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Abstract

Designing and tuning a game is a complex creative process,
with a variety of tools have been designed for assisting human
designers in this process. But, many existing tools either en-
tirely take the design away from humans, or they only assist
in generating content - they cannot be used to create an en-
tire game from scratch. This paper explores how Exhaustive
Procedural Content Generation (EPCG) can be integrated as
a co-creative partner in the design process. We describe how
EPCG was used alongside human designers to create a novel
Hexagon Tangram puzzle, from initial conception to puzzle
curriculum. EPCG is used to answer design questions at each
step of the design, which enable human designers to make
more informed design choices.

Introduction

Designing and tuning a game is a complex creative process,
which can be time-consuming to do well. While procedural
content generation (PCG) is often lauded as a solution to
generating more content, it is not necessarily a panacea for
design, because working with PCG introduces a new sets of
challenges that can be just as expensive to overcome as the
original challenges (Rabii and Cook 2023).

Many Al tools have been created to help with the de-
sign process. Many of these assist with single levels in an
already-defined game (Smith, Whitehead, and Mateas 2010;
Liapis, Yannakakis, and Togelius 2013; Sturtevant and Ota
2018; Guzdial, Liao, and Riedl 2018; Sturtevant et al. 2020),
or small changes to existing games (Guzdial and Riedl
2016). But, relatively little work has looked at tools for com-
plete game design, and notable examples of complete game
design are fully automated (Smith and Mateas 2010; Browne
2014; Cook, Colton, and Gow 2017a,b).

Within this context, this paper explores how Exhaustive
Procedural Content Generation (EPCG) (Sturtevant and Ota
2018) can be used as a co-creative assistant for both game
and puzzle design. The work is inspired by a reference puz-
zle shown in Figure 1(a). This broadly available' reference
puzzle has an implicit goal of placing all pieces onto the
board. But, the design is lacking: pieces are different colors,
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'"We found a copy at the large North American warehouse
Costco; it is also available from Amazon.
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Figure 1: (a) Reference puzzle and (b) near-final product

but colors serve no design purpose. There are many possi-
ble solutions, but nothing to distinguish them, and there is
no curriculum to guide exploration. Finally, besides fitting
pieces on the board, there are no additional constraints to
play. Thus, our goal was to design a new version of the puz-
zle, beginning from these observations, and working towards
a complete curriculum of puzzles with a rich set of con-
straints, using EPCG to assist each step of the design pro-
cess. This paper documents our design process, similar to
other efforts that document design (Togelius 2011; Khaled,
Lessard, and Barr 2018). This processes shows how EPCG
can be used as a co-creative partner, resulting in the product
in Figure 1(b).

At this end of this work we have created 3D printed puz-
zles from our design, along with a curriculum of puzzles,
which have been popular at lab meetings and other show-
cases. The broader contributions of this work include:

* A demonstration of the feasibility of using EPCG as a
co-creative design partner, resulting in a complete puzzle
which has been showcased at various local events.

* A concrete example of how computational systems can
be used to support design, including both numerical anal-
ysis and runtimes.

» Reflections the experience of using EPCG as a co-
creative Al partner. We observe that it is easy to pose
questions to an EPCG system which are computationally
infeasible. But, these questions are also too broad from a
design perspective as well. Much of the design iteration
came from honing the questions which are asked both
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Figure 2: Overall Design Stages

be more precise, which also tends to make them com-
putationally feasible. Thus, the human designers learned
about the design space while interacting with EPCG,
leading to an even more precise design.

The overall design process had three independent stages,
shown in Figure 2. The first stage focused on defining the
board and selecting pieces used in the design. The second
stage takes the set of solved boards as input, and focused on
defining constraints between pieces. The third stage takes all
puzzles and constraints and builds a complete curriculum.
After describing background work, we cover each of these
design stages individually, and then conclude by reflecting
on the design process and future possibilities. The final prod-
uct is described further and available elsewhere (Mahmoud
and Sturtevant 2024).

Background and Related Work

In this section we focus primarily on work related to creating
complete games and the tools we will use for this purpose.
We refer interested readers to an available survey on puzzle
design (De Kegel and Haahr 2019).

Complete Game Design

There are many tools that have been built for assisting game
design, or designing games from human input. Notable ex-
amples of tools for building complete games from scratch in-
clude the Ludi system (Browne 2014) and Angelina (Cook,
Colton, and Gow 2017a,b), although there have been exam-
ples of other generators creating small games from human
input (Treanor et al. 2012). Recent work has built on these
ideas to build a deliberative game design tool that humans
can use for novel game design (Cook 2022).

One notable example of building Al tools to assist in game
design is work around the Refraction Game (Smith et al.
2012; Butler et al. 2013), where Al tools provided extensive
support in the game design process. This work is closest in
intent to our approach here.

Exhaustive Procedural Generation

EPCG (Sturtevant and Ota 2018) is a method of generat-
ing content that uses a generator to enumerate all possible
content, and an evaluator to rank the content. Naive appli-
cations of EPCG simply enumerate all content, but more so-
phisticated algorithms can be used to generate and evaluate
content more efficiently.

In this work EPCG is used primarily as an oracle to an-
swer design questions, very similarly to a proposal by Paul
Tozour in an Al Summit GDC lecture describing a ‘Shigi’
design tool (Tozour 2013).

For instance, given a set of pieces and a board, we can ask
‘how many ways are there to compactly pack pieces on the
board’. This query can be transformed into a generator that
generates all possible piece combinations, and an evaluator
that returns frue for complete board positions. The answer
to the design question is obtained by counting the number of
positions that evaluate to frue.

Due to the scope of this work, we will not describe the
mathematics behind the generators used. Instead, we will
focus on the queries, their results, and how they impact our
design process.

There are other approaches that can be used similarly, in-
cluding genetic algorithms (Golberg 1989), Answer-Set Pro-
gramming (ASP) (Brewka, Eiter, and Truszczyfiski 2011)
and Constraint Programming (CP) (Rossi, Van Beek, and
Walsh 2006). Each of these have their own strengths and
weaknesses; the goal here is to explore the potential of
EPCG, not to compare EPCG against alternate tools.

Puzzle Definition

The design space of tangram puzzles is exceedingly broad.
We could use EPCG to directly generate all possible tangram
puzzles and select the best, but this space is prohibitively
large, it is not clear how to measure best, and at this stage
this would remove almost all human agency from the puzzle
design. Breaking down this process into smaller pieces not
only increases the co-creative nature of the process, but also
introduces design questions that are computationally feasi-
ble for EPCG to answer.

Our initial choice was to focus on tangram puzzles. A tan-
gram is a puzzle that is comprised of multiple flat polygon
pieces assembled to fill a board without overlap. We ad-
ditionally chose to constrain our design to something that
could be realized both physically and digitally, as this was
expected to provide interesting design constraints later in the
design process.

A solved board is an arrangement of pieces that cover the
board without overlap. A puzzle instance is the initial state
of a board given to a player where one or more pieces may
already be given fixed locations on the board.

The first choice is to select the shape of the board and
the pieces to be placed. Given that we were seeking to im-



Figure 3: (a) Hexagon puzzle board. The board is made up
of 54 triangles; pieces are placed aligned to triangles. (b)
Constraint locations.
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Figure 4: The selected set of pieces and the names assigned
to them (excluding the “Trapezoid” piece). Notice how they
are all composed of two trapezoids in some configuration.

prove the reference puzzle shown in Figure 1(a), we decided
to keep the hexagon shape of the board. Our analysis of the
board and the pieces used in the reference puzzle revealed
that every piece is either a trapezoid (composed of three un-
derlying triangles), or is the compound combination of two
trapezoids. The board has 54 underlying triangles on which
pieces are placed, shown in Figure 3(a).

Given this, our first design question was: how many
unique pieces can be composed from two trapezoids? While
we could build an EPCG query to answer this question, this
can be enumerated by hand within a few minutes, so it was
much faster to answer this question ourselves. All possible
pieces are found in Figure 4, along with names that we will
use to refer to these pieces. Our reference puzzle has four
trapezoid pieces, and does not have the butterfly or snake
pieces. Given that there are 54 triangles on the board, and
6 triangles per piece (excluding the trapezoid), it is possible
that solved boards with just the nine compound pieces can
be found.

So, the next task is to explore what pieces would be inter-
esting to use for the puzzle. To answer this, we want to know
the number of puzzle solutions for each possible subset of
pieces in Figure 4, where two trapezoids are allowed in any
subsets containing the trapezoid. Given there are 54 trian-
gles, there are at most 9 piece types on the board. Thus, com-
puting subsets is equivalent to removing one pieces from the
set, and computing the number of solutions with the remain-
ing pieces. This results in the following EPCG query, which,
like all remaining queries in the paper, is implemented in
C++ code:

Piece Locations  Piece Locations
Mountains 192 Wrench 78
Hook 192  Elbow 78
Triangle 156  Line 72
Trapezoid 156  Butterfly 42
Snake 84  Hexagon 19

Table 1: Number of locations for each piece type.

Generator: All possible placements of pieces from Figure
4.

Evaluator: Whether a given placement of pieces is a legal
puzzle solution with no overlapping pieces.

Before looking at the results of this query, we consider
possible methods of implementating the query. In particular,
we can compute the number of locations that each piece can
be placed, and then look at placements of all pieces combi-
natorially. Due to symmetry and the fact that pieces have two
different sides, the number of locations for each piece varies
from 19 for the hexagon to 192 for the hook and mountains,
as shown in Table 1. The number of locations for each piece
is acquired by considering not only the location of the piece
on the board, but also its orientation and the side it is placed
on. Multiplying the combinations together, each subset of
pieces has between 10'7 and 10'® total ways it can be placed
on the board, which is computationally infeasible. But, al-
most all of these configurations are not solved boards. So,
the computation can be optimized by placing pieces on the
board incrementally, detecting illegal combinations as soon
as they are encountered, similar to a DPLL search (Davis
and Putnam 1960).

The optimized query took 9 minutes and 40 seconds on
an Apple M1 MacBook Air 2020 with 8 GB of RAM, and
required looking at just 392,326,063 board configurations.
Using better rules to detect unsolvable boards earlier in the
search, which we discuss later, reduced the running time to
just one minute and 18 seconds and 2,595,601 total expan-
sions. This query would not be feasible for humans, but the
results are very useful to human designers.

The results of the query are in Table 2. We first learn that
although it would be nice to work with all compound pieces,
there are only nine unique solutions when trapezoids are not
used, which isn’t large enough to build an interesting cur-
riculum. If we were to exclude any single piece, eliminating
the hexagon would give maximum flexibility later in the de-
sign process, as there are 673 unique solutions that don’t
incorporate the hexagon (with there being one instance of
each of the other pieces besides the two trapezoids).

While we had originally intended to select a subset of
pieces to build the puzzle curriculum, we decided to keep
all pieces in Figure 4, noting that for any puzzle instance
a single piece would be forbidden. This brings some level
of completeness into the piece selection, given that we have
two trapezoids, as well as all pieces that can be built from
two trapezoids. The resulting structure is expected to help
players understand and solve puzzles more easily, something
we will discuss later.



Excluded Solutions  Excluded  Solutions
Hexagon 673  Hook 179
Butterfly 352  Triangle 176
Wrench 321 Elbow 129
Snake 307 Line 97
Mountains 265  Trapezoid 9

Table 2: Number of solutions found with each possible piece
excluded from the subset. There are 2,508 total solutions
among all subsets.

This completes the first design stage shown in Figure 2.
The next stage take as input the 2,508 solved boards.

Puzzle Constraints

Given that we have the complete set of solved boards, we
can now consider constraints that can be added to make puz-
zle instances more interesting. In particular, constraints will
be defined on properties of the board or pieces that pre-
vent pieces from being placed in given locations or orien-
tations. There are two possible constraints that we consider:
constraints between pieces and the board, called placement
constraints, and constraints between pieces, called both ad-
Jjacency constraints and color constraints. Per Figure 2 we
execute several iterations of defining and analyzing these
constraints before settling on the final set of constraints.

Placement Constraints

At the most abstract level, especially if we had a digital-only
puzzle, placement constraints could be designed to prevent
any piece from being placed in any subset of the locations
in Table 1. Thus, we could, for instance, arbitrarily restrict
the triangle piece to 100 of the 156 possible locations. But,
there are both too many possible combinations to formulate
a feasible EPCG query, and arbitrary constraints are not go-
ing to be well-understood by players. So, after considering
the most abstract version of the problem, we perform an-
other design iteration to reduce the design choices in a way
that will be well-understood by players.

Placement Constraints on the Board One of the pri-
mary considerations in designing placement constraints is
the practicality of implementing them on a physical puz-
zle. This can be done, for instance, by altering piece shapes
slightly so that they do not fit snugly into the board. After
considering different possibilities we chose to incorporate
physical bumps and holes into each the implicit triangles
which compose both the board and the pieces. This is shown
in Figure 5. If both the board and the piece have a bump
in the same location, the piece will not be able to be placed
there. However, if they both have holes, or one has a hole and
one has a bump, then a piece would fit. It is also possible to
have holes of different sizes and shapes to further constrain
the board, but we chose not to use that in our design. How-
ever, to avoid over-constraining the problem, we decided to
use the physical nature of the board to give more options. In
particular, we can build a board that has no constraints on

Piece 1 Piece2 Piece 3

Board

Figure 5: Every triangle on the board or on a piece has either
a bump or a hole. Bumps cannot be placed opposite a bump
(piece 1), but holes can be aligned with either a hole (piece
2) or a bump (piece 3).

one side (all holes), but if the board is flipped over, there is
a bump pattern on the opposite side that constrains solutions
on that side of the board.

Now, the question is, what pattern of bumps should be
placed on the pieces and the board? This question can be
formulated as an EPCG query for both, but, at least for the
board it is not clear that the query is meaningful. We have
already decided that one side of the board will have no con-
straints. On the other side of the board there are 2°4 —1 = 18
trillion ways of placing one or more bumps on locations on
the board. While it is feasible to enumerate all of these, it is
not clear that there is a meaningful difference between many
of these combinations. Thus, instead of running this query,
we choose a pattern that will constrain the space in an inter-
esting way for players.

We considered two possibilities. First, having bumps on
all locations on one side of the board. This would essentially
mean that on that side of the board any piece with a bump
on it couldn’t be placed with the bump facing down, or that
it could only be placed on one side. Second, using a fixed
pattern of bumps on every other location, as shown in Figure
3(b). With this pattern we can put bumps on all triangles on
one side of a piece to prevent the piece from being placed
on that side, or put bumps on a subset of triangles to simply
limit the number of locations a piece can be placed. Because
this option gives more flexibility, but is still easy for a player
to understand, we chose this pattern for the second side of
the board.

Placement Constraints on Pieces Now we can consider
putting constraints on pieces, which will impact their place-
ment on the second side of the board, but not the first. We
define the parity of a dot pattern on a piece as odd or even,
as seen for the trapezoid in Figure 6(a) and (b).2 Looking at
the problem combinatorially, a piece can have an odd bump
pattern, an even bump pattern, no bumps, or all bumps. We
exclude all bumps on both sides of the puzzle, as this would
prevent the piece from being placed on the second side of
the board, so there are 4 x 4 — 1 = 15 possibilities for each
piece. Allowing each of the two trapezoid to have different
constraints gives 151 = 8.6 trillion possibilities. This re-
sults in the following EPCG query:

2At the level of description provided in this paper it doesn’t
particularly matter which pattern is odd or even, just that we distin-
guish between the two.
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Figure 6: Odd and even bump patterns and the impact of
piece symmetry.

Generator: All combinations of dots on all pieces.
Evaluator: How many solved boards are valid with this
dot configuration.

From all combinations we select the pattern than max-
imizes the minimum number of solved boards which are
valid with that set of constraints. This is so that we have
as many puzzles as possible for building a curriculum.

However, when coding and testing this query, we made
an unexpected discovery. The symmetry of the pieces was
making many of the design choices being considered in the
query irrelevant.

As previously mentioned, certain pieces exhibit forms of
symmetry that become apparent when specific transforma-
tions are applied to them. The hexagon, butterfly, elbow, and
trapezoid pieces appear identical when physically flipped
over (and possibly re-oriented), which we call flip symme-
try. The hexagon, butterfly, snake, and line pieces maintain
their appearance when rotated 180 degrees, which we call
rotational symmetry.

We can leverage these symmetries to shrink the combina-
torial space. Consider the flip-symmetric elbow and trape-
zoid pieces. Suppose that the trapezoid in Figure 6(a) cannot
fit onto the board because the bump pattern conflicts with the
board, but the opposite side of the piece has opposite bump
parity. Then, flipping the piece and rotating it gives the con-
figuration in Figure 6(b), which will not be constrained.

So, pieces with flip symmetry (the trapezoid and the el-
bow) should not be given different bump parity on different
sides of the piece. Thus, there are only three combinations
for these pieces (even parity, odd parity, no bumps). Pieces
with rotational symmetry (the snake and the line) should not
have even or odd parity, because rotating the piece would
similarly eliminate any constraints, as shown in Figure 6(c).
If we rotate the snake piece 180° it will have the oppo-
site parity. Finally, pieces with both types of symmetry (the
hexagon and the butterfly) should not have any bump pat-
tern, because these patterns can never restrict play.

There are 4 pieces with no symmetry which can have
any bump pattern, 4 pieces with flip or rotational symmetry
which can have three possible bump patterns, and 2 pieces
that should have no bumps. Overall this reduces the size of
the previous query from 8.6 trillion to 4.1 million possibil-
ities. This not only is a 6-order of magnitude reduction in
the query size, it also gives a much deeper understanding of
the pieces and their relationships with each other. While we
could, at this point, optimize bump patterns for pieces, we
now begin to move towards adding adjacency constraints
between pieces, which will change the EPCG queries we
perform when finalizing constraints.

Adjacency Constraints

We now consider ways of placing constraints between differ-
ent pieces on the board. Because we are using physical dots
and holes to represent the constraints between pieces and
the board, it makes sense to use a different method for rep-
resenting constraints between pieces. In particular, we note
that our reference puzzle has pieces with different color, but
this is never exploited in the design, so we choose to use
color as a way of representing constraints between pieces.
In particular, we can either restrict or require that colors are
adjacent on the board.

Selecting Colors for Adjacency Constraints To explore
these constraints, we began to formulate EPCG queries
around color. In particular, we originally considered choos-
ing two or more pieces to have different color than other
pieces, formulating queries such as the following:

Generator: All subsets of two pieces.
Evaluator: How many solved boards have adjacent pieces
of the same color.

Here we were looking to understand how color constraints
would impact the number of puzzles available for construct-
ing a full curriculum. This work began before we completed
the previous analysis of bump patterns, but it had not yet
given any definitive answers for selecting piece color. But,
once we understood the piece symmetries, we realized that
we could color pieces according to their symmetries. In this
way the colors would implicitly indicate something about
the underlying properties of the pieces themselves. We de-
cided to further reinforce this by giving pieces of the same
color the same bump pattern. Because there are four pieces
with no symmetry, but sets of two pieces with the other types
of symmetry, we also decided to split the non-symmetric
pieces into groups of two, where the sub-groups would have
the same color and bump pattern.

Now, we were able to build a query that would help use
choose both the bump patterns and color breakdown be-
tween pieces.

Generator: All valid bump patterns given symmetry con-
straints.
Evaluator: Number of valid puzzles.

For this query there are two groups of asymmetric pieces.
The first group of pieces had four possible combinations of
bump parity on each side: odd and none, even and none,
none and odd, or none and even. The pieces in the second
group had a different set of four combinations: odd and even,
odd and odd, even and odd, or even and even. There are addi-
tionally 6 ways of dividing pieces between the two groups.
Thus, the total number of combinations examined by this
queryisl-1-3-3-3-3-4-4-4-4x6=124,416

After executing the EPCG procedure to generate and eval-
uate all constraint patterns, we arrive at the results shown in
Figure 7. The figure illustrates the valid solutions for each
possible bump pattern. Over 40% of the patterns have no
valid solutions, while 16 patterns have the maximum solu-
tion count of 164. Thus, on the second side of the board,
only 164 of the 2508 total solutions will be possible. From
these, with including color constraints, we have as few as 27
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Figure 7: Distribution of patterns in relation to the number of
valid solutions they have. The x-axis represents the number
of solutions, while the y-axis denotes the number of patterns
leading to each respective number of solutions.

puzzles available for a given chapter.

We then move to defining constraints between pieces and
their colors. We will run a final EPCG query that considers
both bump patterns and color constraints together to finalize
the design.

Defining Color Adjacency Constraints Now that we
have defined piece colors and bump patterns, and found all
boards that are valid for these constraints, we can define con-
straints between pieces.

Our intent is to build a curriculum, with each chapter
using different types of constraints. After considering how
pieces of different colors can constrain solutions, we chose
to build a total of 12 chapters into the curriculum. The first
six consist of puzzles to be solved on the unconstrained side
of the board (the side with no placement constraints, i.e., no
bumps), while the remaining six are intended for the side
of the board with bumps. The six chapters in each half are
defined by the type of color constraint applied to them, as
outlined in the following list:

1. No color constraints.

2. Pieces of color X must share an edge (note that in this
case, we refer to one color, for example, red pieces must
share edges with each other. The color is defined differ-
ently in each puzzle).

Pieces of color X must not share an edge.
Pieces of color X must share a corner, but not an edge.
Pieces of color X must not share a corner or an edge.

Any of the four constraint types above, but between
pieces of different colors X and Y.

S

We can now formulate our final EPCG query for this de-
sign stage. This generator once again generates all possible
bump patterns and colors, but this time it considers the puz-
zles that will be passed to the next stage, maximizing the
minimum number of puzzles available for use in each chap-
ter.
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Figure 8: Final piece patterns. Holes are not drawn; bumps
are black circles. Pieces are grouped by their symmetry pat-
terns.
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Generator: All valid bump patterns given symmetry con-
straints.

Evaluator: Minimum number of color constraints that can
be defined for all valid boards in a chapter.

Running the complete analysis took approximately 50
minutes. Figure 8 shows the piece patterns that were selected
for each side of the pieces. The colors in Figure 4 are the col-
ors for each of the pieces.

The final output of the last EPCG run gives, for each chap-
ter that we intend to build in the curriculum, the set of all
puzzles that meet the board constraints and all possible color
constraints that can be defined between pieces. These are
taken as input into the final stage and used to build a cur-
riculum.

Puzzle Curriculum

To complete the puzzle design, we build a curriculum that
presents puzzles which explore all of different constraints.
This process has three steps. First, we construct puzzle in-
stances, where a portion of the solved board is presented
which guarantees a unique solution. Then, we use recent
work on puzzle entropy (Chen, White, and Sturtevant 2023)
to sort puzzles by difficulty. From these we select puzzles
for the final curriculum.

Building Puzzles Instances

Our first task is to construct puzzle instances from solved
boards. An example of a puzzle instance and the correspond-
ing solved board is found in Figure 9.

The input to this step is the set of all solved boards with
the corresponding constraints that are met for the board that
came from the puzzle constraint analysis. We use an EPCG
query to find unique puzzle instances for each solved board
in the set. The input to the query is a single solved board as
well as the set of all solved boards. The output is a puzzle
instance that has a single unique solution.
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Figure 9: (a) A puzzle instance and (b) the unique solved
board. (The line piece is disallowed in this puzzle)

()

Generator: From k£ € 1...9 all puzzle instances that can
be constructed from a solved board with exactly k pieces
in the instance

Evaluator: Whether the puzzle instance appears else-
where as a subset of a solved board.

Note that the test of whether a puzzle instance is a sub-
set of another solved board explicitly checks for symmetric
solutions, but allows a duplicated subset when the provided
constraints prevent all alternate solved boards from being
legal solutions. Although there can be many different puz-
zle instances that can be used for a single solved board, we
selected the first such puzzle instance found and then ter-
minating the query, meaning that the query was run semi-
exhaustively (Sturtevant and Ota 2018).

The runtime of this query depends on the number of
solved boards that must be compared against. When exe-
cuted for the unconstrained case, it takes approximately 0.8
seconds to find each puzzle instance.

Sorting Puzzles with Entropy

To estimate the difficulty of a puzzle, we use the MUSE al-
gorithm proposed by (Chen, White, and Sturtevant 2023),
although the similar TSI algorithm could have been a strong
alternative (Shen and Sturtevant 2024), were it available ear-
lier. This algorithm takes a puzzle and a set of inference
rules, and returns the puzzle entropy by measuring the num-
ber of choices available on the solution path. Thus, to use
this approach, we must design inference rules that encode
the difficulty of a puzzle by reducing the number of choices
available at some states. A full description of these rules
with additional details are found in a MSc thesis (Mahmoud
2024); we describe them briefly here.

First, we check to see if there is a piece that can only be
placed in one location. If there is, we infer that the piece
must be immediately placed in that location. Our second rule
is similar; if there is a location on the board that only one
piece can cover properly, then we infer that piece must be
placed there. Next, we note that pieces are made of either
3 or 6 triangles. If there is a region on the board with size
that modulo 3 (or 6 if trapezoids are not available) is not
0, the puzzle will be unsolvable. Finally, even if there is a
region size 6, if that region cannot be constructed from two
trapezoids, then it cannot lead to a solution.

Table 3 presents statistics for the entropy of the puzzle in-
stances in each curriculum category. Note that we set a hard
cap of 3000 puzzles for each category since this number is
sufficient when choosing our final set puzzles. This is espe-
cially important given that calculating entropy for entire sets
can be computationally expensive and time-consuming.

Building a Curriculum

The final curriculum was built by sorting the puzzles in each
chapter by their overall entropy and then selecting 12 puz-
zles evenly distributed from across the ranges of entropy.
However, for the first chapter we used a slightly different ap-
proach to provide more guidance on the puzzles. In the first
chapter, we went back to the original set of 2,508 solved
boards and found initial states with more pieces on them.
Then, for each of our inference rules, we measured the dif-
ference in entropy for the puzzles with no entropy rules, and
then with a given inference rules. In the first chapter, we se-
lected puzzles that maximized this difference. The goal here
is to find puzzle instances are easy when you know a given
rule, but hard otherwise, so they are more likely to teach
these rules to players.

In the end this provides a comprehensive curriculum con-
sisting of twelve chapters, each comprising twelve puzzles,
yielding a total of 144 puzzles throughout the curriculum.
The next step for this process is iterative playtesting, some-
thing that was not able to be performed in the scope of this
work. However, in the testing we did perform, we found
places where further iteration would be possible. For in-
stance, there is a unique inference that can be made to solve
the hardest puzzle in the curriculum more easily. The cur-
riculum ordering could likely be refined by finding such
rules and incorporating them into the design, something that
is ongoing.

Reflections EPCG for Co-Creative Design

Having completed a full puzzle design using EPCG, we
make the following observations about the process.

* If an EPCG query is too large to run quickly, the answer
may not be interesting - the query is likely too broad or
will return too much information to be usable.

* EPCG is very useful for helping making specific design
choices (such as bump pattern on pieces), while human
designers are good for making broad design decisions,
such as the bump patterns on the board and the shape of
the board.

* Framing design questions as EPCG queries was useful
for making design progress. This process taught us more
about the underlying nature of the puzzle, and pointed
out where we didn’t have a complete grasp of the de-
sign choices available. The discipline of attempting to
formalize queries led to deliberate, well-informed deci-
sions during design.

* While it did not seem to impact the design of this puzzle,
one needs to be careful not to avoid exploring interesting
spaces just because they are infeasible for EPCG queries.



Ch Constraint type(s) Puzzles | Min | Max Avg | Med | Std
1 No constraints 2508 | 0.00 | 16.61 6.46 6.17 | 2.43
2 Edges must touch 3000 | 0.00 | 17.69 | 6.75 6.58 | 2.32
3 Edges must not touch 3000 | 0.00 | 16.27 6.84 6.58 | 2.38
4 Corners must touch 3000 | 0.00 | 17.69 6.87 6.58 | 2.34
5 Corners must not touch 444 | 1.00 | 13.85 7.93 7.81 | 2.16
6 Multi-color constraints 3000 | 1.00 | 16.15 7.52 7.39 | 248
7 Bumps 101 | 3.00 | 18.25 9.71 9.39 | 3.33
8 Bumps + Edges must touch 213 | 3.00 | 19.20 9.92 9.58 | 3.14
9 Bumps + Edges must not touch 136 | 3.00 | 20.05 | 10.90 | 11.28 | 3.88
10 Bumps + Corners must touch 174 | 3.00 | 19.89 9.96 9.58 | 3.12
11 | Bumps + Corners must not touch 27 | 6.32 | 18.34 | 12.04 | 11.70 | 2.88
12 | Bumps + Multi-color constraints 292 | 3.00 | 20.05 | 11.55 | 11.57 | 3.70
Table 3: Entropy statistics for the chapters.
Query Runtime References
Generating all solutions Imin 18sec Brewka, G.; Eiter, T.; and Truszczyfiski, M. 2011. Answer
Generating placement constraints 35min set programming at a glance. Communications of the ACM,
Generating adjacency constraints 50min 54(12): 92-103.

Table 4: Query runtimes.

After completing this design process and documenting it,
we note that an EPCG query can have three results. First, it
may produce useful information that finalizes design deci-
sions and moves forward with the design. Second, a query
may be computationally infeasible, forcing the design to be
refined to make it feasible. Finally, a query can return a re-
sult that does not provide useful guidance, requiring further
iteration to get to a query that could move the design for-
ward. This last option occurred with our initial forays into
defining piece color.

Conclusions and Future Work

This paper has described the process of building a puzzle
through iterative EPCG queries interleaved with a human
design process. The result of this is a 3D printed puzzle
board and curriculum puzzles which have been shared and
enjoyed at local events. We are continuing to polish the cur-
riculum and have made the design publicly available (Mah-
moud and Sturtevant 2024).

One broad question coming from this work has to do with
the fact that we were able to implement our design queries in
C++. Not all designers will have this capability. This leaves
an open question of how generic tools could be built that will
be helpful for novel game designs and less technical design-
ers, something for researchers to consider in the future.
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