
An Analysis of UCT in Multi-Player Games

Nathan R. Sturtevant

Department of Computing Science, University of Alberta,
Edmonton, AB, Canada, T6G 2E8

nathanst@cs.ualberta.ca

Abstract. The UCT algorithm has been exceedingly popular for Go,
a two-player game, significantly increasing the playing strength of Go
programs in a very short time. This paper provides an analysis of the
UCT algorithm in multi-player games, showing that UCT, when run in
a multi-player game, is computing a mixed-strategy equilibrium, as op-
posed to maxn, which computes a pure-strategy equilibrium. We analyze
the performance of UCT in several known domains and show that it
performs as well or better than existing algorithms.

1 Introduction

Monte-Carlo methods have become popular in the game of Go over the last few
years, and even more so with the introduction of the UCT algorithm [3]. Go is
probably the best-known two-player game in which computer players are still
significantly weaker than humans. UCT works particularly well in Go for several
reasons. First, in Go it is difficult to evaluate states in the middle of a game, but
UCT only evaluates endgames states, which is relatively easy. Second, the game
of Go converges for random play, meaning that it is not very difficult to get to
an end-game state.

Multi-player games are also difficult for computers to play well. First, it is
more difficult to prune in multi-player games, meaning that normal search algo-
rithms are less effective at obtaining deep lookahead. While alpha-beta pruning
reduces the size of a game tree from O(bd) to O(bd/2), the best techniques in
multi-player games only reduce the size of the game tree to O(b

n−1
n d), where n is

the number of players in the game [6]. A second reason why multi-player games
are difficult is because of opponent modeling. In two-player zero-sum games op-
ponent modeling has never been shown to be necessary for high-quality play,
while in multi-player games, opponent modeling is a necessity for robust play
versus unknown opponents in some domains [9].

As a result, it is worth investigating UCT to see how it performs in multi-
player games. We first present a theoretical analysis, where we show that UCT
computes a mixed-strategy equilibrium in multi-player games and discuss the im-
plications of this. Then, we analyze UCT’s performance in a variety of domains,
showing that it performs as well or better as the best previous approaches.



An Analysis of UCT in Multi-Player Games 39

1

2 2

3 3 3 3

(3, 7, 2) (5, 3, 4) (2, 5, 5)(6, 5, 1)

(a)
(3, 7, 2)

(b)
(6, 5, 1)

(6, 5, 1)

Fig. 1. A sample maxn tree

2 Background

The maxn algorithm [4] was developed to play multi-player games. Maxn searches
a game tree and finds a strategy which is in equilibrium. That is, if all players
were to use this strategy, no player could unilaterally gain by changing their
strategy. In every perfect information extensive form game (e.g., tree search)
there is guaranteed to be at least one pure-strategy equilibrium, that is, one
that does not require the use of mixed or randomized strategies.

We demonstrate the maxn algorithm in Fig. 1, a portion of a 3-player maxn

tree. Nodes in the tree are marked with the player to move at that node. At the
leaves of the tree each player’s payouts are in a n-tuple, where the ith value is
the payoff for the ith player. At internal nodes in a maxn tree the player to play
selects the move that leads to the maximum payoff. So, at the node marked (a),
Player 2 chooses (3, 7, 2) to get a payoff of 7 instead of (5, 3, 4) to get a payoff of
3. At the node marked (b) Player 2 can choose either move, because they both
lead to the same payoff. In this case Player 1 chooses the leftmost value and
returns (6, 5, 1). At the root of the tree Player 1 chooses the move which leads
to the maximum payoff, (6, 5, 1).

While the maxn algorithm is simple, there are several complications. In real
games players rarely communicate explicitly before the beginning of a game. This
means that they are not guaranteed to be playing the same equilibrium strategy,
and, unlike in two-player games, maxn does not provide a lower bound on the
final payoff in the game when this occurs [8]. In practice it is not always clear
which payoffs should be used at leaf nodes. The values at the leaves of a tree may
be scores, but can also be the utility of each payoff, where the opponents’ utility
function is not known a priori. For instance, one player might play a riskier
strategy to increase the chances of winning the game, while a different player
may be content to take second place instead of risking losing for the chance of a
win. While the first approach may be better from a tournament perspective [1],
you cannot guarantee that your opponents will play the best strategies possible.
This might mean, for instance, that in Fig. 1 Player 2 has a different preference



40 N.R. Sturtevant

at node (b). If Player 2 selects (2, 5, 5) at node (b), Player 1 should choose to
move to the left from the root to get (3, 7, 2).

Two algorithms have been introduced that attempt to deal with imperfect
opponent models. The soft-maxn algorithm [9] uses a partial ordering over game
outcomes to analyze games. It returns sets of maxn values at each node, with
each maxn value in the set corresponding to a strategy that the opponents might
play in a subtree. The prob-maxn algorithm [5] uses sets of opponent models and
with probabilistic weights which are used for back-up at each node according to
current opponent models. Both algorithms have learning mechanisms for updat-
ing opponent models during play. In the game of Spades, these approaches were
able to mitigate the problems associated with an unknown opponent. We will
discuss these results more in our experimental section.

2.1 UCT

UCT [3] is one of several recent Monte-Carlo-like algorithms proposed for game-
playing. The algorithm plays games in two stages. In the first stage a tree is
built and explored. The second stage begins when the end of the UCT tree is
reached. At this point a leaf node is expanded and then the rest of the game is
played out according to a random policy. The UCT tree is built and played out
according to a greedy policy. At each node in the UCT tree, UCT selects and
follows the move i for which

X̄i + C

√
ln T

Ti

is maximal, where X̄i is the average payoff of move i, T is the number of times the
parent of i has been visited, and Ti is the number of times i has been sampled. C
is a tuning constant used to trade off exploration and exploitation. Larger values
of C result in more exploration. In two-player games the move/value returned
by UCT converges on the same result as minimax.

3 Multi-Player UCT

The first question we address is what computation is performed by UCT on a
multi-player game tree. For this analysis we assume that we are searching on a
finite tree and that we can perform an unlimited number of UCT samples. In
this limit the UCT tree will grow to be the size of the full game tree and all leaf
values will be exact.

Returning to Fig. 1 we can look to see what UCT would compute on this
tree. At node (a) Player 2 will always get a better payoff by taking the left
branch to get (3, 7, 2). In the limit, for any value of C, the value at node (a)
will converge to (3, 7, 2). At branch (b), however, both moves lead to the same
payoff. Initially, they will both be explored once and have the same payoff. On
each subsequent visit to branch (b), the move which has been explored least
will be explored next. As a result, at the root of the sub-tree rooted at (b) will



An Analysis of UCT in Multi-Player Games 41

1

2 2

3 3 3 3

(100, 0, 0) (0, 0, 100) (50, 50, 0)(0, 0, 100)

(a)
(50, 0, 50)

(b)
(50, 50, 0)

(50, 25, 25)

Fig. 2. Mixed equilibrium in a multi-player game tree

return (6, 5, 1) half of the time and (2, 5, 5) the other half. The average payoff
of the move towards node (b) will then be (4, 5, 3). The resulting strategy for
the entire tree is for the player at the root to move to the right towards node
(b) to get an expected payoff of 4.

The final strategy is mixed, in that Player 2 is expected to randomize at
node (b). Playing a mixed strategy makes the most sense in a repeated game,
where over time the payoffs will converge due to the mixing of strategies. But,
in a one-shot game this makes less sense, since a player cannot actually receive
the equilibrium value. Many games are repeated, however, although random
elements in the game result in different game trees in each repetition (e.g., from
the dealing of cards in a card game). In this context randomized strategies still
make sense, as the payoffs will still average out over all the hands. Randomized
strategies can also serve to make a player more unpredictable, which will make
the player harder to model.

Theorem 1. UCT computes an equilibrium strategy, which may be mixed, in
a multi-player game tree.

Proof. We have demonstrated above that in some trees UCT will produce a
mixed strategy. In the limit of infinite samples UCT returns a strategy that is
in equilibrium in a finite tree because it selects the maximum possible value at
each node in the UCT tree. This means that there is no other move that the
player could choose at this node to unilaterally improve their payout. ut

UCT will always compute an evenly mixed strategy at the leaves of the tree.
But, there is no guarantee that in practice it will compute the expected mixed
strategy at internal nodes in the tree. If ties are always broken from left to right,
in Fig. 2 the value of node (a) for Player 1 will converge on 50 from above, while
the value of node (b) for Player 1 will converge on 50 from below. As a result,
depending on the number of samples and the value of C, UCT may not end up
evenly mixing strategies higher up in the game tree. The maxn algorithm will
never mix strategies like UCT, although it is not hard to modify it to do so. But,
the biggest strength of UCT is not its ability to imitate maxn, but its ability
to infer an accurate evaluation of the current state-based samples of possible
endgame states.



42 N.R. Sturtevant

Table 1. 6 ways to arrange two player types in a 3-player game

Player 1 Player 2 Player 3

Type A Type A Type B
Type A Type B Type A
Type A Type B Type B
Type B Type A Type A
Type B Type A Type B
Type B Type B Type A

Fig. 3. A 3-player Chinese Checkers board

4 Experiments

Given the theoretical results presented in the last section, we run a variety of
experiments to compare the performance of UCT to previous state-of-the-art
programs in three domains. These experiments cover a variety of game types
and give insight into the practical performance of UCT in multi-player games.

Most experiments reported here are run between two different player types
(UCT and an existing player) in either a 3-player or 4-player game. In order
to reduce the variance of the experiments, they are repeated multiple times for
each possible arrangement of player types in a game. For instance, in a 3-player
game there are eight ways to arrange two players. Two of these arrangements
contain all of a single type of player, so we remove these arrangements, resulting
in the configurations shown in Table 1. Playing duplicate matches in this way
makes it easier to measure statistical significance.

4.1 Chinese Checkers

Our first experiments are in the game of Chinese Checkers. A Chinese Checkers
board is shown in Fig. 3. In this game the goal is to get your pieces across the
board and into a symmetric position from the start state as quickly as possible.
Chinese Checkers can be played with anywhere from two to six players. We



An Analysis of UCT in Multi-Player Games 43

Table 2. Experiments in the game of Chinese Checkers

UCT (Random) 100 500 2500 10000 50000

Average Distance 9.23 4.21 2.08 1.95 2.29

Wins 1% 13% 43% 44% 34%

UCT (e-greedy) 100 500 2500 10000 50000

Average Distance 4.12 2.36 1.63‡ 1.43† 0.90

Wins 14% 33% 42% 50% 73%

experiment with the three-player version here. Chinese Checkers can be played
on different sized boards with different numbers of checkers. We use a slightly
smaller board than is most commonly used, because this allows us to use a
stronger evaluation function. This evaluation function for the opponent, a maxn

player, is based on a lookup table containing the optimal distance from any state
to the goal state given that no other players’ pieces are on the board. A player
using this evaluation function will play strong openings and perfect endgames.
Because the evaluation function ignores the opponents’ pieces, it is not quite
as strong during the mid-game phase when the middle of the board can get
congested.

We used two versions of UCT for these experiments. For both versions, we
disallowed backwards moves; otherwise the game will not progress and the ran-
domly sampling fails. The first version of UCT uses purely random playouts. The
second version uses an epsilon-greedy playout policy that takes the best greedy
move (the one that moves a piece the farthest distance) with 95% probability,
and plays randomly 5% of the time. We compared these policies by playing 100
games in each of the configurations from Table 1. (Thus there were 600 total
games played with each player type playing 900 times.)

When comparing these policies, given 500 samples each, the epsilon-greedy
policy won 81% of the games. When the game ended, the epsilon-greedy player
was, on average, 0.94 moves away from the goal state. In contrast, the random-
playout player was 2.84 moves away from the goal state. The player that wins is
averaged in as 0 moves away from the goal state. These distances were computed
using the maxn player’s evaluation function.

A comparison of the two UCT players against the maxn player is found in
Table 2. In these experiments C was fixed at 4.0, and we varied the number
of samples that UCT was allowed, recording the percentage of wins against the
maxn player as well as the average distance from the goal at the end of the game.
The player with random playouts never won more than 44% of the games played.
The epsilon-greedy player, however, performed on a par with the maxn player
when given 10,000 samples, and beat it by a large margin when given 50,000
samples. In both of these situations, the UCT player was closer to the goal at
the end of the game. All results are statistically significant with 99% confidence
except for those marked † which are only significant at 95%. The results marked
‡ are not statistically significant.



44 N.R. Sturtevant

It is interesting to note that the epsilon-greedy player’s performance mono-
tonically increases as we increase the number of playouts, but the random-
playout player does not exhibit this same tendency. In particular, the player
with 50k simulations plays markedly worse than the player with 10k simula-
tions. It seems that this occurs because there are so many bad moves that can
be made during random playout. Thus, the random playouts are not reflective
of how the game will actually be played, and may lead towards positions which
are likely to be won in random play, but not in actual play.

In these experiments the UCT player has a computation advantage over the
maxn player, which only looks ahead 4-ply, although the maxn player has a
significant amount of information available in the evaluation function. To make
this more concrete, at the start of the game there are 17,340 nodes in the 4-ply
tree given pruning in maxn, but there are 61 million nodes in the 7-ply tree. By
the fourth move of the game there are 240 million nodes in the 7-ply tree. This
is important because the only significant gains in performance in a three-player
game come with an additional 3-ply of search, when the first player in the search
can see an additional1 move of his own moves ahead. On a 2.4Ghz Intel Core
2 Duo, we can expand 250k nodes per second, so a 7-ply search takes about
1000 seconds. Our UCT implementation plays about 900 games per second, so
it takes about a minute to do 50k samples. Thus, while the UCT computation
is more expensive than the maxn computation, the maxn player will not see an
improvement in playing strength unless it is allowed significantly more time to
search.

If we were looking to refine the player here, the database lookups used by
the maxn player could be used as an endgame database by the UCT player and
might further increase its strength or speed. Regardless, we have shown that
UCT is quite strong in the game of Chinese Checkers, when given sufficient time
for play.

4.2 Spades

Our next experiments are in the card game Spades. A game in Spades is divided
into multiple hands which are played semi-independently. The first player to
reach 300 points over all hands wins. In Spades players bid on the number of
tricks which they expect to take. There is a large, immediate penalty for taking
fewer tricks than bid. If, over a period of time, a player takes too many extra
tricks (overtricks), there is also a large penalty. Thus, the best strategy in the
game is to ensure that you make your bid, but then to avoid extra tricks after
that.

Previous work in Spades [9, 5] demonstrated that the selection of an opponent
model is very important. A superior strategy may only be better if you have an
accurate opponent model. We duplicate these experiments here to demonstrate
that while UCT is strong, it does not avoid the need for opponent modeling.
Then, we compare the prob-maxn algorithm to UCT.

1 For brevity, we use ‘he’ and ‘his’ whenever ‘he or she’ and ‘his or her’ are meant.



An Analysis of UCT in Multi-Player Games 45

These experiments were played open-handed so that all players could see
other players’ cards. In real play, we can sample many possible opponent hands
and solve them individually to find the best move, as has been done in Bridge [2].
But, in our experiments, open-handed results have always been highly correlated
with a sampling approach, so we only perform the open-handed experiments,
which are much cheaper.

Each player was given 7 cards, and the game was played with 3 players, so
the total depth of the tree was 21 ply. This means that the full game tree can be
analyzed by prob-maxn. Again, each game was repeated multiple times according
to the configurations in Table 1. There are two player types in these experiments.
The mOT player tries to make their bid and minimize overtricks (minimize
OverTricks). The MT player attempts to maximize the number of tricks taken
(Maximize Tricks), irrespective of the bid. Player types are subscripted by the
opponent model that is being used. So, mOTMT is a player that tries to minimize
their overtricks and believes that their opponents are trying to maximize the
number of tricks they are taking.

Experimental results for Spades are in Table 3. All experiments are run with
UCT doing 10,000 samples per move with C = 2.0. There are no playout rules;
all playouts beyond the UCT tree are purely random. Lines A and B show the
performance of each player when playing against itself. mOT players average
245.91 points per game, clearly better than the MT player which only averages
202.71 points per game.

Lines C-F demonstrate what happens when a mOT player has correct (C-D)
or incorrect (E-F) opponent models. The most interesting line here is line F.
When mOT has the wrong opponent model and MT does as well, mOT has a
lower average score than MT and only wins 43% of the games. As stated pre-
viously, these results have been observed before with maxn. These experiments
serve to confirm these results and show that, in this situation, the mixed equilib-
rium computed by UCT is not inherently better than the equilibrium computed
by maxn. The discrepancy in performance can be partially resolved by the use
of generic opponent models, which just assume that the opponent is trying to
make their bid, but nothing else. Using the model, in lines G-J, the mOTgen

player beats every opponent except a mOTmOT opponent.

Finally, in lines K-L we compare UCT using the mOT strategy and a generic
opponent model to prob-maxn. In line K the prob-maxn player does not do any
learning, while in line L it does. The results in line K are significant with 99%
confidence, but in line L they are only significant with 95% confidence. At first
glance, it seems that the UCT player is better than prob-maxn, but this is not
entirely true.

When breaking down these results into per-player performance, we notice an
interesting trend. The player which plays last (the third player) almost always
scores worse than the other players. This is the case in lines A-J for the UCT
player and in K-L for the prob-maxn player. There are two reasons why this is
not surprising. The player who moves last has extra constraints on their possible



46 N.R. Sturtevant

Table 3. UCT performance in Spades

Algorithm 1 Algorithm 2 Avg. Score Alg. 1 Avg. Score Alg. 2 Algorithm 1 win %

A mOTmOT mOTmOT 245.91 - -
B MTMT MTMT 202.71 - -

C mOTMT MTmOT 231.84 171.48 67%
D mOTMT MTMT 214.33 209.30 51.5%
E mOTmOT MTmOT 203.72 188.96 55%
F mOTmOT MTMT 179.19 212.76 43%

G mOTgen mOTMT 243.14 238.65 51%
H mOTgen mOTmOT 240.06 245.70 48.5%
I mOTgen MTmOT 235.41 181.54 64%
J mOTgen MTMT 215.72 207.17 51.5%

K mOTgen prob-maxn 214.58 198.21 52.8%
L mOTgen prob-maxn (learn) 212.60 202.67 53.2%

Table 4. Detailed comparison of UCT and prob-maxn

Algorithm Player 1 Avg Player 2 Avg Player 3 Avg

K mOTgen 211.7 219.2 212.8
K prob-maxn 227.2 220.3 147.1
L mOTgen 208.6 218.0 211.2
L prob-maxn (learn) 227.7 228.1 152.3

bids, meaning they may be forced to under- or over-bid. The player moving last
also has less control over the game.

We break-down the results by player position in Table 4. Here, we can see
what is happening more clearly. The prob-maxn player outplays UCT when
playing as Player 1 with 99% confidence or Player 2 by a small margin, but
loses badly as Player 3. As stated before, this is not a feature of prob-maxn,
but of other algorithms as well. So, the novel aspect of this situation is that the
UCT player manages to avoid playing poorly against prob-maxn when in the
third position. We do not have a systematic explanation of this effect, but have
noticed that these types of inconsistencies are common in multi-player games.
We are working on further analysis.

One may be tempted to think that the comparison here has been bogged down
by opponent modeling issues. In fact, the opposite is true. The experiments show
that opponent modeling is the issue in many multi-player domains, especially
one with such sharp changes in the evaluation function, as is the case in Spades.



An Analysis of UCT in Multi-Player Games 47

4.3 Hearts - Shooting the Moon

Our third domain is the card game, Hearts. The goal of Hearts is to take as few
points as possible. Like Spades, a game of Hearts is made up of multiple hands;
a game ends when a player’s score reaches or exceeds 100 points, and the player
with the lowest score wins. We experiment on the 4-player version of Hearts
here, which is most common. We play these games with all the cards face up,
for the same reasons as in Spades.

One of the difficulties of Hearts is that there are two conflicting ways to play
the game. The normal goal is to take as few points as possible. But, if a player
manages to take all the points, called ‘shooting the moon’, this player will get
0 points instead, and the other players will get 26 each. Thus, good players are
willing to take a few points to keep other players from shooting the moon.

To measure the skill of different players in this aspect of the game, we created
a library of games in which one player could possibly shoot the moon. These
games were found by playing 10,000 games with two player types. In these games
the ith player would try to take all the points, and the remaining players would
try to avoid taking points. Out of 40,000 possibilities (10,000 games times 4
possible hands in each game) we found 3,244 hands in which a player might be
able to shoot the moon. We then ran a set of different algorithms against this
shooting player in the 3,244 hands. In Table 5 we report how many times the
opponent was able to shoot the moon against each search algorithm.

A simple maxn player which does not explicitly attempt to stop the opponents
from shooting was only able to stop the opponent from shooting 1867 times,
leaving 1377 times when the opponent shot. A random player was able to stop
the opponent from shooting in all but 411 games. This player does not play
hearts well, but as a result is able to disrupt the normal play of the game. Two
players which learned to play hearts through self-play and play against UCT
stopped the opponents from shooting in all but 312 and 362 cases, respectively.
The best algorithm in this comparison was UCT, which only had the opponent
shoot 250 times when using 50,000 samples.

We experimented with a wide variety of UCT parameters here, and we sum-
marize the results in the bottom part of Table 5. First, we varied C from 0.0 to
1.0 by increments of 0.2. In these experiments, values of 0.4 and 0.6 produced
the best performance, stopping all but 285 and 292 situations, respectively. We
then tried a new approach, where we used one value of C for all nodes where
the player at the root is to play, and used a different value at all other nodes.
The intuition behind this approach is that a player should quickly find the best
move for itself, but explore the opponents’ responses more thoroughly. Using a
value of 0.0 for the player at the root and 0.4 for other players produced the
best behavior, better than the results produced when either 0.0 or 0.4 was used
for all players.

This experiment is interesting because UCT has to find the specific line of
play an opponent might use to shoot the moon in order to stop it. Using a lower
value of C increases the depth of the UCT tree, which helps ensure that a safe
line of play is found. However, this does not necessarily guarantee that the best



48 N.R. Sturtevant

Table 5. Shooting the moon in Hearts

Algorithm Comparisons
UCT Self-trained UCT-trained Random play Simple maxn

total 250 312 362 411 1377

perc. 7.70% 9.62% 11.16% 12.67% 42.45%

UCT Parameter Comparisons
0.0 0.2 0.4 0.6 0.8 1.0

total 444 310 285 292 315 332

perc. 13.69% 9.56% 8.79% 9.00% 9.71% 10.23%

0.0 / 0.4 0.2 / 0.4 0.0 / 0.6 0.2 / 0.6 0.4 / 0.6

total 250 285 273 298 303

perc. 7.70% 8.79% 8.42% 9.19% 9.34%

line of play is found. In some sense this can randomize play slightly without too
large a penalty.

4.4 Hearts - Quality of Play

To test the quality of play, we played repeated games of Hearts. That is, a
given configuration of players played multiple hands of Hearts until one player’s
score reached 100. The final score for an algorithm is the average score of all
players using that algorithm at the end of the game. We also report the standard
deviation of the final score, as well as the percentage of games in which a given
player had the highest score at the end of the game. Experimental results are in
Table 6. All results are statistically significant with 99% confidence.

The current state-of-the-art players in Hearts use a learned evaluation func-
tion [10]. We trained three players to play Hearts using methods similar to, but
more efficient than those described in [10]. Whether we trained through self-play
or against UCT players of varying strength, the learned players had essentially
identical performance in the full game, scoring 20 points more on average than
the UCT player. (Lower scores are better.) The results were stable both for the
different learned players and against UCT with up to 50,000 samples per turn;
we report results against UCT with 5000 samples. For comparison, an older,
hand-tuned, player [7] averaged 88.31 points per game against UCT, just better
than the random player, which averaged 89.23 points a game. However, UCT’s
average score against the random player, 16.31, is much better than against the
hand-tuned player, 51.77.

In the bottom part of Table 6 we experiment with different numbers of play-
outs. Here we played UCT with k playouts against UCT with 2k playouts. The
player with more playouts consistently averages 4-5 points better than the player
with fewer playouts. This shows that UCT does improve its performance as the
number of simulations increases.



An Analysis of UCT in Multi-Player Games 49

Table 6. Performance of UCT against various opponents

Learned Hand-tuned Random

UCT 5000 46.12 (30.6) 51.77 (27.2) 16.31 (13.7)
Opponent 67.30 (43.1) 88.31 (24.5) 89.23 (24.1)
loss perc. 83.9% 88.0% 100%

k = 100 250 500 1000 2000 4000 8000

UCT k 79.46 77.69 77.18 76.49 76.25 76.47 76.59
(std dev) (26.95) (26.78) (27.07) (27.38) (26.65) (27.06) (26.76)
loss perc. 66.4% 59.4% 58.7 57.1% 55.5% 58.3% 56.7%

UCT 2k 67.07 69.92 71.40 71.52 72.04 71.91 72.17
(std dev) (27.69) (27.86) (27.35) (27.63) (27.11) (26.84) (26.80)

In all these experiments, UCT is doing purely random playouts. We exper-
imented with various playout policies, but there were no simple policies which
increased the strength of play. For instance, a simple policy for play is to play
always the highest card that will not win the trick. As a game-playing policy, this
is stronger than random play, but makes a poorer playout module than random.

In these experiments we used a value of C = 0.4. When compared to the
alternating values of C used in the previous section C = 0.4 provided the best
performance. Here is to remark that both players always beat the learned players.
The learned players tested are not nearly as aggressive about attempting to shoot
the moon as the player in the last section. This means that the ‘insurance’ paid
to keep one’s opponent from shooting the moon is less likely to payoff in these
experiments.

5 A Summary of Findings and Future Work

This paper provides a foundation for future work on UCT in multi-player games.
It shows theoretically that UCT computes a mixed-strategy equilibrium, unlike
the traditional computation performed by maxn. UCT, given a strong playout
policy and sufficient simulations, is able to beat a player that uses a very strong
evaluation function in the game of Chinese Checkers. In other domains, UCT
plays on a par with existing programs in the game of Spades, and slightly better
than existing programs in Hearts.

These results are promising and suggest that UCT has the potential to richly
benefit multi-player game-playing programs. However, UCT in itself is not a
panacea. UCT does not offer any solution to the problem of opponent modeling,
and will need to be combined with opponent-modeling algorithms if we want to
achieve expert-level play in these programs.

Additionally, the card games we experimented with in this paper were all
converted into perfect-information games for the experiments here. We are con-
tinuing to work on issues related to imperfect information. For instance, UCT



50 N.R. Sturtevant

can be modified to handle some situations in imperfect information games that
cannot be solved by the simple approaches discussed here, but the exact appli-
cation of these techniques is still a matter of future research.

References

1. D. Billings. On the importance of embracing risk in tournaments. ICGA Journal,
29(4):199–202, 2006.

2. M. Ginsberg. Gib: Imperfect information in a computationally challenging game.
Journal of Articial Intelligence Research, 14, 2001.

3. L. Kocsis and C. Szepesvári. Bandit based monte-carlo planning. In Proceedings
of the 17th European Conference on Machine Learning, pages 282–293. Springer-
Verlag, 2006.

4. C. Luckhardt and K. Irani. An algorithmic solution of N -person games. In AAAI-
86, volume 1, pages 158–162, 1986.

5. N. Sturtevant, M. Zinkevich, and M. Bowling. Probmaxn: Opponent modeling in
n-player games. In AAAI-2006, pages 1057–1063, 2006.

6. N.R. Sturtevant. Last-branch and speculative pruning algorithms for maxn. In
IJCAI-03, pages 669–678, 2003.

7. N.R. Sturtevant. Multi-Player Games: Algorithms and Approaches. PhD thesis,
Computer Science Department, UCLA, 2003.

8. N.R. Sturtevant. Current challenges in multi-player game search. In Computers
and Games (CG 2004), pages 285–300, 2006.

9. N.R. Sturtevant and M.H. Bowling. Robust game play against unknown opponents.
In AAMAS-2006, 2006.

10. N.R. Sturtevant and A.M. White. Feature construction for reinforcement learning
in hearts. In Computers and Games (CG 2006), pages 122–134, 2007.


