree in its entirety,

this guarantees several properties. Most importantly minimax guarantees that re-

gardless of the strategy of oneʼs opponent, one will never do worse than the value

returned by minimax. This can be equated in some sense with playing optimally,

as it is the best strategy possible against an optimal opponent, but it might not take

advantage of a suboptimal opponent.

 [Schaeffer, et al, 1992] noted that their Checkers program, Chinook, might

have a choice between two moves that both will lead to draw, given an optimal

opponent. But, one move might lead to an obvious draw, while the other move

would lead to a draw most humans would miss. In this case, with a computer play-

ing against a sub-optimal opponent, there is a need to do more than calculate an

30

equilibrium point. There also needs to be a mechanism for forcing our opponents to

play the most difficult line of play possible in order to beat us. As of yet there is no

automatic way of doing this.

 Another point which detracts from the theoretical guarantees of the equilib-

rium point is that in most games we arenʼt able to search a game tree in its entirety.

This means that the values being backed up are not actual evaluations of the state

of the game, but heuristic approximations, and our opponent is not guaranteed to be

using the same evaluation function that we are.

 Other objections against minimax as a basic decision can be found in [Russell

& Norvig, 1995]. But, regardless of these arguments, the fact remains that minimax

has been the decision rule used for most successful expert-level game implementa-

tions.

4.2 Paranoid Algorithm

The paranoid decision rule [Sturtevant and Korf, 2000] is the simplest multi-player

algorithm, as it side-steps the issue of multiple players by reducing a game from

an n-player game to a 2-player game. While this is not necessarily accurate, it is

simple. Because of this reduction, paranoid is identical to minimax from a theoreti-

cal standpoint.

 The paranoid algorithm reduces a n-player game to a 2-player game by as-

suming that a coalition of n-1 players have formed to play against the remaining

player. We demonstrate this in Figure 4.2. In a multi-player game each playerʼs

31

score is represented by an entry in a n-tuple, where the ith entry is the score for the

ith player in the game. In this figure, the score for each player is found in the triple

next to each node. To convert the game into a two-player zero-sum game, we change

the evaluation triple to a single value, the difference between the score of the first

player and the remaining players ̓scores from the. At node (a), for example, Player

1 has a score of 4, while Player 2 has 6 points and Player 3 has 0 points. Thus, the

paranoid evaluation is 4-(6+0) = -2.

 We calculate the paranoid value of the game tree exactly as we did for mini-

max. At node (b), Player 2 chooses the best value for the coalition of Players 2 and

3, -2. Similarly at node (c), Player 2 chooses the minimum of his children, -10. At

the root of the tree, Player 1 can get a value of -2 from the left child and -10 from

the right child, so he will choose to move towards the left branch, and the paranoid

value of the game tree will be -2.

4.2.1 Paranoid Deficiencies

 As one may suspect, there will be cases where the paranoid algorithm makes

poor decisions based on its paranoid view of the world. We demonstrate this with a

Figure 4.2. A 3-player paranoid tree fragment.

-2

2 2

1

(c)
-10

3
(4, 6, 0)

-2

(b)
-2

(b) max

min

min 3
(5, 2, 3)

0

3
(0, 6, 4)

-10

3
(3, 2, 5)

-7

(a)

32

sample hand from the game of Hearts in Figure 4.3. In this example we show three

possible ways that the tricks could play out, underlining the cards that will take

tricks. We will do our analysis from Player 2ʼs perspective, assuming that Player 1

has already led the 9 of spades. There are three relevant lines of analysis. The first

line of play (a) is what we would expect to happen. In this line Player 2 ducks Player

1ʼs lead with the 6, and Player 3 is forced to take the trick with the jack. At this point

Players 1 and 2 can duck any card that Player 3 plays, so Player 3 should take the

rest of the tricks and get all 17 points remaining in the game, four hearts and the

Queen of Spades.

 But, the paranoid algorithm puts Players 1 and 3 in a coalition, so the line

of play in (a) is the worst possible for the coalition. Instead, the paranoid algorithm

would come up with the line of play in (b) or (c), as Player 1 and 3 will have lower

combined scores in these lines of play. In the case of (b) Player 2 will duck the spade

trick once again. Then, instead of ducking a heart trick, Player 1 will take the trick

with his 5. This allows him to lead back spades until Player 2 is forced to take the

Queen of Spades. The final score will be 13 points for Player 2 and 4 points for the

coalition of Player 1 and 3. In this analysis, Player 1 is taking 3 points with his 5 of

Figure 4.3: Paranoid worst-case analysis 1.

Possible Plays

(a) 9♠ 6♠ J♠ A♦ … K♦ … Q♦ … 4♥ …
(b) 9♠ 6♠ J♠ 4♥ 5♥ 2♥ 8♠ Q♠ A♦ 2♦ K♦ … Q♦ …
(c) 9♠ Q♠ J♠ 2♥ 3♥ 4♥ A♦ … K♦ … Q♦ …

Player 1
9♠ 8♠ 7♠ 5♥ 3♥

Player 2
Q♠ 6♠ 2♠ 2♦ 2♥

Player 3
J♠ A♦ K♦ Q♦ 4♥

33

Hearts to save Player 3 from taking the Queen, which he usually wonʼt be willing

to do in practice. The line of play in (c) has the same result as line (b), except that

Player 2 takes the Queen of Spades immediately instead of waiting to take it later.

 When using the paranoid algorithm, Player 2 will not accept line (a) as a

possible outcome of the game, and will have to break the tie between lines (b) and

(c). Because both line (b) and line (a) start identically, it is possible that if Player 2

chooses to play line (b) that his opponents may end up playing out line (a) instead.

(Particularly if they arenʼt really in a coalition.) Ideally a tie-breaking rule would

always be able to tell us to choose line (b) over line (c), but it is possible for there to

be more subtle interactions that wonʼt always be easily determined with a tie-break-

ing rule.

 Figure 4.4 is another even more extreme example of analysis by the paranoid

algorithm. In this case we analyze the situation from the perspective of Player 1. In

this example, the expected line of play is (a), where Player 3 is forced to take the

Queen of Spades with the King, and then will take the rest of the tricks for a total of

19 points. But, a paranoid analysis will come up with the line of play in (b), where

Player 2 will take the Queen of Spades in order to lead back low clubs for Player 1 to

Figure 4.4: Paranoid worst-case analysis 2.

Possible Plays

(a) Q♠ 2♠ K♠ A♥ … K♥ … Q♥ … J♥ …
(b) Q♠ A♠ K♠ 2♣ … A♣ K♣ … A♦ … K♦…

Player 1
Q♠ A♣ K♣ A♦ K♦

Player 2
A♠ 2♠ 2♣ 3♥ 2♥

Player 3
K♠ A♥ K♥ Q♥ J♥

34

take. In this case Player 1 will take 6 points, Player 2 will take 13 points, and Player

3 will take none.

 The real difficulty comes when the paranoid algorithm compares this situa-

tion to another situation in which Player 1 is guaranteed to take 5 points no matter

the opponent strategy. In such a case most human players would opt to risk taking 6

points than be guaranteed to take 5, but the paranoid algorithm will always choose

to take 5 guaranteed points over a risk of taking 6.

 A partial game tree behind this decision is in Figure 4.5. Using the paranoid

decision rule at node (a) Player 2 (as maximizer) must choose between a score of

-19 and -7, and will select the right branch with a score of -7. If Players 2 and 3 are

truly in coalition this is the correct move. But, if not, Player 1ʼs paranoid model of

Player 2 has Player 2 paying a high penalty (13 points) for staying in the coalition.

 Despite these issues, the paranoid algorithm still has some merits. Because it

reduces a game to a two-player game, it will inherit all the properties of minimax,

particularly the two-player notion of an equilibrium point. This can be used to pro-

vide a bound on oneʼs score, which could be very useful at times. For instance, you

2

1

3
(0, 0, 19)

-19

3
(6, 13, 0)

-7

(a)

Figure 4.5: The paranoid game tree behind Figure 4.4.

35

may just need to take less than 10 points to win the game, and the paranoid algo-

rithm could provide a line of play with that guarantee. In addition, it has desirable

pruning properties that we will consider in Section 5. Finally, in a game in which it

is difficult for players to collude, the paranoid algorithm will end up approximating

the maxn algorithm, which we consider in the next section. This may seem counter-

intuitive, but in a game where there is no advantage for the players to collude, there

is also no disadvantage in assuming oneʼs opponents are in a coalition. So if, in such

a game, assuming everyone is in a coalition allows us to prune more, we can do so

with no loss to the model of how our opponents behave. Of course if our play is truly

independent, then we arenʼt actually playing a competitive game.

4.3 Maxn

 The maxn algorithm [Luckhardt and Irani, 1986] is the generalization of min-

imax to a game with n players. For two-player games, maxn reduces to minimax. In

a maxn tree with n players, the leaves of the tree are n-tuples, where the ith element

in the tuple is the ith playerʼs score. At the interior nodes in the game tree, the maxn

value of a node where player i is to move is the maxn value of the child of that node

2 2 2

1

3
(1, 3, 5)

3
(6, 3, 1)

3
(6, 4, 0)

3
(3, 5, 2)

3
(6, 4, 0)

3
(1, 4, 5)

(3, 5, 2) (6, 4, 0)

(6, 4, 0)

(c)(b)

Figure 4.6: A 3-player maxn game tree

(1, 3, 5)
(a)

(d)

36

for which the ith component is maximum. This can be seen in Figure 4.6.

 In this tree fragment there are three players. The player to move is labeled

inside each node. At node (a), Player 2 is to move. Player 2 can get a score of 3 by

moving to the left or right. We break ties to the left, so Player 2 will choose the left

branch, and the maxn value of node (a) is (1, 3, 5). At (b), Player 2 selects between

4 and 5, so the maxn value there is (3, 5, 2), and at (c) Player 2 breaks another tie

to select (6, 4, 0). Finally, at the root, Player 1 will select the child which has the

greatest first component, (c), with (6, 4, 0) as the maxn value of the entire tree. The

pseudo-code for maxn is as follows:

Maxn(Node, Player)
{
 IF Node is terminal
 RETURN static value
 Best = Maxn(first Child, next Player)
 FOR each remaining Child of Node
 Curr = Maxn(Child, next Player)
 if (Curr[Player] > Best[Player])
 Best = Curr
 RETURN Best
}

4.3.1 Equilibrium Points

 The idea of equilibrium points exists in multi-player games as well as in two-

player games. [Nash, 1951] introduced and proved the existence of an equilibrium

point for any game, while [Jones, 1980] provided a method for calculating equilib-

rium points in multi-player games, which eventually resulted in the maxn algorithm

[Luckhardt and Irani, 1986].

 In a n-player game, an equilibrium point exists when, given a strategy that

leads to a particular maxn value, “no player finds it is to his advantage to change to

37

a different strategy so long as he believes that the other players will not change.”

[Luce and Raiffa, 1957]. But, this ends up being much weaker than the same con-

cept in a two-player game.

 In a multi-player game there are multiple equilibrium points that may have

completely different equilibrium values and strategies. Some discussion of the

weakness that results from multiple equilibrium points can be found in [Luce and

Raiffa, 1957]. We extend these ideas and make them concrete with a few points on

the practical consequences of multiple equilibrium points.

 We begin with an example of multiple equilibrium points in Figure 4.6 at

node (c). At this node Player 2 can choose either of his children, as both will lead to

the same score for Player 2. But, if Player 2 chooses (1, 4, 5) as the maxn value of

node (c), Player 1 will choose the result from node (b), (3, 5, 2) to be the maxn value

of the tree. Thus, the maxn values (6, 4, 0) and (3, 5, 2) are both the result of valid

equilibrium strategies in the tree.

 In section 4.1.1 we discussed that, in a two-player game, minimax is the best

strategy we can use against an optimal opponent. In addition, no matter what strat-

egy the minimizer uses, minimax will always provide a lower bound on the score of

the maximizer. In multi-player game this is not the case. In fact, unless our model

of our opponent is perfect, the maxn decision rule can make no guarantees about our

score in the game.

Theorem 4.1. In a multi-player game, if a player incorrectly models their oppo-

nents ̓ tie-breaking rule, we cannot bound the error between the calculated maxn

38

value and the actual maxn value of the tree.

Proof: Figure 4.7 contains a generic maxn tree. We have represented Player 2ʼs pos-

sible scores by x and y. At node (a), Player 2 can decide whether Player 1 will get 0

points or 5 points on that branch. Similarly, at node (b), Player 2 can decide whether

Player 1 will get 0 points or ∞ points. So, by adjusting his tie breaking, Player 2 can

give Player 1 a score of 0, 5, or ∞. These values can be chosen arbitrarily, so the

theorem holds. ®

 This result doesnʼt mean that maxn is a worthless algorithm. A game tree with

no ties will have a single equilibrium point and a single maxn value. In addition,

each possible maxn value that results from a particular tie-breaking rule will lead to

Figure 4.8: Tie breaking situation

Possible Plays

(a) A♠ K♠ 8♣ 3♣ Q♠ 5♣
(b) A♠ Q♠ 8♣ 3♣ K♠ 5♣
(c) 3♣ K♠ 8♣ 5♣ A♠ Q♠

Player 1
A♠ 3♣

Player 2
K♠ Q♠

Player 3
8♣ 5♣

1

(∞, y, …) or
(0, x, …)

Figure 4.7: Generic tie-breaking in a maxn game tree

(c)

2

3
(0, y, …)

3
(∞, y, …)

(, y, …)
(b)

2

3
(0, x, …)

3
(5, x, …)

(, x, …)
(a)

39

a reasonable line of play, given that all players use that tie-breaking rule. But, in a

real game we rarely know the tie-breaking rule that our opponent is using. In fact,

the choice of a tie-breaking rule is part of a strategy for play. In Hearts, for instance,

good players will often save the Queen of Spades to play on the player with the best

score. Thus, it is reasonable, and perhaps even required, that we take into account

our opponents strategy if we wish to write an actual expert-level program.

 We illustrate the implications of theorem 4.1 in Figure 4.8. Each player holds

2 cards, as indicated, and three possible outcomes of the play are shown. The win-

ning card of each trick is underlined. If cards are played from left to right in your

hand by default, Player 1 can lead the A♠, and Player 2 will not drop the Q♠, as

in play (a). However, if Player 2 breaks ties differently, this could be a dangerous

move, resulting in Player 1 taking the Q♠, as in (b). But, if Player 1 leads the 3♣, as

in (c), Player 3 will be forced to take the Q♠.

 We demonstrate the exact same situation in a game tree in Figure 4.9. In this

figure Player 2 is indifferent to how he breaks the tie at (a), because either way he

will get 0 points. But, if Player 1 assumes he will break it to the left at node, and he

Figure 4.9: Maxn game tree for Figure 4.8.

1

(13, 0, 0) or
(0, 0, 13)

2

3
(0, 0, 13)

3
(0, 0, 13)

(0, 0, 13)
(b)

2

3
(0, 0, 13)

3
(13, 0, 0)

(13, 0, 0)
(a)

A♠ 3♣

K♠ Q♠ K♠ Q♠

40

instead breaks it to the right, Player 1 will take 13 points. But, if Player 1 chooses

the move towards node (b), he is guaranteed to get 0 points, regardless of Player 2ʼs

tie-breaking rule.

 One possible tie-breaking rule we have found effective for such situations has

been to assume that our opponents are going to try to minimize our score when they

break ties. This obviously has a flavor of the paranoid algorithm, and it will cause us

to try to avoid situations where one player can arbitrarily change our score.

 Explicit tie-breaking rules, however, have detrimental effects on the pruning

algorithms considered in Chapter 5. An alternate approach to tie-breaking is to order

moves based on how we estimate ties should be broken. In Hearts, for instance, we

would always consider playing the Queen of Spades first, if a higher spade was al-

ready in the current trick. Similarly, if no higher spades have been played, we should

always consider playing the Queen of Spades last. This provides an advantage in that

we donʼt need to explicitly worry about ties when searching a game tree, but we do

need to incorporate tie-breaking into our move-ordering function. This will be effec-

tive as long as we can accurately estimate how ties should be broken before searching.

4.4 Conclusions

 In this chapter we have demonstrated two different decisions rules that can

be used for multi-player games, and also demonstrated some of the theoretical and

practical properties of these algorithms. In Chapter 5 we will continue by analyzing

how we can calculate these decision rules as efficiently as possible.

41

Chapter 5

Pruning Algorithms

 Closely connected with the choice of decision rules for search is the effi-

ciency by which we can calculate a given decision rule. Since the games we are in-

terested in usually have game trees that grow exponentially in depth, any techniques

that will allow us to search deeper into the game tree while preserving the result of

the decision rule will be very worthwhile. In general, the deeper we can search the

more accurate our evaluation is going to be, so a deep search with a simple decision

rule usually outperforms a shallow search with a more complicated decision rule.

Furthermore, if we can search to the end of a game tree, we can base our decision on

exact outcomes rather than heuristic estimates.

5.1 Alpha-Beta Pruning

 Alpha-beta pruning was first developed in the context of two-player games.

An early implementation is described in [Newell et al., 1958], but comprehensive

analysis if its effectiveness was not done until later [Knuth and Moore, 1975]. Al-

pha-beta pruning is based on a derived window of values between which a playerʼs

scores are guaranteed to fall. Because the paranoid algorithm reduces a multi-player

42

game to a two-player game, alpha-beta pruning works under the paranoid algorithm

as it does under any two-player game. The only difference is the asymptotic analysis

of the performance of paranoid. So, we present alpha-beta pruning and its analysis

here in the context of the paranoid algorithm.

 An example of alpha-beta pruning is seen in Figure 5.1. The values in this

figure are the same as in Figure 4.2. Player 1 at the root is trying to maximize his

score while the other players are trying to minimize it. After searching the subtree

at (a), Player 1 knows he can get -2 points by moving to (a). This means that the

minimax/paranoid value of the root of the tree will be no lower than -2. So, the win-

dow of possible values for the tree has been reduced to the interval [-2, ∞]

 After searching (b), Player 2 computes a partial minimax/paranoid value of

-10 for Player 1. Since Player 2 is trying to minimize the score, we know that he

will never select a move that has a value greater than -10 for node (b). But, at the

root, Player 1 will never select a node that has value less than -2. Thus, Player 1 will

never choose to move towards node (b), and we can prune away the remaining chil-

dren of (b), because any value there can never affect the minimax/paranoid value of

Figure 5.1. A 3-player paranoid tree fragment.

≥ -2

2 2

1

(b)
≤ -10

3
(4, 6, 0)

-2

(a)
-2

(b) max

min

min 3
(5, 2, 3)

0

3
(0, 6, 4)

-10

43

the tree.

 Given a game tree that we are searching to depth d, which has a branching

factor of b, we would normally have to search bd nodes to calculate the minimax

value of the game tree. However, using the alpha-beta pruning algorithm we can

reduce this to bd/2 in the best case and b3d/4 in the average case. [Pearl, 1984]

5.1.1 Best-Case analysis of Paranoid

 The analysis of the best-case performance for the paranoid algorithm

[Sturtevant and Korf, 2000] is similar to the analysis of the best-case performance

of alpha-beta. However, instead of just having a max and min player in the game,

the min player is actual a coalition of multiple players.

 To calculate the minimum number of nodes that need to be examined within

the game tree, we need to consider a strategy for min and a strategy for max. Min

and max will play on the compressed tree in Figure 5.2, where max is to move at

the root, with a branching factor of b, and min moves next, with a branching factor

of bn-1. Min is the combination of the n-1 players playing against the first player. As

will always be the case, the max-player is first to move, with a branching factor of

Figure 5.2: Best-case analysis of alpha-beta pruning in paranoid algorithm.

c c c

1

1 1

(b)

……

max-player
b moves

min-player coalition
bn-1 moves

44

b. The n-1 opponents each have a choice of b moves, so as a combined player they

will in general have to consider all possible ordering of moves between them, which

total bn-1. In some domains such as card games it may be possible for the coalition to

reduce this branching factor by reasoning about how their moves combine, but we

canʼt make this assumption in general.

 Since max can define its own strategy, the max player must only look at one

successor of each max node in the tree. The min strategy is not known, so all pos-

sible successors of each min node must be examined. Suppose the compressed tree

is of depth D. Max will expand 1 max node and bn-1 min nodes at alternate levels,

meaning that there are b(n-1)·D/2 leaf nodes in the optimal max-player strategy. Simi-

larly, when min searches the tree, the min strategy must look at only one successor

of each min node, and all successors of each max node, so min will look at bD/2 leaf

nodes in the optimal min-player search tree. We assume that each player has an

equal number of turns in the game tree. Given two players in the compressed game,

D must be even, meaning we donʼt have to consider the floor or ceiling in the expo-

nent.

 The minimum number of leaf nodes examined by both strategies combined

will be b(n-1)·D/2 + bD/2 - 1 nodes. We subtract one because there must be one common

leave node between the two strategies. Asymptotically this is O(b(n-1)·D/2), which is

the result for searching a standard minimax tree. But, D is the depth of the tree of

Figure 5.2, which has all the players in the paranoid coalition combined together.

Instead we would like our results in terms of the real tree that we will search.

45

 For every 2 players in the compressed tree, there are n players in the original

tree. So, to convert D to the actual depth of the tree, we multiply by n/2. If d is the

actual depth of the tree, d = D·n/2, and D = 2·d/n. Thus, we can re-write the as-

ymptotic value as O(b(n-1)·d/n). For the case of n = 2, this is still bd/2, the results of the

analysis of standard two-player alpha-beta. For n = 3, we get O(b2·d/3), and in general

as the number of players increases the best-case performance will decrease.

 Therefore, one of the best reasons to consider the paranoid algorithm is that it

can provide large gains in search depth through pruning, and it is possible that those

gains may offset the drawback of an unrealistic decision rule.

5.2 Maxn Immediate Pruning

 Immediate pruning is the most basic form of pruning that can occur in a

maxn game tree. It occurs when a player gets the maximum possible score (a win),

and thus does not need to search any remaining children of the node it is currently

searching. For multi-player games, this terminology was introduced in [Korf, 1991].

In most games, however, we cannot search deep enough to evaluate nodes as a win

or a loss, and some games, such as card games, do not usually evaluate directly to a

win or a loss.

5.2.1 Best-Case Analysis of Immediate Pruning in Maxn

 To our knowledge, the best-case analysis of immediate pruning has not yet

been done, so we present the analysis here. We assume that on every leaf node ex-

actly one player will get a win, and all remaining players will lose. A value of 1 will

46

represent a win, while a value of 0 is a loss.

 First, we consider possible upper bounds on the best case. If all leaf-nodes

are a win for Player 1, the game tree will look exactly like it does in the best case

of the paranoid algorithm, with Player 1 always only considering 1 move, and play-

ers 2 though n always considering all their moves. This would reduce the effective

branching factor from b to bn-1/n. However, as we will see in the next section, the best

case for shallow pruning reduces the branching factor to b1⁄2 for large b [Korf, 1991],

so immediate pruning should clearly be able to do at least this well.

 We can tighten the best-case upper bound using a greedy strategy to deter-

mine how to choose the best values for pruning in the game tree. That is, we will

always choose values that will allow us to prune as high in the game tree as possible.

We also assume that ties are broken to the left. Consider the tree in Figure 5.3. The

highest prune we can make in the tree is at the root node, and to do so, Player 1 must

have a win at that node. In the best case, this value will come from the left-most leaf

2

1

1
(1, 0, 0)

1
(0, 0, 1)

1
(1, 0, 0)

3 3
(1, 0, 0)

(b)

(1, 0, 0)
(a)

(0, 0, 1)

(1, 0, 0)

Figure 5.3: Analysis of immediate maxn pruning.

47

in the game tree, and so on the left-most branch Player 1 will always be able to im-

mediately prune, while the remaining players will never be able to prune, because

they must return a win for Player 1 as their maxn value.

 After pruning the right branch of the root of the tree, the next highest node

that might be pruned in the tree is (a), Player 2ʼs node on the second level of the

game tree. Every value at this node must be a loss for Player 2, so that the win is

returned from the first branch of (a) for Player 1 at the root. So, the most immediate

pruning that can occur at this node is for each remaining child to be a win for Player

3, so that Player 3 must only search one branch of each of his children. At node (b)

on the third level of the tree, Player 3 is in a similar situation to his parent, except

that all his children will be Player 1 nodes, and thus each value there should be a win

for Player 1.

 We first analyze the 3-player case, and then generalize it to n players. We do

this by writing a recurrence for the number of nodes at any level in the tree in terms

S

F

F
…

S
…

F
…

T F(b)

(a)

Figure 5.4: Generic analysis of immediate maxn pruning.

48

of first-level (F) nodes, second-level (S) nodes and third-level (T) nodes. We dem-

onstrated these three classes of nodes in Figure 5.4. This figure corresponds to Fig-

ure 5.3, except that nodes are labelled by their type instead of the player to play.

 First-level nodes are nodes for which the left-branch is a win for the player

moving at that node, and all remaining branches can be pruned. An example of a

first-level node is the root of the tree in Figure 5.3. Second-level nodes are nodes for

which the parent won on their first branch, so the remaining children besides the first

child will win on their first branch. Node (a) in Figure 5.3 is a second-level node.

Third-level nodes, are nodes for which all our children will win on the first branch.

Node (b) in Figure 5.3 is a third-level node.

 For each first-level node, we generate a single second-level node. Each

second level node generates a single third-level node and (b-1) first level nodes.

Finally, each third-level node generates b first-level nodes. So:

 F(n) = (b - 1)·S(n - 1) + b·T(n - 1)

 S(n) = F(n - 1)

 T(n) = S(n - 1)

Which simplifies to:

 F(n) = (b - 1)·F(n - 2) + b·F(n - 3)

To solve this recurrence, we must solve this equation for x:

 x3 - (b - 1)·x - b = 0

 An exact solution can be calculated for any b through use of the standard

equation for the roots of a third order polynomial. But, in general, as b grows large,

49

the solution will grow on the order of O(b1/2). One way to verify this is to notice that

the last term of b is guaranteed to be asymptotically smaller than the (b - 1)·x term.

Because we are interested in the asymptotic growth, we can ignore this term and

solve:

 x3 - (b - 1)·x = 0

 x2 = (b - 1)

 x ≈ b1/2

 For an n-player game there will be n different types of nodes to consider. In

the same way as the three-player analysis, a first-level node will generate a single

second-level node. Each node type between 2..n-1 will generate a single node of the

next level along with (b - 1) first-level nodes. Finally, the nth level node will generate

b first-level nodes. So, the general recurrence will be solved by the equation:

 xn - (b - 1)·xn-2 - (b - 1)·xn-3 … - (b - 1)·x - b = 0

 Again, we can see that the first two terms are the most significant asymptoti-

cally, and solving just for these terms we see that as b grows large the solution for

x will grow on the order of O(b1/2). This means that in the best case there are sig-

nificant gains possible from immediate pruning in multi-player games; on the same

order as the gains from alpha-beta pruning for two-player games. Additionally, we

can show that this is the optimal way to choose values to prune the game tree.

Theorem 5.1: No assignment of values to a maxn game tree can produce more im-

mediate pruning than the greedy assignment strategy.

Proof: Suppose there is a node n to which a greedy strategy assigns a winning maxn

50

value, but some better algorithm does not. Let n also be the first (highest) such

node that occurs in the game tree. First, the other strategy cannot gain more pruning

above this node in the search because, by definition, the greedy strategy has already

pruned any nodes that could possible be pruned. Thus, for this new strategy to be

better than greedy it must somehow be able to prune more nodes below n by not

pruning n immediately than it could if it just pruned n.

 There are two ways this might happen. First, by choosing a value for the first

child for n that will not result in an immediate prune, but choosing same later value

that will result in an immediate prune. We demonstrate this in Figure 5.5. It should

be obvious from the figure that if we are going to immediate prune a node we should

always do so on the first branch, since we will never have to search the loss branch

if we do. Not doing so is just guaranteed to make us expand more nodes.

 The second thing an algorithm can do is not prune n at all. In this case it must

expand all b children of n. For each of these children, any algorithm must expand

at least the first child of each of these nodes as well. In this scenario there are guar-

anteed to be at least b children and therefore b grandchildren of n, since every node

has at least one child. This means there will be at least 2·b nodes in the two levels

Figure 5.5: Sub-optimal ordering for immediate pruning a maxn tree.

2 2

1

(0, 1, 0)

(1, 0, 0)

(a)
loss

win

51

following n. However, if we prune n immediately, there will only be one child of

n and b grandchildren for (b + 1) nodes in the two levels following n. In addition,

the pruning on each of these grandchildren is independent, so there is no way to use

analysis from one grandchild of n to help prune another. This same argument fol-

lows for any number of levels following n. Following this analysis, not pruning n is

guaranteed to create a larger subtree. Thus, there is no strategy for choosing values

to prune a maxn tree better than the greedy strategy, and our best-case analysis is the

optimal case for immediate pruning. ®

 In the worst-case, even if every terminal nodes evaluates to a win or loss it is

not difficult to build a tree for which immediate pruning will never be able to prune.

The general strategy for building such a tree is that each player gets a loss on their

first (b-1) children, and a win on their last child. This causes the final return value

for each player to be a win for that player and a loss for the parent of that node so

that pruning will never occur.

5.3 Shallow Maxn Pruning

 [Luckhardt and Irani, 1986] originally noted that a single player makes his

decision based only upon his own component of the maxn value their children, disre-

garding the other components. So, pruning was originally conceived in the context

of delaying the evaluation of some components in an n-tuple. While this is a reason-

able idea in theory, in practice it is usually of little value. This is because it usually

takes little or no additional work to compute all components of the maxn value once

52

one component has been computed. This is particularly true if one playerʼs score in

a maxn n-tuple is based the other players ̓scores, meaning that it may not be possible

to do the calculations separately, and that calculating the maxn value for one player

explicitly gives you the maxn value for all players. Finally, delaying evaluation of all

components of the maxn value means that we must know the state to which the maxn

value corresponds, which, in most cases, is more complicated than just calculating

the actual maxn value.

 [Korf, 1991] first proposed a shallow pruning algorithm for pruning away

entire nodes in a maxn tree, given simple restrictions on the actual maxn values in-

volved. Shallow pruning refers to cases where a bound on a node is used to prune

branches from the child of that node.

 The minimum requirements for pruning a maxn tree with shallow pruning are

a lower bound on each players ̓score and an upper bound, maxsum, on the sum of

all players ̓scores. We demonstrate this in Figure 5.6. In this figure, all scores have

a lower bound of 0, and maxsum is 10.

 Player 1 searches the left branch of the root in a depth-first manner, getting

Figure 5.6: Shallow pruning in a 3-player maxn tree.

maxsum = 10

2 2

1

(5, 4, 1)

3
(0, 6, 4)

(a)
(≤4, ≥6, ≤4)

(a)
(≥5, ≤5, ≤5)

53

the maxn value (5, 4, 1). Thus, we know that Player 1 will get at least 5 points at the

root. Since there are only 10 points available, we know the other players will get no

more than 5 points at this node. At node (a), Player 2 searches the left branch to get

a score of 6. Because maxsum is 10 we know that Player 1ʼs score will never exceed

4 at node (a), so Player 1 will never choose to move towards (a) at the root, and the

remaining children of (a) can be pruned.

 In the best case, shallow pruning will reduce the asymptotic branching factor

from b to 1⁄2·(1+√¯¯4b-3¯¯), which converges to bd/2 as b gets large, while in the average

case, no asymptotic gain can be expected from shallow pruning a game with more

than two players. [Korf, 1991] The basic problem with shallow pruning is that it

works by comparing the scores of only 2 out of n players in the game, and it is un-

likely that 2 players will have the sum of their scores exceed maxsum. This contrasts

with the large average-case gains available from alpha-beta pruning in 2-player

minimax.

 Given this, it is worth considering whether it is in practice possible to achieve

the best case for shallow pruning. In section 5.3 we will consider this problem, fol-

lowed in section 5.4 by a discussion of what the limits are to shallow maxn pruning

in practice.

5.4 Achieving Shallow Pruning Best Case

 It is not difficult to determine that there is a game tree for which the best-case

for shallow pruning occurs in practice. Furthermore, the exercise provides useful

54

insight into the nature of maxn game trees. In fact, it will lead us to show that for

many real games it is impossible for the best case to occur in practice. We assume,

without loss of generality, that the game tree must be constant-sum. If this isnʼt the

case the result of the analysis still holds, it is just slightly more complicated.

 To begin our analysis we consider the tree in Figure 5.7. In this tree the play-

ers get arbitrary scores on the left branch. Then, given these scores, Player 2 must

get a score of y + z at (a) so that Player 1ʼs score of x at the root and Player 2ʼs score

at (a) sum to maxsum. Maxn pruning can only occur in a sub-tree that has this basic

structure, meaning that the relevant portions for pruning will never involve a larger

or smaller subtree. This means that we can and must duplicate this tree structure to

build larger game trees that are pruned optimally. In a larger tree we always choose

the maxn values for the tree so that we can prune. We do this in Figure 5.8.

 In this figure we have not drawn a complete game tree. Instead we have

drawn multiple copies of the subtree from Figure 5.7 as it would occur in a larger

optimal tree. This tree provides the minimum framework necessary for understand-

2 2

1maxsum = x+y+z

3

(x, y, z)

(x, y, z)

(a)
(, y+z,)

(, y+z,)

Figure 5.7: Basic structure for shallow maxn pruning.

55

Figure 5.8: Best case tree for shallow maxn pruning.

2 2

1maxsum = 9

3

(3, 3, 3)

(a)
(3, 3, 3)

(b)
(2, 6, 1)

(c)
(2, 6, 1)

1 1

2

(2, 6, 1)

(d)
(8, 0, 1)

(e)
(8, 0, 1)

3 3

1

(8, 0, 1)

(f)
(0, 0, 9)

 (g)
(0, 0, 9)

2 2

3

(0, 0, 9)

(h)
(0, 9, 0)

(0, 9, 0)

56

ing what will happen to a maxn game tree in general if we are to choose the maxn

values so that we get the best case for shallow pruning.

 Beginning at the root of Figure 5.8, we have a duplicate of Figure 5.7 at node

(a) in the tree. We can choose any value for the maxn value of the game tree, but we

start with values that are evenly split among the players in the game to help illustrate

our point. Because Player 1 can get 3 points after searching the left branch of (a), we

know that Player 2 must get at least 6 points at (b) to be able to shallow prune the

children of (b). Given that, the maxn value of (c) must be chosen such that Player 2

gets at least 6 points. We choose to give Player 1 two points and Player 3 one point,

although the ultimate results in the tree will be the same regardless of how we split

the values. Node (c) also happens to be the root of a new subtree which resembles

Figure 5.7.

 Since Player 3 has 1 point at (c), Player 1 must have at least 8 points at (d) to

be able to shallow prune at (d), and Player 1ʼs maxn value at (e) must be at least 8.

In this case we chose to give Player 2 zero points and Player 3 one point. Because

Player 2 has 0 points at node (e), Player 3 must have 9 points (maxsum) at node (f)

to be able to prune there. Finally, because Player 1 has 0 points at node (g), Player 2

must get 9 points at node (h).

 This succession of moves illustrates that in a tree for which shallow prun-

ing always occurs when possible, the scores for the players in the tree will always

converge to 0 and maxsum. Although we chose the maxn values in this example to

make the values converge on maxsum as quickly as possible, it will always occur,

57

regardless of how we choose our maxn values. If, for instance, we change Player 2ʼs

score to 1 at node (e), then instead having the values at (f) converge to maxsum, they

will converge on the left branch of (e).

 There are two consequences to this result. First, the best-case analysis of

shallow pruning assumes that immediate pruning never occurs. However, given a

discrete evaluation function we have shown that if we build a large enough best-

case tree for shallow pruning, immediate pruning will always occur. Since we are

interested in using computers to generate such trees, this will generally be the case.

This means that the previous analysis of the best case of shallow pruning is only

an upper bound on the best case, as it does not consider the pruning that must oc-

cur from immediate pruning in the tree. While both shallow pruning and immediate

pruning have the same asymptotic growth, immediate pruning will produce smaller

trees in practice.

 Secondly, this guarantees that in many games the best-case can never occur

in practice. This is easy to see for trump-based games such as Spades, based on

Figure 5.8, assuming we can search the entire game tree. At node (g), Player 3 must

have taken all the points in the game, but at node (h), Player 2 must have taken all

the points in the game. But, in most trump games this is impossible, assuming we

are searching a reasonably large portion of the game tree. This is because the player

with the highest card in the trump suit must take at least one trick, as there is no

higher card in the deck. So the highest card in the trump suit will always win the

trick on which it is played. Thus, it is impossible for the player holding this card to

58

get 0 points, which conflicts with the situation either at node (g) or (h).

 In a sense these results are not surprising. The average-case model in [Korf,

1991] predicts that the maxn values in the tree will average out as the search gets

closer to the root of the tree, and thus no pruning will occur at the top of the tree.

From this analysis we see that the only way this can be prevented is if most of the

other values in the tree converge on 0 or maxsum.

 In the next section we continue our discussion of shallow pruning by devel-

oping general bounds that describe additional constraints on whether shallow prun-

ing will occur in a game tree in practice.

5.5 Shallow Pruning Limits

 While the necessary requirements for shallow pruning are a lower bound

on each players score and an upper bound on the sum of all players ̓scores, these

bounds alone are not sufficient to allow pruning in any game tree. To maximize

the potential pruning it must be the case that the maximum possible player score is

equal to the maximum sum of scores [Sturtevant and Korf, 2000]. This is the case in

a game like Spades, but it isnʼt for Hearts. Because this isnʼt necessarily intuitively

obvious, we will spend some time discussing the surrounding issues. In our discus-

sion we assume that the static evaluation function for these games is based on the

number of points taken in the game. While it is possible to base the evaluation func-

tion on other game attributes, we hope that this discussion will show that the issue

is larger just how we tune our evaluation function.

59

5.5.1 Minimization versus Maximization

 Throughout this thesis we deal with games that are usually described in terms

of either maximization or minimization. Since minimization and maximization are

symmetric, we briefly present here how the bounds used by pruning algorithms are

transformed when we switch from one type of game to the other type.

 There are four values we can use to describe the bounds on players ̓scores

in a game. Minp and maxp are a playerʼs respective minimum and maximum pos-

sible score at any given node. Minsum and maxsum are the respective minimum and

maximum possible sum of all players scores. In Hearts, minp is 0 and maxp = max-

sum = minsum = 26. In Spades, minp is also 0 and in a complete game tree maxp =

maxsum = minsum = 17. To prune in any game, shallow pruning requires that minp

and maxsum are bounded. We are interested in how these bounds change when the

goal of a game is changed from minimization to maximization. The transformation

does not change the properties of the game, it simply allows us to talk about games

in their maximization forms without loss of generality.

 The one-to-one mapping between the minimization and maximization ver-

Table 5.9: The transformation between a maximization and minimization problem, and examples
for a 3-player Hearts game.

minimization variable s
1

s
2

s
3

maxp
min

minp
min

maxsum
min

 & minsum
min

Hearts example
minimization value

3 10 13 26 0 26

transformation -s
i
 + maxp

min
-maxp

min
 + maxp

min
-minp

min
 + maxp

min
-maxsum

min
 + n·maxp

min

Hearts example
maximization value

23 16 13 0 26 52

maximization variable s1 s2 s3 minp
max

maxp
max

maxsum
max

 & minsum
max

60

sions of a game is shown in Table 5.9. The first row in the table contains the variable

names for a minimization problem, followed by sample values for a Hearts game,

where n, the number of players, is 3. The transformation applied to the values are in

the third row: the negation of the original value plus maxpmin. This re-normalizes the

scores so that minp is always 0. Since Hearts and Spades are constant-sum games,

maxsum is always the same as minsum. The final rows contain the new score after

transformation and the new variable names. The process can be reversed to turn a

maximization game into a minimization game. In general this process corresponds

exactly with changing the goal in Hearts from minimizing your own points to maxi-

mizing your opponents points.

 Given the symmetry of minimization and maximization, there is also a dual-

ity in pruning algorithms. That is, for any pruning algorithm that works on a maxi-

mization tree, we can write the dual of that algorithm that works the same under

the equivalent minimization tree. However, just changing the goal of a game from

minimization to maximization does not create an isomorphic game that will have

the same properties under minimization or maximization. The other parameter,

maxsum, must also be calculated. Given these observations, we have not explicitly

shown dual algorithms for pruning. Unless otherwise stated, all trees and algorithms

presented here will be for maximization trees.

5.5.2 General Bounds for Shallow Maxn Pruning

 Figure 5.8 shows a generic maxn tree. In this figure we have only included the

values needed for shallow pruning. Other values are marked by a ʻ•ʼ. When Player 1

61

gets a score of x at node (a), the lower bound on Player 1ʼs score at the root is then x.

Assume Player 2 gets a score of y at node (c). Player 2 will then have a lower bound

of y at node (b). Because of the upper bound of maxsum on the sum of scores, Player

1 is guaranteed less than or equal to maxsum - y at node (b). Thus, no matter what

value is at (d), if maxsum - y ≤ x, Player 1 will not choose to move towards node (b)

because he can always do no worse by moving to node (a), and we can prune the

remaining children of node (b).

 In the 3-player maximization version of Hearts in Table 5.9, maxsum is 52,

and x and y will range between 0 and 26, meaning that we can only prune when 52

- y ≤ x, which is only possible if x = y = 26. But, in this case we donʼt need shallow

pruning to prune, because immediate pruning already tells us we can prune when a

player gets maxp, which is 26 in this case. In Spades, maxsum is 16, and x and y will

range from 0 to 16, meaning that we can prune when 16 - y ≤ x.

 Given these examples, we extract general conditions for pruning in multi-

player maximization games. We will use the following variables: n is the number of

players in the game, maxsum is the upper bound on the sum of players scores, and

Figure 5.10: Shallow pruning in a 3-player maxn tree.

maxsum = 10

2 2

1

(x, •, …)

3
(•, y, …)

(b)
(≤maxsum-y, ≥y, …)

(a) (≥x, • …)

(a)

(c) (d)

62

maxp is the upper bound on any given players score. We assume a lower bound of

zero on each score without loss of generality. So, by definition, maxp ≤ maxsum ≤

n·maxp.

Theorem 5.2: To shallow prune in a maxn tree, maxsum < 2·maxp.

Proof: We will use the generic tree of Figure 5.10. To prune:

 x ≥ maxsum - y

By definition:

 2·maxp ≥ x + y

So,

 2·maxp ≥ x + y ≥ maxsum

 2·maxp ≥ maxsum

However, if maxsum = 2·maxp, we can only prune when both x and y equal maxp.

But, if y = maxp, we can also immediate prune. Because of this, we tighten the

bound to exclude this case, and the theorem holds. ®

 We can now verify what we suggested before. In the maximization version

of 3-player Hearts, maxsum = 52, and maxp = 26. Since the strict inequality of

Theorem 5.1, 52 < 2·26, does not hold, we can only immediate prune in Hearts. In

Spades, the inequality 17 < 2·17 does hold, so we will be able to shallow prune a

Spades maxn tree. In fact, if maxsum = maxp, there will always be a legal maxn value

for our child that will enable us to shallow prune the children of that node, so this is

the ideal value weʼd like for a game.

63

5.5.3 Intuitive Approach

 Speaking in terms of the games as they are normally played, it may seem odd

that we canʼt prune in Hearts and we can prune in Spades, when it seems that the

biggest difference in the games is that it one you try to minimize your score, and in

the other you try to maximize it. While the preceding theorem explains the differ-

ence mathematically, there is another explanation that may be more intuitive.

 To begin this discussion, let us consider the game of Hearts from two points

of view. First, we consider the game as it is normally played, excluding the rule for

shooting the moon. In this game one wishes to minimize their points, so we will call

it heartsmin. Then, we will consider the game with the exact same rules, except that

the goal is to maximize your points. We will call this game heartsmax. In heartsmin we

will not be able to use shallow pruning while in heartsmax we will. The question is, if

the only difference between heartsmin and heartsmax is the question of maximization

or minimization, why can we use shallow pruning for one game and not the other?

 The reason is that these are completely different games and are not isomor-

phic to each other. One way to see this is by considering the strategy you would use

to play heartsmax and the strategy you would use to play heartsmin. We demonstrate

Figure 5.11: Different strategies for minimizing and maximizing.

Possible Plays

(a) A♠ A♣ 2♥ A♥
(b) A♠ A♥ 2♥ A♣

Player 1
A♠ 2♥

Player 2
A♣ A♥

64

in Figure 5.11. Given that Player 1 leads the Ace of Spades, in heartsmax the correct

strategy is (a), where Player 2 can take 2 points by saving the Ace of Hearts to take

the second trick. But, in heartsmin the best strategy is (b), where Player 2 will take

no points. If two games are isomorphic, the same strategy for optimal play must be

present across the isomorphism. Additionally, in a card game, an isomorphic map-

ping must somehow preserve the notion of leading and following within suits. In

line (a) Player 1 follows suit on the second trick, while he doesnʼt in line (b). Thus,

these lines of play cannot be preserved across an isomorphic mapping of games,

so heartsmax and heartsmin must be fundamentally different games. Additionally, in

heartsmax maxsum is 26 and maxp is 26, so we will be able to shallow prune, while

we have already shown that you canʼt shallow prune in heartsmin.

 Given that they are different games, let us consider what one isomorphic dual

of each game actually is. In heartsmax you are trying to maximize your score, while

the minimization dual is the game where you want to minimize the sum of your op-

ponents scores. But, this is still exactly the same game. Similarly in heartsmin you

want to minimize your score, and the dual is the game where you want to maximize

your opponents score.

 So, while the most simple explanation of the difference between heartsmax

and heartsmin is that one is a maximization game and the other is a minimization

game, this is a deceptive description, as it leads one to think that the games are iso-

morphic to each other, when in fact they are two completely different games.

65

5.6 Deep (Pair-wise) Pruning

 Deep pruning refers to when the bound at a node is used to prune a grand-

child or lower descendant of that node. There is more than one way one might try to

do this. In this section we will discuss the pruning methods that have been devised

where we compare the maxn value of two non-consecutive players within the game

tree. In later sections we will discuss other methods where we consider the bounds

for more than two players. To help distinguish these methods, we refer to the meth-

ods discussed here as pair-wise pruning.

 [Korf, 1991] shows that, in the general case, deep pruning can incorrectly

affect the maxn value of the game tree. We demonstrate this in Figure 5.12. After

searching the first branch at the root, Player 1 is guaranteed at least a score of 5 at

the root, and the other players are guaranteed a score no greater than 5. Then, after

searching the left branch of node (b), Player 3 is guaranteed 5 points, and Player 1

is guaranteed no more than 5 points at node (b). So, we can conclude that the maxn

value of node (b) will never be the maxn value of the game tree, because Player 1 is

(b)

(a)
2 2 2

1

(5, 4, 1) (3, 1, 6)

(6, 4, 0) or (5, 4, 1)

3 3 3

(4, 1, 5)

(4, 0, 6)
or

(0, 4, 6)
1

(3, 3, 4) (6, 4, 0)

Figure 5.12: The failure of deep pruning.

(≤5, , ≥5)

maxsum = 10
(≥5, ≤5, ≤5)

66

already guaranteed a score of 5 at the root, and he can do no better than that at node

(b). It is still possible, however, that the maxn value at (b) can affect the final maxn

value of the tree.

 For instance, if the actual maxn value of (b) is (4, 0, 6), Player 2 will prefer

the move (6, 4, 0) at node (a), and this will be the maxn value of the game tree. But,

if the maxn value of (b) is (0, 4, 6), Player 2 will prefer this value, and so Player 1

will choose (5, 4, 1) to be the maxn value of the game tree. Thus, in general deep

pruning is not valid in a multi-player game.

5.7 Optimality of Maxn

 The invalidity of deep (pair-wise) pruning raises the question of what the

best possible maxn pruning algorithm is. [Korf, 1991] showed that given no addi-

tional constraints, “Every directional algorithm that computes the maxn value of a

game tree with more than two players must evaluate every terminal node evaluated

by shallow pruning under the same ordering.” A directional algorithm [Pearl, 1984]

is defined as one that examines the successors of any node in a fixed order without

returning to re-search any branch of the tree. We assume for now that we do not

know if we are on the last branch of a node, although we wonʼt always make this

assumption for a directional algorithm.

 While maxn may be optimal under these conditions, we will now cover ad-

ditional pruning techniques that we have developed which depend on additional

constraints on the game tree or non-directional search to prune.

67

5.8 Depth-First Branch-and-Bound Pruning

 Branch-and-bound pruning is a common technique from single-agent and

two-player [Prieditis and Fletcher, 1998] search which can be used to prune maxn

game trees. It requires a monotonic heuristic, but many card games have natural

monotonic heuristics. In Hearts and Spades for example, once you have taken a

trick or a point you cannot lose it. Thus, an evaluation can be applied within the tree

to give a bound on the points or tricks to be taken by a player in the game. We use

the notation h(i) ≥ j to indicate that the monotonic heuristic is giving a lower bound

score of j for player i, and h(i) ≤ j to indicate that the monotonic heuristic is giving

an upper bound of j on player iʼs score. Suppose, for a Spades game, Players 1, 2

and 3 have taken 3, 2, and 6 points respectively. Then, h(1) ≥ 3 because Player 1 has

taken 3 points. Also, h(1) ≤ 9 because maxsum (17) minus the other players ̓scores

(8) is 9.

5.8.1 Single Agent Branch-and-Bound

 The branch-and-bound algorithm is most commonly used in a depth-first

search to prune single-agent minimization search trees, such as the trees that arise

Figure 5.13: A single-agent depth-first branch-and-bound search tree.

(a) ≤2

h ≥ 2

2

0

3 1

2 2

h ≥ 3 h ≥ 1

h ≥ 3

(a)
(b)

(c)

68

in the Travelling Salesman Problem. In Figure 5.13, for example, we are trying to

find the shortest path to a leaf from the root, where edges have non-negative costs as

labelled. Since all paths have positive length, the cost along a path cannot decrease,

giving a lower bound on the cost to a leaf along that path. Each edge is labelled with

the cost of that edge. The heuristic limits on each node are the sum of the edge costs

to that node. If unexplored paths through a node are guaranteed to be greater than

the best path found so far, we can prune the children of that node in the tree.

 In order to draw parallels between alpha-beta pruning, we will describe the

pruning that occurs in the same terms that we use to describe alpha-beta pruning:

immediate, shallow and deep pruning. In a two-player game, immediate pruning

occurs when we get the best score possible, a win. In the presence of a heuristic, the

best score possible is the best that we can get given the heuristic. In Figure 5.13, the

heuristic at node (a) says the best score we can get is 2. Since we have a path to a

leaf node of total cost 2 through the first child, we can prune the remaining children,

as we have found the best possible path.

 After finding the path with cost 2, we use that cost as a bound while search-

ing subsequent children. At node (b), our monotonic heuristic tells us that all paths

through (b) have cost higher than the bound of 2, so all children of (b) are pruned.

This is like shallow pruning, since the bound comes from the parent of (b). Finally,

at node (c) we can prune based on the bound of 2 from the best path so far in the tree

and the monotonic heuristic cost at (c), which is like deep pruning.

69

5.8.2 Multi-Player Branch-and-Bound

 Branch-and-bound pruning can be used to prune a maxn tree as well, but

under maxn it is limited by the same factors as alpha-beta pruning, namely we can-

not use the bound at a node to prune its great-grandchild. As with deep alpha-beta

pruning, while the maxn value of the pruned nodes will never be the maxn value of

the tree, they still have the potential to affect it. We will demonstrate this here, but

because the proof is identical to the proof of why deep alpha-beta pruning does not

work [Korf, 1991], we omit the proof.

 In Figure 5.14 we show a portion of a maxn tree and demonstrate how branch-

and-bound can prune parts of the tree. Immediate pruning occurs at node (a). At the

left child of (a), Player 2 can get a score of 9. Given the monotonic heuristic value

of node 2, h(2) ≤ 9, we know Player 2 cannot get a better score from another child,

and the remaining children are pruned.

 Shallow pruning occurs at node (b) when the bound from the parent combines

Figure 5.14: Branch-and-bound pruning in a maxn tree.

(b)(a)
2 2 2

1
(7, 9, 0) or (10, 5, 1)

(5, 8, 3)
or

(10, 5, 1)

(7, 9, 0)
3

maxsum = 16
maxp = 16

(≥7, …)

3
(10, 5, 1)

3

1
(5, 8, 3)

or
(5, 3, 8)

h(1) ≤ 5

(7, 9, 0)
h(2) ≤ 9

(c)

(d)
h(1) ≤ 5

70

with the monotonic heuristic to prune the children of (b). Player 1 is guaranteed 7 or

more at the root. So, when Player 1ʼs monotonic heuristic at (b) guarantees a score

of 5 or less, we prune all the children of (b), since Player 1 can always do better by

moving to node (a).

 Finally, deep branch-and-bound pruning, like deep alpha- beta pruning, can

incorrectly affect the calculation of the maxn value of the game tree. The partial

maxn value at the root of the tree in Figure 5.14 guarantees Player 1 a score of 7 or

better. At node (c), Player 1 is guaranteed less than or equal to 5 points by the mono-

tonic heuristic. Thus, we might be tempted to prune the children of (c), since Player

1 can do better by moving to node (a). But, this reasoning does not take into account

the actions of Player 2.

 Depending on which value we place at the child of (c), (5, 8, 3) or (5, 3, 8),

Player 2 will either select (5, 8, 3) from node (c) or (10, 5, 1) from node (d)ʼs right

branch to back up as the maxn value of node (d). Player 1 would then choose the root

maxn value to be either (7, 9, 0) or (10, 5, 1). So, while the bounds on node (c) will

keep it from being the maxn value of the tree, it has the potential to affect the maxn

Figure 5.15: Alpha-beta Branch-and-Bound pruning in a 3-player maxn tree.

maxsum = 10

2 2

1

(6, 3, 1)

3
(4, 3, 3)

(a)

(a)
(≥6, ≤4, ≤4) node (a) bounds

Shallow: (≤7, ≥3, ≤7)
BnB: h(3) ≥ 2
ABBnB: (≤5, ≥3, ≤7)

71

value of the tree.

5.9 Alpha-Beta Branch-and-Bound Pruning

 Now that we have two relatively independent techniques for pruning a multi-

player game tree, we show how these techniques can be combined. Shallow pruning

makes comparisons between two players ̓backed up scores to prune. Branch-and-

bound pruning compares a monotonic heuristic to a playerʼs score to prune. Alpha-

beta branch-and-bound pruning uses both the comparison between backed up scores

and monotonic heuristic limits on scores to prune even more effectively.

 Looking at Figure 5.15, we see an example where shallow pruning applies.

We have bounds on the root value of the tree from its left branch. After searching

the first child of node (a) we get bounds on the maxn value of (a). We place an upper

bound of 7 on Player 1ʼs score, because Player 2 is guaranteed at least 3 points, and

10 (maxsum) - 3 = 7. This value does not conflict with the partial maxn bound on the

root, so we cannot prune. We also have a bound from our monotonic heuristic, but

because it is not Player 3ʼs turn and because the lower bound on Player 3ʼs score, 2,

does not conflict with the upper bound, 7, we cannot use that by itself to prune ei-

ther. But, if we combine this information, we can tighten our bounds. We know from

backed up values that Player 2 will get at least 3 points and from our heuristic that

Player 3 will get at least 2 points at (a). So, the real upper bound on Player 1ʼs score

at (a) is maxsum - score(2) - h(3) = 10 - 3 - 2 = 5. Since Player 1 can get 6 points on

the left branch at the root of the tree, we then know he will never get a better score

from (a), and we can prune the remaining children of (a).

72

 So, in a n-player game where we normally only compare the scores of two

players, we can now instead compare bounds for all n players by using the mono-

tonic heuristic value for n-2 players and the results of the search for the other two

players. That is, if we have a lower bound on Player iʼs score from our parent, and

Player j is to play at the current node, the upper bound on Player iʼs score at the next

node is maxsum - score(j) - ∑h(x) {for x ≠ i or j}. The technique of combining the

monotonic heuristic values of some players with the backed-up evaluation of other

players only works in a multi-player game, because in a two-player game there are

no additional players for which to consider, reducing it to just plain alpha-beta. Fol-

lowing is the pseudo-code for alpha-beta branch-and-bound pruning.

ABBnB(Node, Player, parentScore)
{
 IF Node is terminal RETURN static value

 /* shallow branch-and-bound pruning */
 IF (hup(Prev Player) ≤ parentScore)
 RETURN static value
 Best=ABBnB(first Child, next Player, 0)

 /* Calculate our opponents guaranteed points */
 Heuristic = ∑hlow(n) [n≠Player or prev. Player]

 FOR each remaining Child
 IF (Best[Player]+parentScore+Heuristic ≥ maxsum) OR
 (Best[Player] = hup(Player))
 RETURN Best
 Current = ABBnB(next Child, next Player, Best[Player])
 IF (Current[Player] > Best[Player])
 Best = Current
 RETURN Best
}

5.10 The Constant-Sum Property in Multi-Player Games

 In two-player games, we always assume that a game is strictly competitive

and zero-sum. This means that a move that is good for our opponent will be equally

73

bad for us, and vice-versa. In multi-player games we instead expect a game to be-

come constant-sum, where the sum of all players ̓scores are constant. Most games

are constant sum when you consider the final outcome, however they may not be

during the actual search.

 In Hearts, for instance, there can be as few as 0 and as many as 17 points

played on the first two tricks. If we need a game to be constant-sum and our static

evaluation function is non-negative, we can simply use the ratio of each playerʼs

score to the sum of all scores to make the maxn value of each node constant sum.

But, it is not implicitly wrong if our evaluation isnʼt constant sum. The decisions

made by maxn will simply reflect our evaluation function. In the case of Hearts, if

our evaluation function is just the number of points taken so far, it can be considered

that there is a implicit extra player in the game whose static evaluation is the number

of points not yet played.

 For the remainder of our discussion of pruning algorithms, we will assume

that games are constant sum, knowing that we can usually make a game constant-

(b)

(a)
2 2 2

1

(5, 4, 1) (3, 1, 6)

(6, 4, 0) or (5, 4, 1)

3 3 3

(4, 1, 5)

(4, 0, 6)
or

(0, 4, 6)
1

(3, 3, 4) (6, 4, 0)

Figure 5.16: The failure of deep pruning.

(≤5, , ≥5)

maxsum = 10
(≥5, ≤5, ≤5)

74

sum if needed. In fact, it will usually be advantageous to do so, given the pruning

benefits that are possible in a constant-sum game tree. We also assume that players ̓

scores are bounded, which is usually the case when we run on a computer.

5.11 Limiting Maxn Value Propagation

 In order to develop effective new algorithms that can prune deeper into a

maxn tree, we must return to the analysis of why deep pruning failed in the first

place. Deep pruning failed because nodes that couldnʼt be the maxn value of the

game tree could still affect the maxn value of the tree. Thus, if we can restrict how

maxn values will affect each other within the search tree, we may be able to prune

more. The last-branch and speculative pruning algorithms both do this, however

they take different approaches when they prune these nodes. Last-branch pruning

is a directional special case of speculative pruning, which is a non-directional algo-

rithm.

 Looking at Figure 5.16 (which is the same as Figure 5.12), we know that

Figure 5.17: Combining maxn scores to limit value propagation.

2 2 2

1

(5, 4, 1) (3, 1, 6)

(5, 4, 1)

3 3

(3, 5, 2)
1

(3, 3, 4)

(b)

(a)
(, ≥3,)

(≥5, ,)

(, , ≥2)

maxsum = 10

…

75

Player 1 will never get a better value than 5 at node (b). But, to prune at (b) correctly,

we must show that Player 1 cannot get a better maxn value at the root from either

node (b) or node (a), as the values at (a) may interact with unseen values at (b) to

affect Player 2ʼs, and thus Player 1ʼs move. In this case, deep pruning failed because

the value at the right child of (a) was better for Player 2 than a previous child of (a).

If the children of (a) were ordered optimally for Player 2, or if there was no right

child at (a), the deep prune could not have affected the maxn value of the tree.

 While shallow pruning only considers two players ̓bounds when pruning,

we can actually use n players ̓bounds in a n-player game. We demonstrate this in

Figure 5.17. Before we search the second child of node (b) each player has already

searched one or more branches. This provides a lower bound on each playerʼs score.

In this case, Player 1 has a lower bound of 5 from the left branch of the root, Player

2 has a bound of 3 from the left branch of (a), and Player 3 has a bound of 2 from

the left branch of (b). The sum of these bounds is 10, which is greater than or equal

to maxsum. We can thus show that any unseen value at (b) cannot be the maxn value

Figure 5.18: Combining scores to limit value propagation in general.

2 2 2

1

(x, …)

3 3

(…, z)
1

(, y,)

(b)

(a)
(, ≥y,)

(≥x, ,)

(, , ≥z)

(x1, y1, z1)

76

of the tree.

Theorem 5.3: Assuming we break ties to the left in a maxn game tree, if the sum

of lower bounds for a consecutive sequence of unique players meets or exceeds

maxsum, the maxn value of any child of the last player in the sequence cannot be the

maxn value of the game tree.

Proof: We provide a proof by contradiction. Figure 5.18 shows a generic 3-player

game tree. In this figure Player 1 has a lower bound of x at the root, Player 2 has a

lower bound of y at (a), and Player 3 has a lower bound of z at (b). Given that these

values sum to maxsum, assume there is a value v at the right child of (b) which will

be the maxn value of the game tree.

 Let v = (x1, y1, z1). For v to become the maxn value of the tree, each player

must prefer this move to their current move. Since ties are broken to the left, z1 must

be strictly better than z, y1 must be strictly better than y, and x1 must be strictly better

than x. Thus, z1 > z, y1 > y and x1 > x. So, x1 + y1 + z1 > x + y + z ≥ maxsum, and x1 +

y1 + z1 > maxsum. But, by the definition of maxsum, this is impossible. So, no value

at the right child of (b) can be the maxn value of the game tree. By the same logic,

where z1 = z, the left child of (b) also cannot be the maxn value of the game tree.

While this is the 3-player case, it clearly generalizes for n players. ®

 While we have shown that we can combine n players ̓scores to prove a maxn

value will not propagate up a maxn tree, we must also show that a prune in this case

will not affect the maxn value of the entire game tree. Last-branch and speculative

pruning address this problem in similar ways. Neither algorithm, however, will

77

prune more than n levels away from where the first bound originates.

5.12 Last-Branch Pruning

When a sequence of players have bounds appropriate for pruning under Theorem

5.3, last-branch pruning guarantees that the prune will be correct by only pruning

when the intermediate players in the sequence are searching their last branch.

 We can see this in Figure 5.17. To prune correctly, we observe that after

searching all the left children of node (a) Player 2 has only two choices: the best

maxn value from a previously searched branch of (a), or the maxn value from (b). If

Player 2 chooses the best maxn value from a previously searched child of (a), (3, 3,

4), Player 1 will get a lower score at (a) than his current bound at the root. Theorem

5.2 shows that the best maxn value at (b) for Player 3 and can be better than the cur-

rent bound for Player 2 or for Player 1, but not for all three players. So, if Player 2

chooses a value from (b), it must also have a lower maxn value for Player 1 than his

bound at the root. Thus, Player 1 will not get a better score at (a), and we can prune

the children of node (b).

 For last-branch pruning to be correct, in addition to the conditions from

Theorem 5.3, Player 2 must be on his last branch, and the partial maxn value from

Player 2ʼs previously searched children must not be better for Player 1 than his cur-

rent bound at the root. In the n-player case, all intermediate players between the first

and last player must be searching their last branches, while Players 1 and n can be

on any branch after their first one.

78

 Last-branch pruning has the potential to be very effective, particularly in

trees with low branching factor. Instead of only considering 2 players ̓ scores, it

compares n players ̓scores. In fact, when all nodes in the tree have the exact same

evaluation, last-branch pruning will always be able to prune when players reach

their last branches, while shallow pruning will never be able to.

 The only drawback to last-branch pruning is that it only prunes when inter-

mediate players between the first and last player are all on the last branch of their

search. For a game with branching factor 2 this is already the case, but otherwise we

can use speculative pruning.

5.13 Speculative Pruning

 Speculative pruning is identical to last-branch pruning, except that it doesnʼt

wait until intermediate players are on their last branch. Instead, it prunes speculatively,

re-searching if necessary.

 We demonstrate this in Figure 5.19. At the root of the tree, Player 1 is guar-

anteed 5 points. At node (a), Player 2 is guaranteed 3, and at node (b), Player 3 is

2 2 2

1

(5, 4, 1) (3, 1, 6)

3 3 3

(3, 5, 2)
1

(3, 3, 4) (4, 4, 2)
or

(6, 4, 0)

Figure 5.19: Speculative pruning a maxn game tree.

(, ≥3,)

(≥5, ,)

(, , ≥2)
(b)

(a)

(4, 6, 0)

maxsum = 10

79

guaranteed 2. Because 5 + 3 + 2 ≥ maxsum = 10, we could prune the remaining

children of (b) if node (b) was the last child of node (a).

 Suppose we do prune, and then come to the final child of node (a). If the final

child of node (a) has value (4, 4, 2), we know Player 1 will not move towards (a), be-

cause no value there can be better for Player 1. But, if the value at (a) ends up being

(6, 4, 0), the partially computed maxn value of (a) will be (6, 4, 0). With this maxn

value, Player 1 will choose to move towards node (b). Because this has the potential

to change the maxn value at the root of the tree, we will have to search node (b) again

using new bounds. This occurs when Player 2ʼs nodes are ordered sub-optimally.

With an optimal node ordering we will never have to re-search a subtree.

 In general, we have to re-search pruned nodes if, on a mid-level branch, we

find a new value for which both that player and the first player have better scores. If

we wish to preserve the order of tie-breaking in the tree, we must also retain some

information about the order of nodes expanded. Nodes that can be pruned by last-

branch pruning will be always be pruned as part of speculative pruning. Following

is the pseudo-code for speculative pruning:

80

specmaxn(Node, ParentScore, GrandparentScore)
{
 best = NIL; specPrunedQ = NIL;
 if terminal(Node)
 return static eval(Node);

 for each child(Node)
 // check to see if parent prefers this move
 if (best[previous Player] <= ParentScore)†
 result = specmaxn(next child(Node),
 best[current Player], ParentScore);
 else
 result = specmaxn(next child(Node),
 best[current Player], 0);
 if (best == NIL)
 best = result;
 else if (result == NIL) // child was spec. pruned
 add Child to specPrunedQ;
 else if (best[current Player] < result[current Player])
 best = result;
 // if we find a better move we have to re-search
 if (best[previous Player] > ParentScore)
 re-add specPrunedQ to child list;
 if (GrandparentScore+ParentScore+
 best[current Player] > maxsum)
 return NIL; // speculatively prune
 return best;
}

 As can been seen, it is reasonably simple to perform speculative pruning in

practice. In the 3-player implementation, the specmaxn function takes 3 arguments,

the current node, the best score at the parent node, and the best score at the grand-

parent node.

 At the line marked † we check to see if our parent can get a better score from

the partial maxn value of this node than from one of his previously searched nodes.

If this is the case, we cannot use the parentʼs bounds to help prune the children of

the current node.

 When a node is speculatively pruned, the specmaxn function returns NIL. All

nodes that have speculatively pruned children are added to a list of pruned nodes,

and if a child is found with a maxn value that better for both the current node and the

81

parent node, then the speculatively pruned nodes will have to be re-searched. This

pseudo-code assumes that players always alternate plays in the tree, as in Chinese

Checkers. In card games, where this may not be the case, we must also check to see

if the last n-1 consecutive players in tree are unique.

5.14 Last-Branch and Speculative Maxn Best-Case Asymptotic Analyses

 To analyze the best-case performance of speculative maxn pruning, we form

a recurrence based on the type of nodes that occur in the search. We will do the

analysis first for the case of 3-players, and then generalize it to n players. In the case

of a 3-player game, we consider three types of nodes, which are irrespective of who

is playing at that node. We have First-level nodes, Second-level nodes, and Third-

level nodes. A node that has no bounds from its parents is a first-level node. A node

with a bound from just its parent is a second-level node, while a node with bounds

from both its parent and grandparent is a third-level node. We demonstrate this in

Figure 5.20.

 The left child of every node is a first-level node, because there are never

F S S

F

… …

F T T

…
F

Figure 5.20: Analysis of speculative maxn pruning.

… …

82

bounds on the first child of any node. The remaining children of a first-level node

are second-level nodes. In the optimal case a third-level node will only have to ex-

pand its left-most child, and the remaining children will all be pruned. If we write

out the ratio of nodes from one level to the next as a recurrence, we get the following

equations, where b is the branching factor of the tree before pruning:

 F(n) = F(n - 1) + S(n - 1) + T(n - 1)

 S(n) = (b - 1) · F(n - 1)

 T(n) = (b - 1) · S(n - 1)

Solving in terms of F(n), we get:

 F(n) = F(n - 1) + (b - 1) · F(n - 2) + (b - 1)2 · F(n - 3)

The solution to this recurrence is the solution to the equation:

 x3 - x2 - (b-1)·x - (b-1)2 = 0

 The solution of this equation will give us the asymptotic branching factor as

b grows large. Analyzing the general solution for a cubic equation will show that

for large b this will approach b2/3. In practice do not reach the limit until b is larger

than most games we consider in practice. We give sample values for b given an op-

b b2/3 asymptotic b
2
3
4
5
10

1000

1.5874
2.0801
2.5198
2.9240
4.6416
100.00

1.8393
2.4675
3.0000
3.4755
5.4191
103.61

Table 5.21: Branching factor gains by speculative maxn in a 3-player game.

83

timal ordering of nodes in a 3-player game in Table 5.21. The first column contains

sample values for b, the second column contains b2/3, and the third column contains

the actual optimal value of b.

 For a general n-player game, our tree and recurrence will be similar. Each

type of node in the game will produce a single first-level node, and (b - 1) nodes of

the next level classification. So, the equation which solves the general recurrence

is:

 xn - xn-1 - (b-1)1·xn-2 - (b-1)2·xn-3 - … (b-1)n-1 = 0

As b grows large the solution for x in this equation will be on the order of O(bn-1/n).

The easiest way to see this is to consider which terms are asymptotically largest in

the equation. Because in a recurrence of this form x will grow towards bk, where k

< 1, the largest terms must be the first term and the last term. Reducing to just these

terms and solving yields the asymptotic result above.

 In the case of b = 2, last-branch and speculative pruning are identical, so we

can use these recurrences to solve for the best case of last-branch pruning when b

= 2. Specifically, for the 3-player case in the best case our branching factor will be

reduced to the solution of:

 x3 - x2 - x - 1 = 0

Solving for x, we get 1.839. The general solution to these equations are related to

the Fibonacci sequence.

 The average case analysis of speculative and last-branch pruning is more

complex. Assuming maxn convergence, we will still get some pruning, as we will

84

expect consecutive playerʼs scores to sum to maxsum, but we have not analyzed

how the requirements for re-searching nodes will affect the average case complex-

ity.

5.15 Discrete Evaluation Functions

 For all these pruning techniques, it is possible to use tighter bounds for prun-

ing when the evaluation function has discrete as opposed to continuous values. For

speculative and last-branch pruning we can infer this from the proof of Theorem

5.3, but it will also work for shallow and branch-and-bound pruning. In this proof

we see that, for a value to affect the maxn value of the tree, x1 > x, y1 > y, and z1 > z.

Suppose the minimum delta of a playerʼs score is µ. Since all players in the game

must do strictly better than their previous maxn value to change their move to a new

maxn value, we can combine this into our bounds.

 We demonstrate this in Figure 5.22. At the root of the tree, Player 1 is guaran-

teed a score of 5, and at node (a) Player 2 is guaranteed 3 points. In this example µ =

Figure 5.22: Discrete cut-off evaluations

2 2 2

1

(5, 4, 1) (3, 1, 6)

(5, 4, 1)

3 3

(5, 4, 1)
(7, 3, 0)

1

(3, 3, 4)

(b)

(, ≥3,)

(≥5, ,)
maxsum = 10

1
(6, 4, 0)
(6, 4, 0)

(a)

85

1, so for these players both to prefer to move towards (b) they must get at least 6 and

4 points respectively. Because maxsum is 10, we know if Player 3 gets more than 0

points, Players 1 and 2 canʼt both get better than their current best scores. So, instead

of pruning when Player 3 gets 10 - 5 - 3 = 2 points, we can prune when Player 3 gets

1 point. It follows from this that we can always prune if ∑scores ≥ maxsum - µ·(n

- 2), where ∑scores are the current bounds for the players in the tree.

 We can then use our tie-breaking rule to improve this. Because ties are bro-

ken to the left, we can prune if Player 3 gets 0 points at the left branch of (b) and

Player 1 and 2 donʼt get 6 and 4 points respectively. If, for instance, the score is (7,

3, 0), Player 2 wonʼt choose this value over the left branch of (a). In addition, Player

3 will only choose a better value than 0 from the unexpanded children of (b), which

will meet our earlier conditions for pruning. Thus, we can also prune if ∑scores ≥

maxsum - µ·(n - 1) and if on the first branch of the node whose children are being

pruned the other n - 1 players donʼt all have better scores than their current best

bound.

5.16 Optimality of Last-Branch and Speculative Pruning

 Given new pruning algorithms for maxn, we naturally must ask if they are

the best possible, or if it is possible to do better. It ends up that both last-branch and

speculative pruning are not optimal, in that there are similar techniques which can

prune nodes which these techniques will not prune. But, whether these techniques

can provide any real games in practice is another question. We demonstrate this for

86

last-branch pruning with tree in Figure 5.23. In this tree it is never the case that three

consecutive players have bounds that sum to maxsum (20), but the best bounds from

all players anywhere in the tree do sum to maxsum. These bounds come from Player

1 at the root, 6, Player 3 at (a), 6, and Player 2 at (b), 8. Also, each player always

has a better score on their left branch than their current (partially computed) score

on their right branch. Finally, we will make no assumptions about a minimum µ by

which scores can change.

 In this case, we can try any legal value for the right child of (b), and it will

not become or affect the maxn value of the game tree. The most interesting value

to consider is (5.3, 8.3, 6.4). This value can propagate up to the top of the tree, but

Player 1 will not choose it over (6, 7, 7) at the root. There are similar methods that

we can use for speculative pruning, but we will not demonstrate them here. The

Figure 5.23: Legal pruning example not covered by last-branch pruning.

2 2

1

(6, 7, 7)

(6, 7, 7)

3 3

1

(4, 5, 11)

(a)

(, ≥5,)

(≥6, ,)
maxsum = 20

2 2

1

(5, 10, 5)

3

(, ≥8,)

(≥5, ,)

(b)
(10, 4, 6)

(4, 8, 8)

(, , ≥6)

(5.3, 8.3, 6.4)
3

87

main interest for exploring such algorithms would be to define the optimal maxn

pruning algorithm.

5.17 Approximate Deep Pruning

 While effective, the descriptions of last-branch and speculative pruning here

still do not prune more than n-branches away from where any bound originates, un-

like alpha-beta which can prune an arbitrary distance away from the node at which

the bound originated. The issue is further complicated in games like card games,

as players will not always play consecutively. (Each time a trick is taken, the lead

jumps to the player who won the trick.) When this happens, the bounds must be

reset, and so pruning is more limited. Also, the more players in the game, the more

complicated the process becomes.

 It is also possible to come up with many special cases in which bounds can

be passed across more than n levels, such as when a player plays at two consecutive

levels in the tree. However, this can be quite complicated in practice. While we can

describe many such algorithms, we would not want to implement any of them.

 A solution to this dilemma is to simplify the speculative pruning procedure

so it looks more like alpha-beta pruning:

88

approxdeepmaxn(Node, allBest)
{
 myBest = allBest;
 if terminal(node)
 return static eval(node);

 for each child(Node)
 myBest[Node->player] = approxdeepmaxn(next child(Node),
 myBest);
 if (∑myBest ≥ maxsum)
 return myBest[Node->player];
 return myBest[Node->player];
}

 This implementation of the algorithm eliminates re-searching and it keeps

one set of bounds for all players that is copied and passed down through the game

tree. Such an implementation is simple, and it allows us to prune beyond n-levels

from where a bound originated, but it isnʼt guaranteed to be correct, meaning it isnʼt

guaranteed to correctly compute the maxn value of the game tree.

 If our nodes are ordered close to optimally, this approximate procedure will

calculate the maxn value of the game tree correctly. But, in practice this isnʼt guar-

anteed.

 Thus there is a trade-off at stake. Approximate deep maxn will be able to

search deeper into a maxn tree than any other known algorithm at this point, but in

doing so, it might make a mistake in its calculations. On the other hand, searching

deeper is one of the best ways to improve play. So, the end question will be whether

the gains found in deeper search offset the possibility of returning the incorrect maxn

value of the tree. We will address this question further in our experimental section.

89

5.18 Summary of Multi-Player Game Pruning Algorithms

 As we have covered a large variety of pruning techniques in this chapter, we

conclude with a summary of the techniques in Table 5.24. This table lists each of the

techniques that we have developed, along with the known analysis for each algo-

rithm. Although we have not listed or mentioned it before, each of these algorithms

uses a depth-first search strategy for asymptotic space usage of O(b·d), and has a

worst-cast performance of O(bd)

 The best case of branch-and-bound algorithms comes from the fact that if our

heuristic has perfect knowledge of the tree, and we have perfect ordering, we will

only need to search the left branch of the tree, as everything else will be pruned.

Obviously this will not usually occur in practice. We have not analyzed the average

case.

 We also have not yet been able to analyze the average case of last-branch

or speculative pruning. But, because they compare the bounds of all players in the

game, they should have better average case performance than shallow pruning.

 In the bottom of the table we have listed sample games and the techniques

which can be used in those games. Note that we are only listing whether a technique

can or cannot be used; this says nothing about the effectiveness of the technique.

As we have shown, for instance, Shallow pruning will work in Spades, but we can

never achieve the best case in practice. For card games, we are assuming that the

static evaluation function is related to the points taken in the game, which is usually

the case.

90

D
ec

is
io

n
R

ul
e

Pa
ra

no
id

M
ax

n

A
lg

or
ith

m
A

lp
ha

-b
et

a
Im

m
ed

ia
te

Sh
al

lo
w

B

nB
A

B
B

nB
L

as
t-

B
ra

nc
h

Sp
ec

ul
at

iv
e

A
pp

ro
x.

D

ee
p

Ti
m

e
C

om
pl

ex
ity

be
st

 c
as

e
bd·

(n
-1

)/
n

bd/
n

1⁄2
·(1

+√
¯¯ 4b

-3¯¯
)

b·
d

b·
d

1.
83

9
(

fo
r

b=
2)

bd·
(n

-1
)/

n
O

(b
d·

(n
-1

)/
n)

av
er

ag
e

ca
se

o(
bd)

bd
o(

bd)
o(

bd)
o(

bd)

G
am

e A
ba

lo
ne

✔
✔

✔
✔

✔

C
hi

ne
se

 C
he

ck
-

er
s

✔
✔

✔
✔

✔

C
ri

bb
ag

e
✔

✔
✔

✔
✔

✔

H
ea

rt
s

✔
✔

✔
✔

✔
✔

Pi
no

ch
le

✔
✔

✔
✔

✔
✔

✔
✔

Sp
ad

es
✔

✔
✔

✔
✔

✔
✔

✔

Fi
gu

re
 5

.2
4:

 D
ec

is
io

n
ru

le
s/

al
go

rit
hm

 c
om

pl
ex

ity
 a

nd
 d

om
ai

ns
 fo

r w
hi

ch
 th

ey
 c

an
 b

e
ap

pl
ie

d.

91

Chapter 6

Additional Techniques for Improving Performance

 Besides the pruning algorithms considered in Chapter 5, there are many other

techniques that have been developed to improve the performance of game programs.

Not all these techniques have interesting new properties in multi-player games. We

will discuss some of the techniques that are more interesting in multi-player games

here, including iterative deepening, zero-window search, move ordering, opening

books, end-game databases and transposition tables.

6.1 Iterative Deepening

 Iterative deepening is a common technique used in search algorithms of all

sorts. The basic idea is to break the search process into multiple iterations over the

same tree, each of which is to a greater depth than the previous iteration. In a card

game, for instance, we might search 1 trick deep on the first iteration, 2 tricks on the

second iteration, and so on. Because most if not all of the search problems tackled

in AI have exponentially large search spaces, we can search iteratively deeper into

the tree with no asymptotic cost, as the cost of the last iteration will outweigh all

92

previous iterations.

 Since we may not know ahead of time how expensive any search will be, this

method has been widely used to guarantee that an answer from a shallow search is

always available, and it means that we can cut off search at any time, and have the

best answer we were able to calculate in the time provided.

 Obviously this answer will only be as good as the quality of the search and

evaluation function used for play. For games like chess, techniques like quiescence

search were developed to account for some of the anomalies that resulted from fixed

search depths. But, in general, we would expect the result of an intermediate search

to be an approximation of the deeper search. Particularly for two-player search in

trick-based card games, the result of a partial search can be quite strong.

 Let us consider a two-player game for which we have a monotonically in-

creasing evaluation function that increases at most 1 at each iteration in the search

tree. An example of this would be if our iterative deepening corresponds to tricks

in Spades, so that 1 trick would be available at the first iteration, 2 tricks at the sec-

ond iteration, and so on. In an evaluation function with this property, there will be

exactly one point available in the first iteration, exactly two in the second iteration,

and exactly n points in the nth iteration.

Theorem 6.1: Given the conditions to follow, the minimax value of a game tree will

only increase by some delta µ or stay the same over successive iterative deepen-

ing searches. This occurs when players ̓scores are monotonically increasing in the

game, that there is a minimum delta, µ, by which scores can change, and that the

93

sum of all scores changes by exactly µ on each successively deeper iteration into

the game tree.

Proof: The key to this proof is that on each successive iteration, a player cannot find

a new line of play on the new iteration that will be better by a margin greater than

µ.

 We prove this is the case by induction. On the first iteration, there will only

be µ points available in the game. Since µ is also the minimum change any score can

make, by definition one player will get µ points, and the rest will get 0.

 Now, after searching some depth d, assume we have a score of x, and our op-

ponent has a score of y. (It will be the case that x+y = d·µ.) If we search to depth d+1,

the resulting scores should either be x+µ and y, or x and y+µ. This argument is sym-

metric, so we will show this by contradiction for the player with x points. Assume

that at a search d+1 the player gets a score greater than x+µ. Since the additional

search depth can only increase his score by µ, there then must be a path of depth d

by which he is getting at least x+µ. But, if that is the case, this player would have

played this line at depth d to get x+µ at that depth. Since minimax is guaranteed to

find the best path available, this canʼt be the case, and the theorem holds. All other

cases are symmetric, so the proof holds. ®

 Unfortunately Theorem 6.1 doesnʼt hold for a multi-player game using the

maxn algorithm. Consider the hands in Figure 6.1. This is for the game of Spades,

where players are trying to take as many tricks as possible. In (a) we consider the

line of play that results from a search of depth 5. Player 1 can take the first 2 tricks,

94

but after that he canʼt take any more, and so he doesnʼt care what card he plays. In

this case we assume he plays the 2 of clubs, allowing Player 2 to take 3 tricks. So,

the maxn value at this depth is (2, 3, 0). But when searching to depth 6, Player 1 dis-

covers that he prefers to have Player 3 win the next trick after he wins the first two

tricks. By doing so, Player 3 will eventually have to lead back a low heart, allowing

Player 1 to take an extra trick. In this case, on the next iteration, the maxn value of

the game tree (3, 0, 3). Although the sum of all players ̓scores only increased by 1,

Player 2ʼs score decreased by 2 and Player 3ʼs score increased by 3.

 In general, it is not possible to predict ahead of time how the scores in the

game will change, and who might lose or win points. The reason this occurs in maxn

game trees is due to tie-breaking. In line of play (a) in Figure 6.1 Player 1 has a tie

in his analysis of what card to play on the third trick. But, on the next iteration of the

game there are no ties in Player 1ʼs analysis.

 Searching to a different depth in a maxn game tree is going to change some

maxn values in the game tree. This means that nodes that had their maxn value deter-

mined by a tie-breaking rule before may no longer be, and positions that didnʼt have

ties before may have new ties introduced. Since changing a tie-breaking rule can

Figure 6.1: Effect of iterative deepening in maxn.

Possible Plays

(a) A♦ 3♦ 7♦ K♦ 6♣ 8♦ 2♣ 9♣ … 8♣ … 7♣ …
(b) A♦ 3♦ 7♦ K♦ 6♣ 8♦ 9♥ A♥ 2♥
 K♥ J♥ 7♣ 9♦ 2♣ 8♣ 5♥ Q♥ 9♣

Player 1
A♦ K♦ 2♣ Q♥ J♥ 9♥

Player 2
3♦ 9♣ 8♣ 7♣ 6♣ 2♥

Player 3
9♦ 8♦ 7♦ A♥ K♥ 5♥

95

vastly affect the maxn value of the game tree, it follows that searching to a different

depth in the tree can have the same effect.

 In two-player games if we donʼt have a monotonic evaluation function there

can be wide variations in node evaluation from one level to the next. This problem

has generally been solved with quiescence search. That is, a search is not cut-off as

long as there are pending actions that can greatly affect the static value of the node.

Such actions would include moves into check or capture moves. But this additional

search is needed because of the features of the game being considered.

 Under maxn the volatility of maxn values with search depth is partly a prop-

erty of the algorithm we use to search. This means that techniques like quiescence

search are less likely to be effective under maxn.

6.2 Zero-Window search

 Zero-window search, originally called Scout search [Pearl, 1984], originated

in two-player games. The idea behind zero-window search is to turn a game tree

with a range of evaluations into a tree where every leaf terminates with a win or a

loss. This is done by choosing some value v, and treating a terminal node as a win

for max if its evaluation is > v, and as a loss if it is ≤ v. Combining this approach

with a binary search will suffice to find the minimax value of a game tree to any

precision. This assumption results in highly optimized searches in win-loss trees,

where we can prune away most of the game tree. We will first demonstrate here how

zero-window search can be combined with iterative deepening for highly effective

96

iterative searches. Unfortunately, we cannot use zero-window search in a multi-

player maxn tree, but we can use it in a paranoid search tree.

6.2.1 Zero-Window Iterative Deepening

 Consider a two-player game which meets the requirements of Theorem 6.1,

namely that for a given player they will either get the same score as the previous

search or the previous score plus some constant µ.

 This theorem means that when we are doing iterative searches in a suit-

able game tree, we do not need to do a binary search to find the minimax value of

the game. Instead we can do a single search at each iteration. We demonstrate this

with a decision tree in Figure 6.2. This tree is used to decide which bound to use

on each successive iteration of a zero-window search. The value inside each node

is the zero-window search limit used at that depth, and the left and right branches

represent whether we won or lost at the previous depth. So, at the root of the tree

we begin by searching depth 1 with a zero-window limit of 1. If the result is a win,

we move down the left branch, and we will search depth 2 with a limit of 2. If we

lose, we will still use a limit of 1 at search depth 2. In this way we can always use

Figure 6.2: Decision tree for zero-window search limit.

1

2 1

13 2

depth 1

depth 2

depth 3

win loss

lwlw

97

a single zero-window search at each depth and still be guaranteed to calculate the

exact minimax value of the tree at that depth.

 Unfortunately this technique will not work with the maxn algorithm, as we

cannot bound how a playerʼs score changes from one depth to the next in a maxn

tree. In fact, we canʼt even use zero-window search to determine whether a playerʼs

score will be above or below some bound, as we can in a two-player game.

6.2.2 Failure of Zero-Window Maxn Search

 While there are limitations on pruning during the calculation of the maxn

value of a tree, it is not immediately obvious that we cannot somehow prune more

if we just try to calculate the bound on the maxn value of a tree, instead of the actual

maxn value.

 Suppose we want to consider all scores > 2 as a win. We illustrate this in

Figure 6.3. Since Player 2 can get a score of 5 by moving to the left at node (a),

Player 2 will prune the right child of (a), and return a maxn value of (w, w, l), where

w represents a win and l represents a loss. However, at node (b), Player 1 would then

infer that he could win by moving towards node (a). But, the exact maxn value of (a)

Figure 6.3: Finding bounds in a maxn game tree

1

2

3
(3, 4, 3)

3
(2, 2, 6)

(w, w, w)
(c)

2

3
(3, 5, 2)

3
(1, 8, 1)

(w, w, l)
(a)

(w, w, l)
(b)

pruned

98

is (1, 8, 1), and so in the real game tree, Player 1 should prefer node (c) over node

(a).

 So, the only bounds we can get on the maxn value of a tree are those that

come from a search with shallow pruning, which, given no additional constraints, is

already optimal among directional algorithms.

 [Korf, 1991] shows that “Every directional algorithm that computes the maxn

value of a game tree with more than two players must evaluate every terminal node

evaluated by shallow pruning under the same ordering.” We can now expand this

statement:

Theorem 6.2. Given no additional constraints, every directional algorithm that

computes either the maxn value or a bound on the maxn value of a multi-player

game tree must evaluate every terminal node evaluated by maxn with shallow prun-

ing under the same ordering.

Proof: [Korf, 1991] has already shown that shallow pruning is optimal in its com-

putation of the maxn value of a tree. If we replace backed-up maxn values in a game

tree with just bounded maxn values, there may be ties between moves that were

not ties in the original maxn tree, such as at node (a) in Figure 6.3. In fact, for any

bound it is a trivial task to create a tree for which ties are broken differently with

that bound than in the original tree. However, if we add new ties into the game tree,

no tie-breaking rule will be able to always make the same choices for breaking ties

in the new tree, as it did in the old tree. Thus, the underlying maxn value that we are

trying to bound may change, and we can no longer guarantee an accurate bound on

99

its value. ®

6.3 Move Ordering for Pruning Algorithms

 In two-player games, alpha-beta pruning has an average case performance of

b3·d/4, but a best-case performance of bd/2. Thus, there is an incentive to order the suc-

cessors of each node as well as possible, as it is the successor ordering that makes

the difference between the average and best-case performance. Much discussion and

previous research went into alpha-beta pruning to estimate the size of game trees

so that researchers would know whether or not the node ordering was sufficient for

alpha-beta pruning to prune the game tree optimally.

 As for multi-player games, node ordering can increase the amount of pruning

that occurs under shallow pruning. But, given the average case model of shallow

pruning and the fact that shallow pruning will never occur in many games no mat-

ter what ordering we use, we havenʼt invested very much effort in improving node

ordering for shallow pruning. However, in speculative pruning we can guarantee

better pruning results if we can order our successors closer to optimally.

 While the obvious solution to this problem is to add domain-specific knowl-

edge to order moves within a game tree, there have been other proposals. One such

proposal is the History Heuristic [Schaeffer, 1989]. The history heuristic was first

applied in the game of Chess. This is essentially a learning method that uses the

result of offline play to learn the best ordering possible. It works by first building a

table of all possible moves in the game. In Chess there are 64 possible piece posi-

100

tions on a board. For the chess implementation a table was set up for each possible

from and to positions of a move, regardless of the piece that was moving.

 Then, each time a search algorithm returns from a node with the best possible

move at that node, it re-weights the returned move within the table. It then uses the

weighting of nodes within the table to order the successors of a node. The weighting

of moves in the table was initially zero. After a search to depth d had returned a par-

ticular move as the best move at that node, the table entry for that node was updated

by adding 2d to the current sum at that table entry. This is because the deeper the

search that led to a certain move the more likely it is to be a good move in general.

When new moves were considered, they were sorted from largest to smallest values

based on the results in the table. Values should be learned offline through self-play

at the same depths that will be used for online search.

 [Schaeffer, 1989] reports that this technique was able to learn an ordering

that was as good as the best hand-tuned ordering produced from expert knowledge

of the game. Given the simplicity of this method, similar results in other domains

would be welcome.

 We implemented this for trick-based card games in the following manner. We

created 53 tables of 52 values each. Each table represents the current winning card

in the trick when the player in question is about to move, with one extra table for

which card to play when they are in the lead. Each table entry began at 0 and was

updated through self-play. We did not adjust the table when we were at a node that

only had a single legal move. After playing multiple games we analyzed the tables

101

and found that it had learned fairly reasonable tables. We demonstrate some of the

values in Table 6.4. This table shows values for the game of Hearts when the Ace

of Spades has been lead. The first-choice card to play in this situation is the Queen,

followed by the King. If you canʼt follow suit, the best plays are the Ace through

Jack of Hearts. These are the expected ordering that should be learned.

 Despite this, there are several issues that arise, particularly in multi-player

games, when attempting to use such methods to order successors. First, for Hearts

this set of tables is not sufficient to conveniently represent the information we might

want to use when ordering our moves. If we know, for instance, that the only spades

left are the ace and king, it is a reasonable move to lead the Queen of Spades. This is

an easy situation to check with a custom ordering function, and will almost always

be the correct move, but there is no simple way for such a method to learn this au-

rank ♠ ♦ ♣ ♥

A 0 15846 16378 316562

K 5081366 10732 3472 129116

Q 8392112 7630 4774 58678

J 3247574 5472 4402 51348

10 2931582 3212 12992 11432

9 2396322 7220 2820 24566

8 1540746 4122 1966 9246

7 1455590 3502 3086 8950

6 992640 764 1116 2070

5 490956 5872 1488 6730

4 431818 1546 1556 1450

3 145032 1296 280 910

2 56600 1152 832 620
Table 6.4: Learned move ordering for Hearts given an A♠ lead.

102

tomatically. Similarly if the Queen of Spades has already been played, the order in

which we consider moves may change drastically. The Queen of Spades is a special

card in Hearts, and we can build multiple tables to account for whether it has been

played or not, but there are still other issues beyond this.

 The bigger issue is that ordering our moves to search the minimum sized

maxn tree may actually cause us to play suboptimally. This goes back to one of fun-

damental issues with maxn, which is that randomly breaking ties in the tree can ran-

domly affect the maxn value of the tree. If we want to prune the tree most effectively

our tie-breaking rule must be implicitly defined by the way we order our successors.

Thus, our successor ordering is relevant to both the tie-breaking rule we want to use

in the game and whether our ordering can create a minimal search tree.

 Let us specifically consider a situation in a multi-player game where there

are multiple ways that we can a break tie within a game tree. Suppose we have two

moves with the same maxn value, but in practice one move is much better than the

other. Depending on the situation, the better move may require more analysis than

the worse move. Thus, if our goal is to build the smallest search tree, we may end

up preferring the worse move.

 It is important to note that these arenʼt criticisms of the history heuristic, and

it indeed learned something reasonably close to our own ordering. But, these issues

will be relevant to any attempt to order nodes optimally in a multi-player game

tree.

 This isnʼt as much of an issue in two-player games because the way we break

103

ties canʼt change the minimax value of the game tree, so ordering our moves to cre-

ate the minimal game tree is equivalent to ordering our moves from best to worst.

 In experiments run with the history heuristic, there was no discernible differ-

ence in performance or node expansions while using the heuristic when compared

to our static ordering function. We postulate that because it is quite easy to order our

successors well in card games the history heuristic will not provide easy benefits. In

Chinese Checkers, where we have done well ordering moves by how far they move

our pieces across the board, we also expect that the history heuristic will not provide

major benefits. But, in a game like Abalone, where the moves are more complicated

and less easy to evaluate, the history heuristic may provide greater benefits. Our ini-

tial experiments in Abalone have proved promising, however we have not resolved

all the issues involved well enough to present definitive results.

6.4 Memory Usage

 All the search algorithms discussed in this thesis use relatively little memory,

on the order of the search depth times the branching factor of the tree, O(b·d). That

is because they only keep the current search path in memory at any one time. This

means that the search can operate in a few kilobytes of memory, while a current

computer will often have 500-1000 megabytes of main memory, and hundreds of

gigabytes of disk storage. Since searching with these algorithms is not going to

come close to using the full resources of the computer, we would like to develop

techniques that will take advantage of the large memory of the computer to help

104

speed the search process.

 We note, however, that processor speeds are currently growing much faster

than memory bus speeds, meaning that the cost of accessing main memory is be-

coming more and more expensive, and there is no reason to expect that to change in

the near future. Thus, there can be a high performance penalty for accessing main

memory too often, if the consequent savings are too small.

 There are three related techniques that have been used to take advantage of

free memory on the computer, opening books, end-game databases, and transposi-

tion tables. Opening books and end-game databases are simply large tables of pre-

computed positions and their relative values, while transposition tables are dynami-

cally calculated tables of values. We will discuss all three methods here within the

context of multi-player games.

6.4.1 Opening Books

 Opening books were first used in the context of Chess, where an analogous

concept exists for human Chess players. There are sets of standard openings and re-

sponses that have been well analyzed, and expert players usually memorize as many

such openings as they can. Thus, a computer can also take advantage of such tables,

as they usually involve much more detailed computation than a computer will usu-

ally be able to make on any given move. This helps avoid making simple mistakes

early in the game. In addition to using pre-made human tables, it is also possible to

do offline search before tournament or other competitive play that can be saved in

the form of an opening book.

105

 Opening books are useful because many games always begin in the same

starting position. This means that there are a relatively small number of calculations

that can be done ahead of time. Opening books can also be used to help tune static

evaluation functions. But games like Scrabble, or card games, which have no fixed

starting position, will generally see little or no gain from an opening book, because

the number of possible openings is related to the possible hands you can begin with,

and enumerating these hands is much more expensive than doing the analysis from

any given starting position.

 The most obvious multi-player games for which opening books would be

useful are Chinese Checkers and Abalone. In Chinese Checkers, the players usually

have a few moves before their pieces begin to interact with each other, so one ap-

proach, besides doing a full search from the initial state, is to build an opening book

from the single-agent space of moves for the optimal first few moves, and then to

analyze those moves in relation to your opponents moves.

 The biggest difficulty introduced by multi-player games is the issue of op-

ponent modelling. The issue of opponent modelling cannot be completely ignored

in a multi-player game, and an opening book will make implicit assumptions about

the strategies our opponents are using. If our strategy and model of our opponents is

adaptive over a game we will not be able to compute opening books for each com-

bination of adaptive strategies.

 This issue as a whole is beyond the scope of this thesis, but recognizing such

a trait in game play, particularly repetitive game play, and adjusting to it, may invali-

106

date the calculations found in an opening book.

6.4.2 End-Game Databases

 A similar method by which the memory of the computer can be leveraged to

help search is in closing books. This method was most successfully applied in the

implementation of Chinook [Schaeffer, et al, 1992], the best Checkers program in

the world. One of the core pieces of this program is a closing book that contains all

possible board positions in which there are 8 or fewer pieces on the board, and the

exact win, loss, or draw value of those positions. This can be done efficiently using

retrograde analysis. This is done by building a table of all the positions we wish to

analyze. States for which the minimax value is known are marked. Then, for un-

known states, the successors of that state are checked to see if they are a win, loss or

draw. These values can be progressively backed up into the table until it is full.

 Closing books are especially valuable in games where the number of com-

binations of pieces is small compared to the way that those pieces can play out the

rest of the game. In Chess or Checkers it is possible that it will take a large search

tree with many moves to finally play out a game position to a win or loss, but if

those computations can be done offline, they can be stored at relatively little cost in

comparison to the actual search. This contrasts greatly with games like card games,

where the number of ways a game can be played out becomes much smaller as

the game nears the end, but the total possible ways it could happen in any game is

huge.

 This brings us to the primary issues of closing books in multi-player games,

107

as compared to two-player games. At the close of a perfect information game, mini-

max is guaranteed to back up exact game-theoretic values. For minimax, this means

that no matter what strategy our opponent uses, if we calculate a win, we are guar-

anteed to be able to win the game. For multi-player games, we will show how this

might not be the case.

 If we use the paranoid algorithm to do retrograde analysis, we have the same

theoretical properties as minimax. So if such analysis indicates we will win, we

are guaranteed a win no matter the strategy of our opponents. But, a loss under the

paranoid algorithm is not a guaranteed loss. Instead, we must consider each of our

opponents separately. Only a win for our opponent is a loss for us. This means there

can be states for which we can never guaranteed a win or loss for any player in the

game, because the actual result will depend solely on our opponents strategy.

 If we choose to use the maxn algorithm for our retrograde analysis, every

state in our table will evaluate exactly. But, implicit in our analysis is the tie-break-

ing rule that we use. It may be the case that a player that cannot win the game can

decide by their actions who does win. What is more, we should probably distinguish

between states in which a secondary player can make such a decision, and a state

where we can guarantee ourselves a win.

 Thus, while we can use closing books in a multi-player game, the issues sur-

rounding closing books are more complicated than in two-player games. The exact

resolution to these issues will be determined by the game being played. For the sake

of illustration, we will discuss what we might do to create a closing book for the

108

three-player version of Chinese Checkers.

 In Chinese Checkers we cannot distinguish the end-game by the number of

pieces on the board, as players ̓pieces are never removed from the board. Addition-

ally, for every winning state for each player there are roughly 2 trillion ways the oth-

er players can arrange their pieces on the board. So, it is infeasible to directly build

a table like can be done in Checkers. Instead there are a few alternate approaches.

 The approach we favor is to look at the single-player variation of Chinese

Checkers. In this game only one player has their pieces on the board, and the goal

is to simply get your pieces across the board in as few moves as possible. For a

variation of Chinese Checkers with a slightly smaller board (49 legal positions

and 6 pieces for each player), we have solved this problem exactly with a 14MB

database of positions. Then, returning to the multi-player version of the game, this

database can be used as both a partial opening and closing book for the game. As

playerʼs pieces close in on the end-game state, this table will have the exact number

of moves needed to finish the game, and for states close to the end of the game, it

will have a close approximation of that value. For the full-size game board (81 legal

positions and 10 pieces for each player) such a table would take about 1.9 TB. This

is on the upper range of the capacity of many modern machines, but it isnʼt out of

the question.

 Other possible approaches could require most of oneʼs pieces to be in one

half of the board, but allow a few pieces to be anywhere on the board, or to do simi-

lar analysis with several of oneʼs opponent pieces also on the board. None of these

109

methods look exactly like what we would find in traditional end-game databases,

but they use the main idea behind the technique, and should boost the performance

of a game implementation.

6.2.3 Transposition Tables

 Although we often speak of game trees, most games are actually graphs.

That is, there are states that can be reached by more than one path from the root.

Thus, it is advantageous to be able to detect these states in order to avoid redundant

searches. We demonstrate this in Figure 6.5.

 This figure shows one portion of a Chinese Checkers game state. Only one

playerʼs pieces are shown on the board, as this example could be for a game with

any number of players. We can see that in each of the four quadrants, there are two

moves by the player that lead to the same final state of the board. While we might

not be able to detect the moves that lead to the same state in advance, we can save

the result of any calculations that occur below this state in the game tree, and when

we return to the state again, instead of re-searching, we retrieve the saved results.

 Not all moves will result in transpositions in the search space, so it is essen-

Figure 6.5: Four possible combinations of moves to get to the same state in Chinese Checkers.

4 4

4 4

110

tial that the cost of lookup be small. This can normally be done by storing the entries

in a hash table, which has constant-time lookup. It is important, however, that the

search does not try to lookup or store nodes near the leaves of the search, as there

will be little benefit to finding those states in the table, but there will be high latency

costs from looking up and memory costs of storing the state in main memory. In ad-

dition, the state of the algorithm when searching a particular node must be stored,

as the bounds from pruning that were in affect when the node was pruned must be

compared to the current bounds being used.

 In terms of multi-player games, transposition tables work essentially the

same as they do in two-player games, with a few caveats. First, the order that moves

are considered must be the same in all portions of the game tree. This is due to the

fact that tie-breaking has the ability to arbitrarily affect the maxn value of the game

tree. If we are not consistent in the way we break ties from one part of the tree to the

next, transpositions from one part of the tree will potentially be stored with different

results than would be found in the other part of the game.

 Another issue in multi-player games is that it takes transpositions much lon-

ger to manifest themselves than in two-player games. In a three-player game of Chi-

nese Checkers, for instance, the first possible transposition occurs after a player has

their second move, or depth 4 in the game tree. Given no pruning, if we artificially

limit the branching factor to 10 (it is well over 100 in the mid-game), we will have

to search 10,000 moves before we begin to detect transpositions. If we are limited

to 1 million moves per turn, each transposition will save a maximum of 100 moves,

111

and in a four-player game it would only save 10 moves.

 Before speculative pruning was developed the maxn algorithm, due to its

lack of pruning in Chinese Checkers, saw little gain from transposition tables. But,

speculative pruning can greatly benefit from transposition tables, as they will mini-

mize the cost of re-searching the children of a node.

 To summarize, there are three things to note about transposition tables in

multi-player game trees. First, they require that we be consistent with our node-or-

dering. Second, they can be less effective than in two-player games, due to the fact

that it takes more moves for a transposition to occur. Finally, speculative pruning

can benefit from transposition tables, as they can offset the cost of re-searching por-

tions of the game tree.

112

Chapter 7

Experimental Results

 Although the theoretic properties of decision rules and pruning algorithms

are interesting on their own, we would also like to write programs which use these

algorithms to play games well. In this chapter we first describe the framework we

have developed for testing multi-player games and algorithms, and then describe the

results of experiments on those games. If the reader is not interested in a high-level

description of the implementation, they may skip to section 7.2.

7.1 Experimental Framework

 To be able to implement algorithms and games as easily as possible we have

developed a set of specialized C++ classes for this task. There are many design deci-

sions involved in writing such a framework, a few of which we discuss here. First

and foremost, our framework is structured to make it as easy as possible to share

code between different domains.

 This is crucial when we want to run a set of similar experiments across many

different domains. It is not only tedious to re-write new code for every algorithm in

every new domain, but it is also error prone. As the number of algorithms consid-

113

ered grows, it also becomes difficult to maintain consistent implementations across

different domains.

 Given our framework, 80-95% of the code used for any game is completely

generic. This means that the bulk of the code for running and testing any game only

has to be written once. Even more importantly, once an algorithm is working cor-

rectly, we donʼt have to worry about re-implementing it for any new game we come

up with, as the current implementation will work fine. It also means, however, that

more thought must be put into the code and design to assure that it can robustly

handle variations is the number of players in the games or other such things that can

vary from domain to domain.

 The cost of this design decision is that our code will never be the fastest code

possible, as it must be able to handle any game. So, we will not be able to optimize

our code to take advantage of some domain-specific features. In a card game, for

instance, we can represent a move with an 8-bit value, while a move in Chinese

Checkers needs a 16-bit value, and there are other games where we need even larger

values to represent moves.

 There are four major abstract components that are used for any game. These

are a game, a game state, an algorithm, and a player. We describe each briefly

here.

 Game: The Game class is one of the simplest in our architecture. A game

deals with the high-level play of a game, managing the addition of players, overall

game scoring, the repetition of hands, and other similar activities. The generic im-

114

plementation of a game will automatically play multiple hands until scoring levels

are met. In Hearts, for instance, hands will automatically be played until one player

has 100 points, while Cribbage will continue until a player has 121 points.

 Game State: A Game State is the description of exactly one state of a game.

A game state is modified by applying and undoing moves on that game state, and it

also keeps track of whose turn it is in the game. The game state class also provides

a list of legal moves for the current player.

 Algorithm: The algorithm class is used for implementing decision rules.

There is common code for doing iterative deepening searches, so that a simple al-

gorithm implementation will automatically do iterative searches. An algorithm pro-

vides many of the same functions that a game state does, passing the calls through

to the game state. But, in the process it keeps track of the number of moves applied,

the depth of search, and other similar metrics.

 The standard algorithm code also provides three ways to limit a search.

Any search can be limited by search depth, search time, or the number of nodes

expanded. When a search iteration is cut off, the results of the previous iteration are

returned.

 Because algorithms are generic, we have also defined a Monte-Carlo simu-

lation algorithm that takes as an argument another algorithm, and the number of

samples to use. The Monte-Carlo algorithm then runs the algorithm passed to it on

the game state as many times as specified, averaging the results together and return-

ing the best overall move.

115

 Player: The role of a player in the game is to define the custom static evalu-

ation function used in the game. The player must also define any heuristics that can

be used to prune a search. This makes it easy to implement multiple evaluation func-

tions and test them against each other as separate players in the game.

7.2 General Experimental Setup

 To test multi-player games experimentally we have written a game engine

as described in the last section that contains a number of algorithms and techniques

such as the paranoid algorithm, maxn, zero-window search, transposition tables and

monotonic heuristic pruning. New games can easily be defined and plugged into the

existing architecture without changing the underlying algorithms.

 We first present the general outline of our experiments applicable to all the

games, and then we will present the more specific details along with the results.

 Our experiments involve 3, 4, and 6-player games while comparing 2 differ-

ent algorithms. In a 3-player game, there are 23 = 8 different ways we could assign

the algorithm used for each player. However, for competitive analysis we are not

Player 1 Player 2 Player 3

1 maxn maxn paranoid

2 maxn paranoid maxn

3 maxn paranoid paranoid

4 paranoid maxn maxn

5 paranoid maxn paranoid

6 paranoid paranoid maxn

Table 7.1. The six possible ways to assign paranoid and maxn player types to a 3-player game.

116

interested in games that contain exclusively maxn or exclusively paranoid players,

leaving 6 ways to assign each player to an algorithm. These options are shown in

Table 7.1. So, we ran our 3-player experiments 6 times, once with each distribution

in Table 7.1. For card games, that means that the same hand is played 6 times, once

with each possible arrangement of cards. For Chinese Checkers, this varies who

goes first, and what player type goes before and after you.

 Similarly, in a 4-player game there are 24 = 16-2 = 14 ways to assign player

types, and in a 6-player game there are 26 = 64-2 = 62 ways to assign player types.

7.3 Chinese Checkers

 We ran our experiments in Chinese Checkers on two different versions of the

game. Our early experiments were run on a slightly smaller board than is normally

used, where each player has 6 pieces instead of 10. Boards this size are commer-

cially available, but as common as the full size board. Our more recent experiments

have been performed on the regular board as described in Chapter 2.

7.3.1 Simplified Chinese Checkers

 In the version of Chinese Checkers with a smaller board a player will have,

on average, about 25 possible moves (in the 3-player game), with over 50 moves

available in some cases. The full game often has more than 100 possible moves dur-

ing the mid-game.

 Besides reducing the branching factor, this smaller board also allowed us to

create a lookup table of all possible combinations of a single playerʼs pieces on the

117

board, and an exact evaluation of how many moves it would take to move from that

state to the goal assuming no opponent pieces on the board. The table is the solution

to the single-agent problem of how to move your pieces across the board as quickly

as possible. This makes a useful evaluation for the two-player version of Chinese

Checkers. However, as additional players are added to the game, this information

becomes less useful, as it doesnʼt take into account the positions of oneʼs opponents

on the board. It does have other uses, however, such as measuring the number of

moves a player would need to win at the end of the game.

 Because only one player can win the game, Chinese Checkers is a zero-sum,

or constant-sum game. However, within the game, the static evaluation is not nec-

essarily constant-sum. Our static evaluation function is based on the distance from

each piece to the goal, the proximity of pieces to each other, the number of pieces in

the goal area, and the maximum distance from any piece to the goal.

 In our 3-player experiments, we played 600 games between the maxn and

paranoid algorithms. To avoid having the players repeat the same order of moves in

every game, ties near the root of the search tree were broken randomly. We searched

the game tree iteratively, searching one level deeper in each successive iteration.

These results are originally from [Sturtevant, 2002], so they were not run with

speculative pruning.

 We report our first results at the top of Table 7.2. We played 600 games, 100

with each possible configuration of players. If the two algorithms played evenly,

they would each win 50% of the games, however the paranoid algorithm won over

118

60% of the games it played.

 Another way to evaluate the difference between the algorithms is to look at

the state of the board at the end of the game and measure how many moves it would

have taken for each player to finish the game from that state. When tabulating these

results, weʼve removed the player who won the game, who was 0 moves away

from winning. The paranoid player was, on average, 1.4 moves ahead of the maxn

player.

 Finally, we can see the effect the paranoid algorithm has on the search depth.

The paranoid player could search ahead 4.9 moves on average, while the maxn play-

er could only look ahead 3.1 moves. This matches the theoretical predictions made

in section 3.2; Paranoid is able to look ahead about 50% farther than maxn.

 We took the same measurements for the 4-player version of Chinese Check-

ers. With 4 players, there are 14 configurations of players on the board. We played

50 games with each configuration, for a total of 700 games. The results are in the

Paranoid Maxn

3-player
250k nodes

games won 60.6% 39.4%

moves away 3.52 4.92

search depth 4.9 3.1

4-player
250k nodes

games won 59.3% 40.7%

moves away 4.23 4.73

search depth 4.0 3.2

6-player
250k nodes

games won 58.2% 41.8%

moves away 4.93 5.49

search depth 4.6 3.85

Table 7.2. 6-piece Chinese Checkers statistics for maxn and paranoid

119

middle of Table 7.2. Paranoid won 59.3% of the games, nearly the same percentage

as in the 3-player game. In a 4-player game, paranoid should be able to search 33%

farther than maxn, which these results confirm, with paranoid searching, on average,

4-ply into the tree, while maxn was able to search 3.2-ply on average. Finally, the

paranoid players that didnʼt win were 4.23 moves away from winning at the end of

the game, while the maxn players were 4.73 moves away. This gave maxn a chance

to get closer to the goal state before the game ended.

 In the 6-player game, we again see similar results. We played 20 rounds on

each of 64 configurations, for 1280 total games. Paranoid won 58.2% of the games,

on average 4.93 moves away from the goal state at the end of the game, while maxn

was 5.49 moves away on average. In the 6-player game, we expect paranoid to

search 20% deeper than maxn, and that is the case, with maxn searching 3.85 moves

deep on average and paranoid searching 4.6 moves on average.

 Because of this, we conducted another experiment with the 3-player games.

In this experiment we again played 600 total games, limiting the branching factor

of each algorithm, so that only the six best moves were considered at each branch,

Paranoid Maxn

250k
nodes, fixed
branching

factor

games won 71.4% 28.6%

moves away 2.47 4.4

search depth 8.2 5.8

fixed depth
search

games won 56.5% 43.5%

moves away 3.81 4.24

Table 7.3. 3-Player 6-piece Chinese Checkers statistics for maxn and paranoid.

120

according to the move ordering function. We chose to limit the branching factor to

six moves because this allows reasonable depth searches without an unreasonable

limitation on the possible moves. If we limited the branching factor to just two

moves, for instance, there wouldnʼt be enough variation in moves to distinguish the

two algorithms.

 The results from these experiments are found in Table 7.3. Under these con-

ditions, we found that paranoid did even better than maxn, winning 71.4% of all the

games even though maxn was able to search much deeper than in previous experi-

ments. The paranoid algorithm could search 8.2 moves deep as opposed to 5.8 for

maxn. At the end of the game, paranoid was, on average, only 2.47 moves away from

finishing, as opposed to 4.4 for maxn.

 Finally, we played the algorithms against each other with a fixed depth

search. In this experiment, both algorithms were allowed to search 4-ply into the

tree, regardless of node expansions. In these experiments the paranoid algorithm

again was able to outperform the maxn algorithm, albeit by lesser margins. Paranoid

won 56.5% of the games played, and was 3.81 moves away at the end of the game,

as opposed to 4.24 moves for maxn.

 These results show that the paranoid algorithm plays better Chinese Checkers

both because it can search deeper, and because its analysis produces better play.

7.3.2 Full-Board Chinese Checkers

 We did similar experiments with the full game of Chinese Checkers. Because

the branching factor is fairly high, at each node we only considered the 10 best

121

moves according to our move ordering function. This is a reasonable restriction

to make, as this ordering heuristic often gives us an optimal ordering when using

speculative maxn.

 On the larger Chinese Checkers board we ran two experiments. First, we

played speculative pruning against paranoid with a 500k node limit, and then we

played approximate deep pruning against paranoid, also with a 500k node limit. Ap-

proximate deep pruning is not guaranteed to calculate a correct maxn value for the

game tree, but it can prune more than speculative maxn. Our program expands 35-

45k nodes per second on a 500Mhz G4 processor. The results of these experiments

are in Table 7.4. We include the estimated cost for a losing player to get his pieces

into the goal state after the game ended, along with the average search depth.

 In these experiments paranoid won 65 percent of the games it played against

speculative maxn, while only 52 percent of the games it played against approximate

deep maxn. On average paranoid could search depth 8.0 against either algorithm, but

approximate deep maxn could search 7.56 ply on average, while speculative maxn

could only search 6.24 ply into the game tree.

 We can see that approximate deep pruning did much better relative to para-

3-Player Full Chinese Checkers

percent wins avg. remaining cost avg. search depth

Speculative Maxn 35% 6.66 6.24

Paranoid 65% 3.54 8.05

Approx. Deep Maxn 48% 5.53 7.56

Paranoid 52% 4.75 8.04
Table 7.4: Maxn variations versus paranoid in Chinese Checkers.

122

noid than speculative maxn. There are two reasons why this is occurring. First, in

Chinese Checkers our node ordering is very good among the 10 best moves, so the

chance of incorrectly pruning a node drops. Second, approximate deep pruning has

an average search depth of 7.56, while speculative maxn has an average search depth

of 6.24. This is important, because at depth 7 a player can look ahead from his first

move to his third move. Particularly in the opening and end-game this is very im-

portant, allowing the computer to set up more complex jump moves not seen when

the average search depth is less than 7. This is much more important that the extra

ply that paranoid can search over approximate speculative maxn.

 In addition to comparing the performance of paranoid to speculative maxn,

we also used Chinese Checkers to measure how effectively pruning each algorithm

can prune in practice. We did this by measuring the number of node expansions at

depth 6 by both plain maxn with no pruning, speculative maxn, approximate deep

maxn and paranoid. The results are in Table 7.5. On average, speculative maxn ex-

panded an order of magnitude fewer nodes than regular maxn, reducing node ex-

pansions at depth 6 from 1.2 million to 100k. In many cases speculative maxn was

examining the minimum possible game tree. Approximate deep maxn expands even

Chinese Checkers expansions at depth 6

Plain Maxn 1.2 million

Speculative Maxn 100k

Approx. Deep Maxn 61k

Paranoid 25k
Table 7.5: Average expansions by various algorithms in Chinese Checkers.

123

fewer nodes, only looking at 61k nodes on average, while paranoid only looks at

25k nodes on average at this depth.

7.4 Abalone

 Abalone is similar to Chinese Checkers, in that they are both perfect-infor-

mation games. However, Abalone is in some ways a much more complicated game

than Chinese Checkers. First, the average branching factor is much higher. (There

are over 40 possible opening moves in the 3-player game.) But, more importantly,

it is much more difficult to order moves in the game. This means that when we at-

tempted to artificially lower the branching factor of the game, we ended up ignoring

the best moves in the game, resulting in very poor play. We are not experts in the

game of abalone, so we recognize that there may be useful components missing

from the static evaluation function we used in the game. Regardless, it is useful to

have another data point for comparison.

 We ran two different experiments to compare paranoid and maxn in 3-player

abalone, a fixed-depth search and a node-bounded search. We performed a fixed-

3-Player Abalone

percent wins average score average depth

fixed depth 4
Speculative Maxn 58% 3.93 -

Paranoid 42% 4.04 -

500k node limit
Speculative Maxn 36% 3.41 4.01

Paranoid 63% 4.04 4.79

500k node limit
Approx. Deep Maxn 39% 3.55 4.09

Paranoid 61% 3.99 4.77
Table 7.6: Maxn variations versus paranoid in Abalone.

124

depth search 4-ply into the game tree; from a playerʼs first move to their second. For

the node-bounded search, we bounded node expansions at 500k nodes. Our evalu-

ation function is based on the number of pieces we have, the number of pieces we

have pushed off the board, the proximity of our pieces to the center of the board,

the proximity of our pieces to the edge of the board, and how well our pieces are

grouped together.

 The results of these experiments are in Table 7.6. The average score is the

number of pieces that a player manages to push off the board during each game. (6

pieces is a win.) At fixed depths maxn won a larger percent of the games played,

although its average score was slightly lower than paranoid. This is because the

standard deviation of maxnʼs score, 1.62 is larger than the standard deviation of

paranoidʼs score, 1.38. Maxn seems to be a slightly stronger decision rule than para-

noid at fixed depths, which makes sense, as it is easy for two players to gang up on

the third in Abalone. But, with a 500k node search limit, paranoid is able to search

deeper than maxn, leading to a large improvement in wins. Because our search depth

is limited, approximate deep maxn can search marginally deeper than speculative

maxn for a small gain in performance, winning 39% of the games as opposed to the

36% that speculative maxn won.

7.5 Perfect-Information Card Games

 For the card games Hearts, Spades and Cribbage we deal a single hand and

then play that same hand six times in order to vary all combinations of players and

125

cards. If maxn and paranoid play at equal strength, they will have equal scores after

playing the hand 6 times. For both games we used a node limit of 500k nodes per

play. These games were played with all cards in each hand face up, allowing all

players to see all cards.

 For the 3-player games of Hearts and Spades we played 100 hands, 6 times

each for a total of 600 games. In Hearts we also run experiments with the 4-player

version of the game. For the 4-player game we used 70 hands, played 14 times for

each arrangement of players, for 980 total games. Our search was iterative, as in

Chinese Checkers. But, since points are only awarded when a trick is taken, we

didnʼt search to depths which ended in the middle of a trick. We used a hand-crafted

heuristic to determine the order that nodes were considered within the tree.

 In Spades we either prefer to lead high or lead low. If we are following a lead,

we first consider the lowest card that will win the trick. If we canʼt win, we play

low. Our static evaluation function is based on the tricks taken, plus an analysis of

the card left in your hand, estimating which ones will take tricks and which ones

wonʼt.

 In Hearts we order our successors so that we will drop the Queen of Spades

when we can, and we avoid leading the Ace or King of Spades when the Queen is

still out. Our static evaluation function take into account the points taken so far, and

a analysis of how many card we have that are expected to take tricks, and how many

cards we have that can duck tricks.

126

7.5.1 Hearts

 We ran several different experiments in Hearts, the first of which was to com-

pare paranoid and speculative maxn. In all our experiments with Hearts, we included

shooting the moon as part of the rules, although the computers didnʼt explicitly try

to shoot the moon until they could search the remaining game tree to completion.

 We first played paranoid against speculative maxn in three-player Hearts.

Before we developed speculative maxn, paranoid was able to play better than maxn,

but with the addition of speculative pruning maxn was then able to out-perform para-

noid. For more on this, see [Sturtevant, 2002] and [Sturtevant, 2003]. The results of

our experiments are in Table 7.7. After 100 games, played once for each combina-

tion of players on the table, paranoid averaged 8.82 points per game, while specula-

tive maxn averaged 8.22 points per game. (Lower scores are better.) In the 4-player

version of Hearts we got similar results. Over the games speculative maxn averaged

6.33 points per hand, while paranoid averaged 7.04 points per hand.

 We measure the standard deviation to see if these differences are statistically

significant. It is important, however, that we donʼt measure the standard deviation of

each hand played, as that will just measure the variance in the cards dealt. Instead,

3-Players
average score

4-Players
average score

Speculative Maxn 8.22 6.33

Paranoid 8.82 7.04

Speculative Maxn 8.11 -

Maxn 8.94 -
Table 7.7: Speculative maxn versus paranoid and maxn in Hearts.

127

we need to look at all 6 games played on a particular deal of cards in the three-player

version of hearts and the 14 games played per deal in four-player hearts. When

we do this, we see that in 3-player hearts maxnʼs score had a standard deviation of

1.84, and paranoid had a standard deviation of 1.87. In four-player hearts maxn had

a standard deviation 1.03 points per hand while paranoid had a standard deviation

of 1.27 points per hand. The means that there is a greater statistical separation on

scores in the four-player version, and that maxn is more likely to shoot the moon that

paranoid, leading to a larger standard variation on paranoidʼs score.

 In addition to these experiments, we also did a similar experiment to com-

pare maxn with a tie-breaking rule to speculative maxn. The goal of this experiment

was to see if a search with no pruning but a sophisticated tie-breaking rule would be

able to outperform a deeper search with a less sophisticated tie-breaking rule. For

the plain maxn implementation we broke ties to minimize the score of the player at

the root of the tree, as this was experimentally seen to be quite effective of improv-

ing the play of maxn. This is because it will allow us to avoid situations like those we

saw in Figure 4.9. The results from these experiments are also in Table 7.7. It ended

up that in our actual experiments the added search depth was much better than a tie

breaking rule, with speculative maxn averaging 8.11 points per hand, while maxn

with a good tie-breaking rule averaged 8.94 points per hand.

7.5.2 Spades

 We ran experiments in Spades similar to Hearts, but in Spades we are only

interested in the three-player version of the game, because the four-player version is

128

played in two teams. We played 100 games with all possible arrangements of play-

ers at the table, using a 500k node search limit. Table 7.8 shows that the difference

between the two decision rules in Spades is negligible. This is despite the fact that,

on average, paranoid can search about 10 ply deeper than speculative maxn. It seems

that this occurs because the general strategy is always to take tricks with high cards.

We suspect that Spades, and the similar games like 8-5-3 are interesting because of

the other interactions in the game, such as the passing of cards or the bidding, which

we didnʼt model in these experiments.

7.5.3 Cribbage

 In Cribbage we can search the entire game tree quite quickly, so the only

comparison that needs to be made is between the maxn decision rule and the para-

noid decision rule. We ran two sets of experiments. In the first set of experiments we

just played out single hands and compared the scores of all players. In the second

set of experiments we played out full games to 121 points. The results are in Table

7.9 and are similar for both experiments. In an average hand maxn got 6.89 points

average hand score average game score

3-players
Speculative Maxn 6.89 96.1

Paranoid 6.55 91.4
Table 7.9: Speculative maxn versus paranoid in Cribbage.

average score

3-players
Speculative Maxn 5.65

Paranoid 5.68
Table 7.8: Speculative maxn versus paranoid in Spades.

129

while paranoid only got 6.55 points, with a standard deviation of 1.73. In full games,

maxn averaged 96.1 points, while paranoid averaged 91.4 points, with a standard

deviation of 12.97 for maxn and 12.14 for paranoid. On the full game, each algo-

rithm averaged about 13.95 times their score in the partial game. These are small

differences, but in the two-player game most games are decided by six points or less

[Colvert, 1997], so this is actually a reasonably large gap.

7.6 Imperfect Information Card Games

 Because we really play most card games as imperfect information games, in

addition to our experiments with the perfect information variants of these games, we

also have done experiments for the real version, using Monte-Carlo simulations to

make our moves.

7.6.1 Hearts

 We ran Monte-Carlo experiments in Hearts with two variations in sample

size. In the first set of experiments we gave the computer 0.5 seconds to analyze

each of 40 models, and in the second experiment we gave the computer 1 second

average score

3 players

40 models,
0.5 sec./model

Speculative Maxn 6.91

Paranoid 10.32

20 models,
1.0 sec/model

Speculative Maxn 6.43

Paranoid 10.92

Approx. Deep Maxn 7.25

Paranoid 9.98

4 players
20 models,

1.0 sec/model
Speculative Maxn 5.34

Paranoid 8.81
Table 7.10: Speculative maxn versus paranoid in Hearts.

130

to analyze 20 models. We played 50 three-player games once for each possible

ordering of players at the table, for a total of 300 games. The results from Hearts

are in Table 7.8. When we used 40 models, speculative maxn averaged 6.91 points

per hand, while paranoid averaged 10.32 points per hand. When we used 20 mod-

els, speculative maxn averaged 6.43 points, while paranoid averaged 10.92 points

per hand. In the same table, we have results from playing approximate deep maxn

against paranoid, where approximate deep maxn averaged 7.25 points a game to

paranoidʼs 9.98 points. This is good, but it is not as good as speculative maxn.

 While speculative maxn did slightly better than paranoid in perfect informa-

tion games, it did much better in imperfect information games. When we analyze

the hands played we donʼt see paranoid repeatedly making obviously bad moves.

Instead it just seems that speculative maxn is consistently able to do analysis that

gives it a slight advantage over paranoid, and in the long term this pays off well for

speculative maxn.

 We got similar results for the 4-player version of Hearts. These results are in

the bottom of Table 7.10. In the 4-player game paranoid averaged 8.81 points per

game, while speculative maxn averaged 5.34 points per game.

average score search depth
20 models

1 sec/model
Speculative Maxn 5.81 11.95

Paranoid 5.52 13.04
Table 7.11: Maxn versus paranoid in Spades.

131

7.6.2 Spades

 In Spades running with imperfect information we saw our first difference

between maxn and paranoid. These results are in Table 7.11. We gave each player 20

seconds to analyze 20 models on a G4 500Mhz machine before making a play. Maxn

averaged 5.81 points per hand, while paranoid averaged 5.52, with a standard devia-

tion of 0.36. Given the search limits, maxn had an average search depth of 11.95,

while paranoid had an average search depth of 13.04.

7.6.3 Cribbage

 We ran Monte-Carlo experiments in Cribbage for both full games and single

hand play. In both experiments we used 30 samples. Table 7.12 shows the results

of these experiments. While there was a small advantage for maxn in perfect-in-

formation cribbage games, that advantage becomes statistically insignificant in the

true imperfect information game, with maxn averaging 7.16 points per hand, while

paranoid averaged 7.12 points. On the larger game there was a small advantage for

paranoid, which averaged 114.07 points per game versus 113.74 for maxn.

 Because Cribbage has a relatively small search tree in the play, it is a game

that might benefit from other imperfect-information techniques. For instance, in-

stead of just generating Monte-Carlo models, it should be feasible in some cases to

average hand score average game score

30 models
Speculative Maxn 7.16 113.74

Paranoid 7.12 114.07
Table 7.12: Maxn versus paranoid in Cribbage.

132

calculate the exact probabilities of our opponent holding certain cards. Addition-

ally, it may be worthwhile to do some level of meta-reasoning, where we model our

opponents model of ourselves. In the perfect information version of Cribbage we

know exactly what cards our opponents hold, so we know exactly how to get points

or avoid taking points. In each Monte-Carlo model we use we will have the same

perfect information. This means that we will never try to deceive our opponents, be-

cause we always expect them to know the cards we have. This is currently too com-

putationally expensive to consider in other games, but Cribbage is a good candidate

for further research on this topic, both for two-player and multi-player games.

7.7 Discussion

 We have presented a lot of results here, and it can be somewhat difficult to

digest and understand them all. While each result may bring to light particular de-

tails that may need to be explored in a particular domain, we want to look to broader

trends in the data.

 First, a larger question that we would like to answer is which algorithm is

preferable, standard maxn, paranoid, or approximate deep maxn. We canʼt answer the

question decisively, but we do have some intuition from these results. For the para-

noid algorithm, it seems that as search depth increases, the benefit of a deeper search

lessens. This is directly attributable to the fact that the deeper that paranoid searches,

the more ways it will discover that its opponents are able to collude against it. Since

true collusion is not taking place in any of our experiments, this is a flawed strategy.

133

But, in games like Chinese Checkers or Abalone where we are not searching very

deep, our opponents have few opportunities to collude. Thus, paranoid provides a

reasonably defensive line of play coupled with deeper search than is found in maxn.

We expect that if we were able to search 10-20 ply into a Chinese Checkers or Aba-

lone game that the advantage of paranoid would be greatly diminished if not lost

completely.

 Despite this, we have not been able to show that paranoid actually does

worse as it searches deeper. We performed many different experiments where we

varied the search depth of paranoid, and we were never able to find paranoid doing

worse as it searched deeper. Instead it just seems that maxn takes better advantage of

the additional search in a game tree.

 With regard to pruning algorithms for maxn, it seems that approximate deep

pruning has only limited potential, as it never outperformed both paranoid and

regular maxn. The domains where it is most likely to be useful are those where we

have a high-quality ordering function, which will reduce the errors made by incor-

rect pruning, along with those domains for which there is a large benefit to an extra

ply or two of search, the benefit of which may outweigh the cost of the mistakes we

make in our search.

 However, in general it seems to make more sense to use an algorithm that has

guaranteed theoretical properties such as maxn or paranoid than to use an algorithm

that has no guarantees on the validity or correctness of the result it calculates.

134

7.8 State of the Art Play

7.8.1 Hearts

 In addition to testing between different algorithms, we have also worked on

optimizing a hearts program to be competitively stronger than any other program

that bas been written. It is infeasible to compare against every shipping program,

but we were able to run extensive tests against the commercially shipping program

Hearts Deluxe™ (HD), by Freeverse software.

 The computer program used to play Hearts for these experiments was taken

directly from game framework, without too much specific optimization for the game

of Hearts. We did, however, re-write our static evaluation function for these tests.

We incorporated the same features described in the experimental results, along with

a few special rules for when and how the Queen of Spades should be played. For in-

stance, we reduce a playerʼs static evaluation more than usual for taking the Queen

of Spades when they had other spades left in their hand.

 We also varied the number of models used for analysis during the game. For

the first 10 tricks of the game we allowed the computer to search 280k nodes over all

models. We began with 40 models and gradually decreased this to 13 models until

there are 3 tricks left in the game, at which point we always search the game tree to

completion on 30 models. Our computer program takes no more than a few seconds

to make a move, which is reasonable for normal play. In practice we could probably

extend this end-game analysis farther out, but we were primarily concerned with

being able to quickly run these experiments, since we had to start and end each hand

135

and game manually.

 Our program exhibits reasonable planning near the end of the game. In many

situations, for instance, it will take the tricks it canʼt avoid first, before giving the

lead to another player. This behavior is something that expert card players will do,

but that computer programs rarely do. Most computer programs and beginning play-

ers tend to play their low cards too early in the game, trapping them with their high

cards at the end of the game. Since most points come out in the later stages of the

game, this is an expensive approach.

 Our program gives some merit to preventing its opponents from shooting the

moon in its evaluation function, but it doesnʼt actively try to model if an opponent

is trying to do so. Instead, it gives a bonus to the player if they are able to split the

points in the game. Similarly, the computer does not explicitly plan to shoot the

moon from early in the game, but will do so later in the game if it finds it can.

 One deficiency we see in our program is that it doesnʼt have a model of what

information its plays convey to the other players in the game. So, our player is per-

fectly happy to lead the Ace of Spades when he also holds the Queen, something

humans will usually avoid, because of the information it reveals to the other players.

But, the HD computer players donʼt seem to take advantage of such information.

This means that this type of mistake will not hurt us when playing another computer,

while it can hurt us when playing a human.

 The authors of Hearts Deluxe were kind enough to not only provide us with

the source code to their computer players, they also worked to build a plug-in sys-

136

tem that could be used to plug-in and test other players against their own. In addi-

tion, Apple Computer loaned us one of their top-of-the-line 1.42 GHz dual-proces-

sor machines for the sake of running our experiments. Because each Monte-Carlo

experiment is independent, it is quite easy to parallelize a program for multiple

processors.

 We report the result of our experiments against their computer players in

Table 7.13. In these experiments our computer program played against 3 of the HD

players. The HD players can be set to different skill levels, so we chose to set them

to the highest skill available, with average aggression. (Other options are aggressive

and conservative.) The rule variations we used included -26 for shooting the moon,

but we didnʼt enable card passing. Each game was played until one player had 100

or more points at the end of a hand. We played 90 games total, and our program

averaged 55.8 points per round, while the other players collectively averaged 75.1

points. In these rounds we played a total of 984 hands. Our program averaged 5.16

points per hand, while our opponents collectively averaged 6.98 points per hand.

 There are a few areas we see that our program could improve. First, our static

evaluation function could be improved. Our program tends to play the Ace and King

of Spades earlier than necessary, which seems to lead to taking the Queen more of-

average score/game average score/hand

Our Program 55.8 5.16

Hearts Deluxe™ 75.1 6.98
Table 7.13: Our Hearts program versus the commercial Hearts Deluxe program

137

ten that it might have to. Also, our program also tends to lead its high diamonds and

clubs early in the game, when it sometimes should be playing spades to force out

the queen. Our evaluation is completely hand tuned right now, but there is no reason

that a better evaluation function couldnʼt be developed through a variety of learning

methods.

 Besides Hearts Deluxe, we have not tested our program against other exist-

ing computer players. We have, however, asked the authors of some of the other

leading Hearts programs how they build their computer players. The only author to

respond to our query was Vytas Kliorys, author of Turbo Hearts, a popular program

for Microsoft Windows. He indicated that his program uses a weighted rule-based

system to decide how to play, and that it doesnʼt look ahead farther than the end of

the current trick and the first card of the next trick.

 If these programs are indicative of the state of the commercial industry right

now, which we suspect, there is no reason to believe that our program is playing at

least as well, if not better than any program available.

7.8.2 Chinese Checkers

 We are not aware of many programs that play Chinese Checkers. The ACM

has held competitions for 2-player Chinese Checkers programs in Hong Kong re-

cently, but it seems that almost no one has done work in variations of the game for

three or more players. Thus, since we have what is essentially a perfect closing book

for Chinese Checkers on the smaller board, we feel that it is not unreasonable to

claim that our program which plays on this board is the best program in existence

138

for this domain. On the larger board we know there are improvements to be made,

including the analysis of potential opening and closing books along with faster

move generation.

139

Chapter 8

Contributions, Conclusions, and Future Work

8.1 Overview of Results

 The work done for this thesis has greatly expanded our knowledge of the

algorithms and techniques that can be used to play multi-player games. It has done

this through the analysis of decision rules, the development of pruning algorithms,

the analysis of other standard two-player game techniques, and experimental results.

The work on decision rules has developed the properties of the maxn and paranoid

algorithms, showing that in practice they both have deficiencies in play in practice.

In addition, we have developed and analyzed pruning algorithms for these decision

rules, including speculative maxn, the first pruning algorithm that provides consider-

able pruning gains for games such as Chinese Checkers which previously could not

be pruned by any known methods.

 The pruning algorithms we have developed include multi-player branch-

and-bound pruning, alpha-beta branch-and-bound pruning, last-branch pruning,

and speculative pruning. Alpha-beta branch-and-bound pruning combines previous

work on shallow pruning [Korf, 1991] with monotonic heuristics to be able to prune

140

game trees well. Alpha-beta branch-and-bound pruning however, is not effective

in many common multi-player games, being reduced simply to branch-and-bound

pruning. But, last-branch and speculative pruning are the first algorithms that are

expected to be effective in constant-sum multi-player game trees, together reduc-

ing the asymptotic branching factor of a n-player game from b to bd·(n-1)/n as b grows

large. Not only can these algorithms be applied to any constant-sum game, they are

also expected to provide asymptotic reductions in b in the average case, which pre-

vious techniques such as shallow pruning did not.

 We have also shown how tie-breaking is a pervasive issue in maxn game

trees. If we incorrectly model how our opponents break ties within the game tree,

we cannot bound the error that will result in our calculation of the maxn value of

the game tree. Tie-breaking also means that we cannot use techniques like zero-

window search in a multi-player game, and iterative deepening search is weaker in

multi-player games because of tie breaking when compared to the results possible

in two-player games. Tie-breaking is also important in end-game databases, as any

database calculated ahead of time must implicitly use a pre-calculated tie-breaking

rule.

 Besides these theoretical results, we have used these techniques to build and

test multi-player game programs in many domains, including state-of-the-art pro-

grams in Hearts and Chinese Checkers, where we have shown that our program does

much better than the existing program Hearts Deluxe, averaging almost 20 points

better per round then the regular computer players in that game.

141

8.2 Future Work

 There are still areas that need further research to fully understand the chal-

lenges involved in multi-player games. One of these areas is in the area of average-

case analysis of our pruning algorithms. While we have a vague idea that specula-

tive maxn will be effective in the average case, and alpha-beta branch-and-bound

will not be as effective in the average case, concrete models for analysis need to be

developed to solve and test for the average case.

 Solving the average case models will also be an important step in extend-

ing work in areas such as node-ordering, as we will be able to verify the relative

effectiveness of node ordering algorithms based on the best-case and average-case

performance models.

 Also, approximate deep maxn pruning seems to have some promise in some

domains. The correctness of approximate deep maxn will also vary depending on

the effectiveness of our node-ordering algorithms. More extensive tests need to be

done to understand exactly when approximate deep maxn is a worthwhile algorithm

to use.

 In the area of writing state-of-the-art programs for playing games, there are

a few areas that need to be considered. The first area is in imperfect information.

We have assumed that Monte-Carlo sampling is the best way to deal with imperfect

information. This is a reasonable first-order approximation, but some recent work in

Bridge [Ginsberg, 2001] has moved away from Monte-Carlo sampling in later stag-

es of the game. Similar strategies may be needed in multi-player games. Regardless

142

of if this is the case, our work still stands for imperfect information games.

 Another area we have not looked into are learning strategies for static evalu-

ation functions, and more specific opponent modelling strategies. Maxn is relatively

flexible in its ability to model its opponents, and we should be able to use maxn to

easily implement our own preferences for competing against multiple opponents.

8.3 Maxn versus Paranoid

 Minimax with alpha-beta pruning has generally dominated other two-player

decision rules and algorithms, but there is no clear dominant algorithm in multi-

player games at this time. However, our experience in this field has led us to pos-

tulate that the paranoid algorithm will generally do well in games where the oppo-

nents cannot collaborate together effectively. This may be a result of minimal search

depth or simply a property of a game. In card games, for instance, it is generally

quite easy to collaborate, and in these domains the paranoid algorithm has a large

search depth advantage over maxn, but no performance advantage.

8.4 Conclusion

 Multi-player games are fundamentally different from two-player games.

They force us to consider the issue of opponent strategy, partially in the form of tie-

breaking issues within the game tree, while such issues have generally been ignored

by Artificial Intelligence researchers in two-player games. In addition, the com-

plexity of an additional player in a game increases not only the amount of analysis

needed for multi-player games, but also decreases the amount of pruning possible.

143

 In this thesis we have presented a variety of new techniques to deal with

this issues, perhaps most importantly developing the first widely-effective pruning

techniques for multi-player game search. There are still many challenging and unan-

swered questions in this area, and we look forward to the research that will answer

these challenges.

144

References

Anderson, S., Convergence of the Video Game Industry and CGI Visual Effects
Industry, UCLA Association for Careers in Technology Information Session,
April, 2003.

Baird, K., Hollywood finds video game tie-ins arenʼt kid stuff, Sacramento Bee, Feb
26, 2003.

Billings, D., Davidson, A, Schaeffer, J., Szafron, D., The Challenge of Poker, Arti-
ficial Intelligence Journal, vol 134(1-2), pp 201-240, 2002.

Billings, D., Peña, L., Schaeffer, J, Szafron, D., Using Probabilistic Knowledge and
Simulation to Play Poker, Proceedings, AAAI-99, Orlando, Fl, 697-703, 1999.

Buro, M. The Othello Match of the Year: Takeshi Murakami vs. Logistello, Journal
of the International Computer Chess Association 20(3): 189-193, 1997.

Colvert, D, Play Winning Cribbage, Starr Studios, 1997.

Epstein, Susan L., Game Playing: The Next Moves, AAAI-99 Invited Speaker.

Gibson, Walter B., Hoyleʼs Modern Encyclopedia of Card Games; Rules of All the
Basic Games and Popular Variations, Doubleday, 1974.

Ginsberg, M, GIB: Imperfect Information in a Computationally Challenging Game,
Journal of Artificial Intelligence Research 14, 303-358, 2001.

Ginsberg, M, GIB: Steps Toward an Expert-Level Bridge-Playing Program, Pro-
ceedings, IJCAI-99, 584-589.

Ginsberg, M, How Computers Will Play Bridge, The Bridge World, 1996.

Ginsberg, M, Partition Search, Proceedings AAAI-96, Portland, OR, 228-33.

Hoyle, E., and Frey, R.L., Morehead, A.L., and Mott-Smith, G, The Authoritative
Guide to the Official Rules of All Popular Games of Skill and Chance, Double-
day, 1991.

Jones, A.J., Game Theory: Mathematical Models of Conflict, West Sussex, Eng-
land: Ellis Horwood, 1980.

Knuth, D.E., and Moore, R.W., An analysis of alpha-beta pruning, Artificial Intel-
ligence, vol. 6 no. 4, 1975, 293-326.

145

Korf, R.E. Multiplayer alpha-beta pruning. Artificial Intelligence, vol. 48 no. 1,
1991, 99-111.

Luce, R. and Raiffa, H., Games and Decisions, New York: John Wiley & Sons,
1957.

Luckhardt, C.A., and Irani, K.B., An algorithmic solution of N-person games, Pro-
ceedings AAAI-86, Philadelphia, PA, 158-162.

Mutchler, D, The Multi-Player Version of Minimax Displays Game-Tree Pathology,
Artificial Intelligence 64 (2): 323-336, 1993.

Nash, J. F., Non-cooperative games, Annals of Mathematics, 54, 286-295, 1951.

Newell, A, Shaw, J, and Simon, H, Chess Playing Programs and the Problem of
Complexity, IBM Journal of Research and Development 4, 2 (1958), 320-335.
Also in E. Feigenbaum and J. Feldman (eds.), Computers and Thought, 1963,
39-70.

Parlett, David, A Dictionary of Card Games, Oxford Unviersity Press, 1992

Pearl, J., Heuristics Addison-Wesley, Reading, MA 1984.

Prieditis A.E., Fletcher, E., Two-agent IDA*, Journal of Experimental and Theoreti-
cal Aritificial Intelligence, v 10, 1998, pp 451-484.

Russell, S., Norvig, P., Artificial Intelligence: A Modern Approach, Prentice-Hall
Inc., 1995.

Samuel, A. L., Some studies in machine learning using the game of checkers, IBM
Journal of Research and Development, vol 3, 1959, 210-229.

Samuel, A. L., Some studies in machine learning using the game of checkers II-Re-
cent progress, IBM Journal of Research and Development, vol 11, 1967, 601-
617.

Schaeffer, J, A Gamut of Games, AI Magazine, Vol 22, No 3, Fall 2001, 29-46.

Schaeffer, J., Culberson, J., Treloar, N., and Knight, B., A world championship cali-
ber checkers program, Artificial Intelligence, vol. 53, 1992, 273-289.

Schaeffer, J., The History Heuristic and Alpha-Beta Search Enhancements in Prac-
tice, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol 11,
No 11, November, 1989, 1203-1212.

Shannon, C.E., Programming a computer for playing chess, Philosophical Maga-
zine, 41(4), 256-275, 1950.

146

Sheppard, B, World-championship-caliber Scrabble, Artificial Intelligence, v.134
n.1-2, 241-275, January 2002.

Smith, Ian, (President of freeverse software and author of Hearts Deluxe™), Per-
sonal Communication, 1999.

Sturtevant, N., A Comparison of Algorithms for Multi-Player Games, Proceedings
of the 3rd International Conference on Computers and Games, 2002.

Sturtevant, N., Last-Branch and Speculative Pruning Algorithms for Maxn, Proceed-
ings IJCAI-2003, Acapulco, Mexico.

Sturtevant, N., Korf, R., On Pruning Techniques for Multi-Player Games, Proceed-
ings, AAAI-2000, Austin, Tx, pp 201-207.

Tesauro, G. and Sejnowski, T.J., A parallel network that learns to play backgammon,
Artificial Intelligence, vol 39, 1989, 357-390.

Tesauro, G. Temporal-Difference Learning and td-gammon, Communiciations of
the ACM, 38(3): 58-68, 1995.

Turing, A., Strachey, C., Batest, M., and Bowden, B., Digital Computers Applied to
Games, in Bowden, B., editor, Faster Than Thought, 286-310, 1953.

