
Monte Carlo Tree Search with Heuristic Evaluations
using Implicit Minimax Backups

Marc Lanctot1, Mark H. M. Winands1, Tom Pepels1, and Nathan R. Sturtevant2
1Games & AI Group, Department of Knowledge Engineering, Maastricht University

2Computer Science Department, University of Denver
{marc.lanctot,m.winands,tom.pepels}@maastrichtuniversity.nl, sturtevant@cs.du.edu

Abstract—Monte Carlo Tree Search (MCTS) has improved
the performance of game engines in domains such as Go,
Hex, and general game playing. MCTS has been shown to
outperform classic αβ search in games where good heuristic
evaluations are difficult to obtain. In recent years, combining
ideas from traditional minimax search in MCTS has been shown
to be advantageous in some domains, such as Lines of Action,
Amazons, and Breakthrough. In this paper, we propose a new
way to use heuristic evaluations to guide the MCTS search by
storing the two sources of information, estimated win rates and
heuristic evaluations, separately. Rather than using the heuristic
evaluations to replace the playouts, our technique backs them up
implicitly during the MCTS simulations. These minimax values
are then used to guide future simulations. We show that using
implicit minimax backups leads to stronger play performance in
Kalah, Breakthrough, and Lines of Action.

I. INTRODUCTION

Monte Carlo Tree Search (MCTS) [1], [2] is a simulation-
based best-first search technique that has been shown to
increase performance in domains such as turn-taking games,
general-game playing, real-time strategy games, single-agent
planning, and more [3]. While the initial applications have
been to games where heuristic evaluations are difficult to
obtain, progress in MCTS research has shown that heuristics
can be effectively be combined in MCTS, even in games where
classic minimax search has traditionally been preferred.

The most popular MCTS algorithm is UCT [2], which
performs a single simulation from the root of the search tree to
a terminal state at each iteration. During the iterative process,
a game tree is incrementally built by adding a new leaf node
to the tree on each iteration, whose nodes maintain statistical
estimates such as average payoffs. With each new simulation,
these estimates improve and help to guide future simulations.

In this work, we propose a new technique to augment
the quality of MCTS simulations with an implicitly-computed
minimax search which uses heuristic evaluations. Unlike pre-
vious work, these heuristic evaluations are used as separate
source of information, and backed up in the same way as
in classic minimax search. Furthermore, these minimax-style
backups are done implicitly, as a simple extra step during the
standard updates to the tree nodes, and always maintained
separately from win rate estimates obtained from playouts.
These two separate information sources are then used to
guide MCTS simulations. We show that combining heuristic
evaluations in this way can lead to significantly stronger play
performance in three separate domains: Kalah, Breakthrough,
and Lines of Action.

A. Related Work

Several techniques for minimax-influenced backup rules in
the simulation-based MCTS framework have been previously
proposed. The first was Coulom’s original maximum back-
propagation [1]. This method of backpropagation suggests,
after a number of simulations to a node has been reached,
to switch to propagating the maximum value instead of the
simulated (average) value. The rationale behind this choice is
that after a certain point, the search algorithm should consider
a node converged and return an estimate of the best value.
Maximum backpropagation has also recently been used in
other Monte Carlo search algorithms and demonstrated success
in probabilistic planning, as an alternative type of forecaster
in BRUE [4] and as Bellman backups for online dynamic
programming in Trial-based Heuristic Tree Search [5].

The first use of enhancing MCTS using prior knowl-
edge was in Computer Go [6]. In this work, offline-learned
knowledge initialized values of expanded nodes increased
performance against a significantly strong benchmark player.
This technique was also confirmed to be advantageous in
Breakthrough [7]. Another way to introduce prior knowledge
is via a progressive bias during selection [8], which has
significantly increased performance in Go play strength [9].

In games where minimax search performs well, such as
Kalah, modifying MCTS to use minimax-style backups and
heuristic values instead to replace playouts offers a worthwhile
trade-off under different search time settings [10]. Similarly,
there is further evidence suggesting not replacing the playout
entirely, but terminating them early using heuristic evaluations,
has increased the performance in Lines of Action (LOA) [11],
Amazons [12], [13], and Breakthrough [7]. In LOA and
Amazons, the MCTS players enhanced with evaluation func-
tions outperform their minimax counterparts using the same
evaluation function.

One may want to combine minimax backups or searches
without using an evaluation function. The prime example
is MCTS-Solver [14], which backpropagates proven wins
and losses as extra information in MCTS. When a node is
proven to be a win or a loss, it no longer needs to be
searched. This domain-independent modification greatly en-
hances MCTS with negligible overhead. Score-bounded MCTS
extends this idea to games with multiple outcomes, leading
to αβ-style pruning in the tree [15]. One can use shallow-
depth minimax searches in the tree to initialize nodes during
expansion, enhance the playout, or to help MCTS-Solver in
backpropagation [16].



Finally, recent work has attempted to explain and identify
some of the shortcomings that arise from estimates in MCTS,
specifically compared to situations where classic minimax
search has historically performed well [17], [18]. Attempts
have been made to overcome the problem of traps or optimistic
moves, i.e., moves that initially seem promising but then later
prove to be bad, such as sufficiency thresholds [19] and shallow
minimax searches [16].

II. ADVERSARIAL SEARCH IN TURN-TAKING GAMES

A finite deterministic Markov Decision Process (MDP)
is 4-tuple (S,A, T ,R). Here, S is a finite non-empty set
of states. A is a finite non-empty set of actions, where we
denote A(s) ⊆ A the set of available actions at state s.
T : S × A 7→ ∆S is a transition function mapping each
state and action to a distribution over successor states. Finally,
R : S × A × S 7→ R is a reward function mapping (state,
action, successor state) triplets to numerical rewards.

A two-player perfect information game is an MDP with a
specific form. Denote Z = {s ∈ S : A(s) = ∅} ⊂ S the
set of terminal states. In addition, for all nonterminal states
s′ ∈ S − Z , R(s, a, s′) = 0. There is a player identity
function τ : S − Z 7→ {1, 2}. The rewards R(s, a, s′) are
always with respect to the same player and we assume zero-
sum games so that rewards with respect to the opponent
player are simply negated. In this paper, we assume fully
deterministic domains, so T (s, a) maps s to a single successor
state. However, the ideas proposed can be easily extended to
domains with stochastic transitions. When it is clear from the
context and unless otherwise stated, we denote s′ = T (s, a).

Monte Carlo Tree Search (MCTS) is a simulation-based
best-first search algorithm that incrementally builds a tree,
G, in memory. Each search starts with from a root state
s0 ∈ S −Z , and initially sets G = ∅. Each simulation samples
a trajectory ρ = (s0, a0, s1, a1, · · · , sn), where sn ∈ Z unless
the playout is terminated early. The portion of the ρ where
si ∈ G is called the tree portion and the remaining portion
is called the playout portion. In the tree portion, actions are
chosen according to some selection policy. The first state
encountered in the playout portion is expanded, added to G.
The actions chosen in the playout portion are determined by a
specific playout policy. States s ∈ G are referred to as nodes
and statistics are maintained for each node s: the cumulative
reward, rs, and visit count, ns. By popular convention, we
define rs,a = rs′ where s′ = T (s, a), and similarly ns,a = ns′ .
Also, we use rτs to denote the reward at state s with respect
to player τ(s).

Let Q̂(s, a) be an estimator for the value of state-action
pair (s, a), where s ∈ A(s). One popular estimator is the
observed mean Q(s, a) = rτs,a/ns,a. The most widely-used
selection policy is based on a bandit algorithm called Upper
Confidence Bounds (UCB) [20], used in adaptive multistage
sampling [21] and in UCT [2], which selects action a′ using

a′ = argmax
a∈A(s)

{
Q̂(s, a) + C

√
lnns
ns,a

}
, (1)

where C is parameter determining the weight of exploration.

III. IMPLICIT MINIMAX BACKUPS IN MCTS

Our proposed technique is based on the following principle:
if an evaluation function is available, then it should be possible
to augment MCTS to make use of it for a potential gain in
performance. Suppose we are given an evaluation function
v0(s) whose range is the same as that of the reward function
R. How should MCTS make use of this information? We
propose a simple and elegant solution: add another value to
maintain at each node, the implicit minimax evaluation with
respect to player τ(s), vτs , with vτs,a defined similarly as above.
This new value at node s only maintains a heuristic minimax
value built from the evaluations of subtrees below s. During
backpropagation, rs and ns are updated in the usual way, and
additionally vτs is updated using minimax backup rule based
on children values. Then, similarly to RAVE [6], rather than
using Q̂ = Q for selection in Equation 1, we use

Q̂IM (s, a) = (1− α)
rτs,a
ns,a

+ αvτs,a, (2)

where α weights the influence of the heuristic minimax value.

The entire process is summarized in Algorithm 1. There are
a few simple additions to standard MCTS, located on lines 2, 8,
13, and 14. During selection, Q̂IM from Equation 2 replaces Q
in Equation 1. During backpropagation, the implicit minimax
evaluations vτs are updated based on the children’s values. For
simplicity, a single max operator is used here since the evalu-
ations are assumed to be in view of player τ(s). Depending on
the implementation, the signs of rewards may depend on τ(s)
and/or τ(s′). For example, a negamax implementation would
include sign inversions at the appropriate places to ensure that
the payoffs are in view of the current player at each node.
Finally, EXPAND adds all children nodes to the tree, sets their
implicit minimax values to their initial heuristic values on line
13, and does a one-ply backup on line 14. A more memory-
efficient implementation could add just a single child without
fundamentally changing the algorithm, as was done in our
experiments in Lines of Action.

In essence, this defines a new information scheme where
each node is augmented with heuristic estimates which are
backed-up differently than the Monte Carlo statistics. When
MCTS-Solver is enabled, proven values take precedence in
the selection policy and the resulting scheme is informative
and consistent [22], so Algorithm 1 converges to the optimal
choice eventually. However, before a node becomes a proven
win or loss, the implicit minimax values act like an heuristic
approximation of MCTS-Solver for the portion of the search
tree that has not reached terminal states.

IV. EMPIRICAL EVALUATION

In this section, we thoroughly evaluate the practical per-
formance of the implicit minimax backups technique. Before
reporting head-to-head results, we first describe our experimen-
tal setup and summarize the techniques that have been used
to improve playouts. We then present results on three game
domains: Kalah, Breakthrough, and Lines of Action.

Unless otherwise stated, our implementations expand a
new node every simulation, the first node encountered that



1 SELECT(s):
2 Let A′ be the set of actions a ∈ A(s) maximizing

Q̂IM (s, a) + C
√

lnns

ns,a

3 return a′ ∼UNIFORM(A′)
4
5 UPDATE(s, r):
6 rs ← rs + r
7 ns ← ns + 1
8 vτs ← maxa∈A(s) v

τ
s,a

9
10 SIMULATE(sparent, aparent, s):
11 if ∃a ∈ A(s), s′ = T (s, a) 6∈ G then
12 EXPAND(s)
13 for a ∈ A(s), s′ = T (s, a) do vs′ ← v0(s′)
14 vτs ← maxa∈A(s) v

τ
s,a

15 r ←PLAYOUT(s)
16 UPDATE(s, r)
17 return r
18 else
19 if s ∈ Z then return R(sparent, aparent, s)
20 a←SELECT(s)
21 s′ ← T (s, a)
22 r ←SIMULATE(s, a, s′)
23 UPDATE(s, r)
24 return r
25
26 MCTS(s0):
27 while time left do SIMULATE(−,−, s0)
28 return argmaxa∈A(s0) ns0,a

Algorithm 1: MCTS with implicit minimax backups.

is not in the tree. MCTS-Solver is enabled in all of the ex-
periments since its overhead is negligible and never decreases
performance. After the simulations, the move with the highest
visit count is chosen on line 28. Rewards are in {−1, 0, 1}
representing a loss, draw, and win. Evaluation function values
are scaled to [−1, 1] by passing a domain-dependent score
differences through a cache-optimized sigmoid function. When
simulating, a single game state is modified and moves are
undone when returning from the recursive call. Whenever
possible, evaluation functions are updated incrementally. All
of the experiments include swapped seats to ensure that each
player type plays an equal number of games as first player and
as second player. All reported win rates are over 1000 played
games and search time is set to 1 second unless specifically
stated otherwise. Domain-dependent playout policies and op-
timizations are reported in each subsection.

We compare to and combine our technique with a number
of other ones to include domain knowledge. A popular recent
technique is early playout terminations. When a leaf node of
the tree is reached, a fixed-depth early playout termination,
hereby abbreviated to “fetx”, plays x moves according to the
playout policy resulting in state s, and then terminates the
playout returning v0(s). This method has shown to improve
performance against standard MCTS in Amazons, Kalah, and
Breakthrough [7], [10], [13].

A similar technique is dynamic early terminations, which
periodically checks the evaluation function (or other domain-

TABLE I: Enhancements tested in Kalah (K), Breakthrough
(B), and Lines of Action (L).

Enhancement / Setting Abbr. K B L
Improved playout policy ipp X X
Early playout termination fetx X X
Dynamic early termination detx X X
ε-greedy playouts egeε X
Node priors np X
Maximum backpropagation X
Progressive bias PB X X
αβ playouts X
Implicit minimax backups imα X X X
Simple evaluation function efRS, efMS X X
Sophisticated ev. function efLH, efWB X X
Baseline pl. (ege0.1,det0.5) bl X
Alt. baseline (ipp,fet20,np) bl’ X

dependent features) terminating only when some condition is
met. This approach has been used as a “mercy rule” in Go [23]
and quite successfully in Lines of Action [24]. In our version,
which we abbreviate “detx”, a playout is terminated and
returns 1 if v0(s) ≥ x and −1 if v0(s) ≤ −x. Another option
is to use an ε-greedy playout policy that chooses a successor
randomly with probability ε and successor state with the largest
evaluation with probability 1− ε, with improved performance
in Chinese Checkers [25], [26], abbreviated “egeε”.

To facilitate the discussion, we refer to each enhancement
and setting using different labels. These enhancements and
labels are described in the text that follows. But, we also
include, for reference, a summary of each in Table I.

Experiments are performed in three domains: Kalah, Break-
through, and Lines of Action. Example images of each game
are shown in Appendix A.1 To tune parameters in Kalah
and Breakthrough, hierarchical elimination tournaments are
run where each head-to-head match consisted of at least 200
games with seats swapped halfway. Detailed results of these
tournaments and comparisons are contained in Appendix B.1

A. Kalah

Kalah is a turn-taking game in the Mancala family of
games. Each player has six houses, each initially containing
four stones, and a store on the endpoint of the board, initially
empty. On their turn, a player chooses one of their houses,
removes all the stones in it, and “sows” the stones one per
house in counter-clockwise fashion, skipping the opponent’s
store. If the final stone lands in the player’s store, that player
gets another turn, and there is no limit to the number of
consecutive turns taken by same player. If the stone ends on a
house owned by the player that contains no stones, then that
player captures all the stones in the adjacent opponent house,
putting it into the player’s store. The game plays until one
player’s houses are all empty; the opponent then moves their
remaining stones to their store. The winner is the player who
has collected the most stones in their store. Kalah has been

1Appendices are included in [27].



0

10

20

30

40

50

60

70

80

0 0.2 0.4 0.6 0.8 1

W
in

ra
te

of
M

C
T

S(
fe

t4
,im

α
)(

%
)

α

Performance of MCTS(fet4,imα) vs. MCTS(fet4) in Kalah

0

10

20

30

40

50

60

70

80

0 0.2 0.4 0.6 0.8 1

W
in

ra
te

of
M

C
T

S(
fe

t4
,im

α
)(

%
)

α

Performance of MCTS(fet4,imα) vs. MCTS(fet4) in Kalah

1 second / move1 second / move
50% mark

Fig. 1: Results in Kalah. Playouts use fet4. Each data point is
based on roughly 1000 games.

weakly solved for several different variants of Kalah [28], and
was used as a domain to compare MCTS variants to classic
minimax search [10].

In running experiments from the initial position, we ob-
served a noticeable first-player bias. Therefore, as was done in
[10], our experiments produce random starting board positions
without any stones placed in the stores. Competing players play
one game and then swap seats to play a second game using
the same board. A player is declared a winner if that player
won one of the games and at least tied the other game. If the
same side wins both games, the game is discarded.

The default playout policy chooses a move uniformly at
random. We determined which playout enhancement led to
the best player. Tournament results revealed that a fet4 early
termination worked best. The evaluation function was the same
one used in [10], the difference between stones in each player’s
stores. Results with one second of search time are shown in
Figure 1. Here, we notice that within the range α ∈ [0.1, 0.5]
there is a clear advantage in performance when using implicit
minimax backups against the base player.

B. Breakthrough

Breakthrough is a turn-taking alternating move game
played on an 8-by-8 chess board. Each player has 16 identical
pieces on their first two rows. A piece is allowed to move
forward to an empty square, either straight or diagonal, but
may only capture diagonally like Chess pawns. A player wins
by moving a single piece to the furthest opponent row.

Breakthrough was first introduced in general game-playing
competitions and has been identified as a domain that is par-
ticularly difficult for MCTS due to traps and uninformed play-
outs [19]. Our playout policy always chooses one-ply “deci-
sive” wins and prevents immediate “anti-decisive” losses [29].
Otherwise, a move is selected non-uniformly at random, where
capturing undefended pieces are four times more likely than
other moves. MCTS with this improved playout policy (ab-
breviated “ipp”) beats the one using uniform random 94.3%
of the time. This playout policy leads to a clear improvement

10

20

30

40

50

60

70

80

0 0.2 0.4 0.6 0.8 1

W
in

ra
te

of
M

C
T

S(
bl

,im
α

)(
%

)

α

Performance of MCTS(bl,imα) vs. MCTS(bl) in Breakthrough

10

20

30

40

50

60

70

80

0 0.2 0.4 0.6 0.8 1

W
in

ra
te

of
M

C
T

S(
bl

,im
α

)(
%

)

α

Performance of MCTS(bl,imα) vs. MCTS(bl) in Breakthrough

1 second per move
5 seconds per move
1 second per move

5 seconds per move
50% mark

0

10

20

30

40

50

60

70

80

0 0.2 0.4 0.6 0.8 1

W
in

ra
te

of
M

C
T

S(
bl

,n
p,

im
α

)(
%

)

α

Performance of MCTS(bl,np,imα) vs. MCTS(bl,np) in Breakthrough

0

10

20

30

40

50

60

70

80

0 0.2 0.4 0.6 0.8 1

W
in

ra
te

of
M

C
T

S(
bl

,n
p,

im
α

)(
%

)

α

Performance of MCTS(bl,np,imα) vs. MCTS(bl,np) in Breakthrough

1 second / move
5 seconds / move
1 second / move

5 seconds / move
50% mark

Fig. 2: Results in Breakthrough against baseline player
MCTS(ege0.1,det0.5). Each point represents 1000 games. The
top graph excludes node priors, bottom graph includes node
priors.

over random playouts, and so it is enabled by default from this
point on.

In Breakthrough, two different evaluation functions were
used. The first one is a simple one found in Maarten Schadd’s
thesis [30] that assigns each piece a score of 10 and the further
row achieved as 2.5, which we abbreviate “efMS”. The second
one is the more sophisticated one giving specific point values
for each individual square per player described in a recent
paper by Lorentz & Horey [7], which we abbreviate “efLH”.
We base much of our analysis in Breakthrough on the Lorentz
& Horey player, which at the time of publication had an ELO
rating of 1910 on the Little Golem web site.

Our first set of experiments uses the simple evaluation
function, efMS. At the end of this subsection, we include
experiments for the sophisticated evaluation function efLH.

We first determined the best playout strategy amongst
fixed and dynamic early terminations and ε-greedy playouts.
Our best fixed early terminations player was fet20 and best
ε-greedy player was ege0.1. Through systematic testing on



1000 games per pairing, we determined that the best playout
policy when using efMS is the combination (ege0.1,det0.5).
The detailed test results are found in Appendix B in [27].
To ensure that this combination of early termination strate-
gies is indeed superior to just the improved playout policy
on its own, we also played MCTS(ege0.1,det0.5) against
MCTS(ipp). MCTS(ege0.1,det0.5) won 68.8% of these games.
MCTS(ege0.1,det0.5) is the best baseline player that we could
produce given three separate parameter-tuning tournaments, for
all the playout enhancements we have tried using efMS, over
thousands of played games. Hence, we use it as our primary
benchmark for comparison in the rest of our experiments with
efMS. For convenience, we abbreviate this baseline player
(MCTS(ege0.1,det0.5)) to MCTS(bl).

We then played MCTS with implicit minimax backups,
MCTS(bl,imα), against MCTS(bl) for a variety different values
for α. The results are shown in the top of Figure 2. Implicit
minimax backups give an advantage for α ∈ [0.1, 0.6] under
both one- and five-second search times. When α > 0.6,
MCTS(bl,imα) acts like greedy best-first minimax. To verify
that the benefit was not only due to the optimized play-
out policy, we performed two experiments. First, we played
MCTS without playout terminations, MCTS(ipp,im0.4) against
MCTS(ipp). MCTS(ipp,im0.4) won 82.3% of these games.
We then tried giving both players fixed early terminations,
and played MCTS(ipp,fet20,im0.4) versus MCTS(ipp,fet20).
MCTS(ipp,fet20,im0.4) won 87.2% of these games.

The next question was whether the mixing static evaluation
values themselves (v0(s)) at node s was the source of the
benefit or whether the minimax backup values (vτs ) were
the contributing factor. Therefore, we tried MCTS(bl, im0.4)
against a baseline player that uses constant bias over the static
evaluations, i.e., uses

Q̂CB(s, a) = (1− α)Q+ αv0(s′), where s′ = T (s, a),

and also against a player using a progressive bias of the
implicit minimax values, i.e.,

Q̂PB(s, a) = (1− α)Q+ αvτs,a/(ns,a + 1),

with α = 0.4 in both cases. MCTS(bl,im0.4) won 67.8%
against MCTS(bl,Q̂CB). MCTS(bl,im0.4) won 65.5% against
MCTS(bl,Q̂PB). A different decay function for the weight
placed on vτs could further improve the advantage of implicit
minimax backups. We leave this as a topic for future work.

We then evaluated MCTS(im0.4) against maximum back-
propagation proposed as an alternative backpropagation in the
original MCTS work [1]. This enhancement modifies line 24
of the algorithm to the following:

if ns ≥ T then return max
a∈A(s)

Q̂(s, a) else return r.

The results for several values of T are given in Table III.

Another question is whether to prefer implicit minimax
backups over node priors (abbreviated np) [6], which initializes
each new leaf node with wins and losses based on prior
knowledge. Node priors were first used in Go, and have also
used in path planning problems [31]. We use the scheme

Player A Player B A Wins (%)
MCTS(ipp) MCTS(random playouts) 94.30 ± 1.44

Experiments using only efMS
MCTS(ege0.1,det0.5) MCTS(ipp) 68.80 ± 2.88

MCTS(ipp,im0.4) MCTS(ipp) 82.30 ± 2.37
MCTS(ipp,fet20,im0.4) MCTS(ipp,fet20) 87.20 ± 2.07

MCTS(bl,im0.4) MCTS(bl,Q̂CB ) 67.80 ± 2.90
MCTS(bl,im0.4) MCTS(bl,Q̂PB ) 65.50 ± 2.95
MCTS(bl,im0.6) MCTS(bl) 63.30 ± 2.99

MCTS(bl,im0.6,np) MCTS(bl) 77.90 ± 2.57
Experiments using efMS and efLH

MCTS(efMS,bl) MCTS(efLH,bl’) 40.20 ± 3.04
MCTS(efMS,bl,np) MCTS(efLH,bl’) 78.00 ± 2.57

MCTS(efMS,bl,np,im0.4) MCTS(efLH,bl’) 84.90 ± 2.22
MCTS(efMS,bl,im0.4) MCTS(efLH,bl’,im0.6) 53.40 ± 2.19

TABLE II: Summary of results in Breakthrough, with 95%
confidence intervals.

T (in thousands)
Time 0.1 0.5 1 5 10 20 30

1s 81.9 73.1 69.1 65.2 63.6 66.2 67.0

TABLE III: Win rates (%) of MCTS(bl,im0.4) vs. max back-
propagation in Breakthrough, for T ∈ {100, · · · , 30000}.

that worked well in [7] which takes into account the safety
of surrounding pieces, and scales the counts by the time
setting (10 for one second, 50 for five seconds). We ran
an experiment against the baseline player with node priors
enabled, MCTS(bl,imα,np) versus MCTS(bl,np). The results
are shown at the bottom of Figure 2. When combined at
one second of search time, implicit minimax backups still
seem to give an advantage for α ∈ [0.5, 0.6], and at five
seconds gives an advantage for α ∈ [0.1, 0.6]. To verify that
the combination is complementary, we played MCTS(bl,im0.6)
with and without node priors each against the baseline player.
The player with node priors won 77.9% and the one without
won 63.3%.

A summary of these comparisons is given in Table II.

MCTS Using Lorentz & Horey Evaluation Function

We now run experiments using the more sophisticated
evaluation function from [7], efLH, that assigns specific piece
count values depending on their position on the board. Rather
than repeating all of the above experiments, we chose simply
to compare baselines and to repeat the initial experiment, all
using 1 second of search time.

The best playout with this evaluation function is fet20 with
node priors, which we call the alternative baseline, abbreviated
bl’. That is, we abbreviate MCTS(ipp,fet20,np) to MCTS(bl’).
We rerun the initial α experiment using the alternative baseline,
which uses the Lorentz & Horey evaluation function, to find
the best implicit minimax player using this more sophisticated
evaluation function. Results are shown in Figure 3. In this
case the best range is α ∈ [0.5, 0.6] for one second and α ∈
[0.5, 0.6] for five seconds. We label the best player in this
figure using the alternative baseline MCTS(efLH,bl’,im0.6).

In an effort to explain the relative strengths of each eval-
uation function, we then compared the two baseline players.
Our baseline MCTS player, MCTS(efMS,bl), wins 40.2% of



0

10

20

30

40

50

60

70

80

0 0.2 0.4 0.6 0.8 1

W
in

ra
te

of
M

C
T

S(
bl

’,i
m

α
)(

%
)

α

Performance of MCTS(bl’,imα) vs. MCTS(bl’) using alternative baseline

0

10

20

30

40

50

60

70

80

0 0.2 0.4 0.6 0.8 1

W
in

ra
te

of
M

C
T

S(
bl

’,i
m

α
)(

%
)

α

Performance of MCTS(bl’,imα) vs. MCTS(bl’) using alternative baseline

1 second per move
5 seconds per move
1 second per move

5 seconds per move
50% mark

Fig. 3: Results of varying α in Breakthrough using the alter-
native baseline player. Each point represents 1000 games.

games against the alternative baseline, MCTS(efLH,bl’). When
we add node priors, MCTS(efMS,bl,np) wins 78.0% of games
against MCTS(efLH,bl’). When we also add implicit minimax
backups (α = 0.4), the win rate of MCTS(efMS,bl,im0.4,np)
versus MCTS(efLH,bl’) rises again to 84.9%. Implicit mini-
max backups improves performance against a stronger bench-
mark player, even when using a simpler evaluation function.

We then played 2000 games of the two best players for
the respective evaluation functions against each other,
that is we played MCTS(efMS,bl,np,im0.4) against
MCTS(efLH,bl’,im0.6). MCTS(efMS,bl,np,im0.4) wins
53.40% of games. Given these results, it could be that a more
defensive and less granular evaluation function is preferred in
Breakthrough when given only 1 second of search time. The
results in our comparison to αβ in the next subsection seem
to suggest this as well.

Comparison to αβ Search

A natural question is how MCTS with implicit minimax
backups compares to αβ search. So, here we compare MCTS
with implicit minimax backups versus αβ search. Our αβ
search player uses iterative deepening and a static move
ordering. The static move ordering is based on the same
information used in the improved playout policies: decisive
and anti-decisive moves are first, then captures of defenseless
pieces, then all other captures, and finally regular moves. The
results are listed in Table IV.

The first observation is that the performance of MCTS
(vs. αβ) increases as search time increases. This is true in
all cases, using either evaluation function, with and without
implicit minimax backups. This is similar to observations in
Lines of Action [32] and multiplayer MCTS [25], [33].

The second observation is that MCTS(imα) performs sig-
nificantly better against αβ than the baseline player at the same
search time. Using efMS in Breakthrough with 5 seconds of
search time, MCTS(im0.4) performs significantly better than
both the baseline MCTS player and αβ search on their own.

Ev. Func. Player Opp. n t (s) Res. (%)
(Both) αβ(efMS) αβ(efLH) 2000 1 70.40
(Both) αβ(efMS) αβ(efLH) 500 5 53.40
(Both) αβ(efMS) αβ(efLH) 400 10 31.25
efMS MCTS(bl) αβ 2000 1 27.55
efMS MCTS(bl) αβ 1000 5 39.00
efMS MCTS(bl) αβ 500 10 47.60
efMS MCTS(bl,im0.4) αβ 2000 1 45.05
efMS MCTS(bl,im0.4) αβ 1000 5 61.60
efMS MCTS(bl,im0.4) αβ 500 10 61.80
efLH MCTS(bl’) αβ 2000 1 7.90
efLH MCTS(bl’) αβ 1000 5 10.80
efLH MCTS(bl’) αβ 500 10 12.60
efLH MCTS(bl’) αβ 500 20 18.80
efLH MCTS(bl’) αβ 500 30 19.40
efLH MCTS(bl’) αβ 500 60 24.95
efLH MCTS(bl’) αβ 130 120 25.38
efLH MCTS(bl’,im0.6) αβ 2000 1 28.95
efLH MCTS(bl’,im0.6) αβ 1000 5 39.30
efLH MCTS(bl’,im0.6) αβ 500 10 41.20
efLH MCTS(bl’,im0.6) αβ 500 20 45.80
efLH MCTS(bl’,im0.6) αβ 500 30 46.20
efLH MCTS(bl’,im0.6) αβ 500 60 55.60
efLH MCTS(bl’,im0.6) αβ 130 120 61.54

TABLE IV: Summary of results versus αβ. Here, n represents
the number of games played and t time in seconds per search.
Win rates are for the Player (in the left column).

The third observation is that MCTS(imα) benefits signif-
icantly from weak heuristic information, more so than αβ.
When using efMS, MCTS takes less long to do better against
αβ, possibly because MCTS makes better use of weaker
information. When using efLH, αβ preforms significantly
better against MCTS at low time settings. However, it unclear
whether this due to αβ improving or MCTS worsening.
Therefore, we also include a comparison of the αβ players
using efMS versus efLH. What we see is that at 1 second,
efMS benefits αβ more, but as time increases efLH seems to be
preferred. Nonetheless, when using efLH, there still seems to
be a point where, if given enough search time the performance
of MCTS(im0.6) surpasses that of αβ.

C. Lines of Action

In subsection IV-B, we compared the performance of
MCTS(imα) to a basic αβ search player. Our main question at
this point is how MCTS(imα) could perform in a game with
stronger play due to using proven enhancements in both αβ
and MCTS. For this analysis, we now consider the well-studied
game Lines of Action (LOA).

LOA is a turn-taking alternating-move game played on an
8-by-8 board that uses checkers board and pieces. The goal
is to connect all your pieces into a single connected group
(of any size), where the pieces are connected via adjacent and
diagonals squares. A piece may move in any direction, but the
number of squares it may move depends on the total number
of pieces in the line, including opponent pieces. A piece may
jump over its own pieces but not opponent pieces. Captures
occur by landing on opponent pieces.

The MCTS player is MC-LOA, whose implementation and
enhancements are described in [11]. MC-LOA is a world-
champion engine winning the latest Olympiad. The benchmark
αβ player is MIA, the world-best αβ-player upon which MC-
LOA is based, winning 4 Olympiads. MC-LOA uses MCTS-
Solver, progressive bias, and highly-optimized αβ playouts.



0

10

20

30

40

50

60

70

80

90

0 0.2 0.4 0.6 0.8 1

W
in

ra
te

of
M

C
T

S(
im

α
)(

%
)

α

Performance of MCTS(imα) against different benchmark players in LOA

0

10

20

30

40

50

60

70

80

90

0 0.2 0.4 0.6 0.8 1

W
in

ra
te

of
M

C
T

S(
im

α
)(

%
)

α

Performance of MCTS(imα) against different benchmark players in LOA

PB (Move Categories) + αβ Playout
No UCT Enhancements + αβ Playout

No UCT Enhancements + Simple Playout

PB (Move Categories) + αβ Playout
No UCT Enhancements + αβ Playout

No UCT Enhancements + Simple Playout
50% mark

Fig. 4: Results in LOA. Each data point represents 1000 games
with 1 second of search time.

Options Player Opp. n t Res. (%)
PB MCTS(imα) MCTS 32000 1 50.59
PB MCTS(imα) MCTS 6000 5 50.91
¬PB MCTS(imα) MCTS 1000 1 59.90
¬PB MCTS(imα) MCTS 6000 5 63.10
¬PB MCTS(imα) MCTS 2600 10 63.80
¬PB MCTS αβ 2000 5 40.0
¬PB MCTS(imα) αβ 2000 5 51.0
PB MCTS αβ 20000 5 61.8
PB MCTS(imα) αβ 20000 5 63.3

TABLE V: Summary of results for players and opponent
pairings in LOA. All MCTS players use αβ playouts and
MCTS(imα) players use α = 0.2. Here, n represents the
number of games played and t time in seconds per search.

MIA includes the following enhancements: static move or-
dering, iterative deepening, killer moves, history heuristic,
enhanced transposition table cutoffs, null-move pruning, multi-
cut, realization probability search, quiescence search, and
negascout/PVS. The evaluation function used is the used in
MIA [34]. All of the results in LOA are based 100 opening
board positions.1

We repeat the implicit minimax backups experiment with
varying α. At first, we use standard UCT without enhance-
ments and a simple playout that is selects moves non-uniformly
at random based on the move categories, and uses the early
cut-off strategy. Then, we enable shallow αβ searches in the
playouts described in [32]. Finally, we enable the progressive
bias based on move categories in addition to the αβ playouts.
The results for these three different settings are shown in
Figure 4. As before, we notice that in the first two situations,
implicit minimax backups with α ∈ [0.1, 0.5] can lead to
better performance. When the progressive bias based on move
categories is added, the advantage diminishes. However, we do
notice that α ∈ [0.05, 0.3] seems to not significantly decrease
the performance.

1https://dke.maastrichtuniversity.nl/m.winands/loa/

Additional results are summarized in Table V. From the
graph, we reran α = 0.2 with progressive bias for 32000
games giving a statistically significant (95% confidence) win
rate of 50.59%. We also tried increasing the search time,
in both cases (with and without progressive bias), and ob-
served a gain in performance at five and ten seconds. In
the past, the strongest LOA player was MIA, which was
based on αβ search. Therefore, we also test our MCTS with
implicit minimax backups against an αβ player based on
MIA. When progressive bias is disabled, implicit minimax
backups increases the performance by 11 percentage points.
There is also a small increase in performance when progressive
bias is enabled. Also, at α = 0.2, it seems that there is
no statistically significant case of implicit minimax backups
hurting performance.

D. Discussion: Traps and Limitations

The initial motivation for this work was driven by the
trap moves, which pose problems in MCTS [10], [16], [19].
However, in LOA we observed that implicit minimax backups
did not speed up MCTS when solving a test set of end
game positions. We tried to construct an example board in
Breakthrough to demonstrate how implicit minimax backups
deals with problems with traps. We were unable to do so. In
our experience, traps are effectively handled by the improved
playout policy. Even without early terminations, simply having
decisive and anti-decisive moves and preferring good capture
moves seems to be enough to handle traps in Breakthrough.
Also, even with random playouts, an efficient implementa-
tion with MCTS-Solver handles shallow traps. Therefore, we
believe that the explanation for the advantage offered by
implicit minimax backups is more subtle than simply detecting
and handling traps. In watching several Breakthrough games,
it seems that MCTS with implicit minimax backups builds
“fortress” structures [35] that are then handled better than
standard MCTS.

While we have shown positive results in a number of
domains, we recognize that this technique is not universally
applicable. We believe that implicit minimax backups work
because there is short-term tactical information, which is not
captured in the long-term playouts, but is captured by the
implicit minimax procedure. Additionally, we suspect that
there must be strategic information in the playouts which is
not captured in the shallower minimax backups. Thus, success
depends on both the domain and the evaluation function used.
We also ran experiments for implicit minimax backups in
Chinese Checkers and the card game Hearts, and there was
no significant improvement in performance, but more work
has to be performed to understand if we would find success
with a better evaluation function.

V. CONCLUSION

We have introduced a new technique called implicit mini-
max backups for MCTS. This technique stores the information
from both sources separately, only combining the two sources
to guide selection. Implicit minimax can lead to stronger
play even with simple evaluation functions, which are often
readily available. In Breakthrough, our evaluation shows that
implicit minimax backups increases the strength of MCTS
significantly compared to similar techniques for improving



MCTS using domain knowledge. Furthermore, the technique
improves performance in LOA, a more complex domain with
sophisticated knowledge and strong MCTS and αβ players.
The range α ∈ [0.15, 0.4] seems to be a safe choice. In
Breakthrough, this range is higher, [0.5, 0.6], when using node
priors at lower time settings and when using the alternative
baseline.

For future work, we would like to apply the technique
in other games, such as Amazons, and plan to investigate
improving initial evaluations v0(s) using quiescence search.
We hope to compare or combine implicit minimax backups
to/with other minimax hybrids from [16]. Differences between
vτs,a and Q(s, a) could indicate parts of the tree that require
more search and hence help guide selection. Parameters could
be modified online. For example, α could be changed based
on the outcomes of each choice made during the game, and
Q(s, a) could be used for online search bootstrapping of
evaluation function weights [36]. Finally, the technique could
also work in general game-playing using learned evaluation
functions [37].

Acknowledgments. This work is partially funded by the Netherlands
Organisation for Scientific Research (NWO) in the framework of the
project Go4Nature, grant number 612.000.938.

REFERENCES

[1] R. Coulom, “Efficient selectivity and backup operators in Monte-Carlo
tree search,” in 5th International Conference on Computers and Games,
ser. LNCS, vol. 4630, 2007, pp. 72–83.

[2] L. Kocsis and C. Szepesvári, “Bandit-based Monte Carlo planning,” in
15th European Conference on Machine Learning, ser. LNCS, vol. 4212,
2006, pp. 282–293.

[3] C. B. Browne, E. Powley, D. Whitehouse, S. M. Lucas, P. I. Cowling,
P. Rohlfshagen, S. Tavener, D. Perez, S. Samothrakis, and S. Colton, “A
survey of Monte Carlo tree search methods,” IEEE Trans. on Comput.
Intel. and AI in Games, vol. 4, no. 1, pp. 1–43, 2012.

[4] Z. Feldman and C. Domshlak, “Monte-Carlo planning: Theoretically
fast convergence meets practical efficiency,” in International Conference
on Uncertainty in Artificial Intelligence (UAI), 2013, pp. 212–221.

[5] T. Keller and M. Helmert, “Trial-based heuristic tree search for finite
horizon MDPs,” in International Conference on Automated Planning
and Scheduling (ICAPS), 2013.

[6] S. Gelly and D. Silver, “Combining online and offline knowledge in
UCT,” in Proceedings of the 24th Annual International Conference on
Machine Learning (ICML 2007), 2007, pp. 273–280.

[7] R. Lorentz and T. Horey, “Programming Breakthrough,” in 8th Inter-
national Conference on Computers and Games (CG), 2013.

[8] G. M. J.-B. Chaslot, M. H. M. Winands, J. W. H. M. Uiterwijk, H. J.
van den Herik, and B. Bouzy, “Progressive strategies for Monte-Carlo
tree search,” New Mathematics and Natural Computation, vol. 4, no. 3,
pp. 343–357, 2008.

[9] G. Chaslot, C. Fiter, J.-B. Hoock, A. Rimmel, and O. Teytaud, “Adding
expert knowledge and exploration in Monte-Carlo tree search,” in
Advances in Computer Games, ser. LNCS, vol. 6048, 2010, pp. 1–13.

[10] R. Ramanujan and B. Selman, “Trade-offs in sampling-based adversarial
planning,” in 21st International Conference on Automated Planning and
Scheduling (ICAPS), 2011, pp. 202–209.

[11] M. H. M. Winands, Y. Björnsson, and J.-T. Saito, “Monte Carlo
tree search in Lines of Action,” IEEE Transactions on Computational
Intelligence and AI in Games, vol. 2, no. 4, pp. 239–250, 2010.

[12] J. Kloetzer, “Monte-Carlo techniques: Applications to the game of
Amazons,” Ph.D. dissertation, School of Information Science, JAIST,
Ishikawa, Japan, 2010.

[13] R. Lorentz, “Amazons discover Monte-Carlo,” in Proceedings of the 6th
International Conference on Computers and Games (CG), ser. LNCS,
vol. 5131, 2008, pp. 13–24.

[14] M. H. M. Winands, Y. Björnsson, and J.-T. Saito, “Monte-Carlo tree
search solver,” in Computers and Games (CG 2008), ser. LNCS, vol.
5131, 2008, pp. 25–36.

[15] T. Cazenave and A. Saffidine, “Score bounded Monte-Carlo tree
search,” in International Conference on Computers and Games (CG
2010), ser. LNCS, vol. 6515, 2011, pp. 93–104.

[16] H. Baier and M. H. M. Winands, “Monte-Carlo tree search and minimax
hybrids,” in IEEE Conference on Computational Intelligence and Games
(CIG), 2013, pp. 129–136.

[17] R. Ramanujan, A. Sabharwal, and B. Selman, “Understanding sampling
style adversarial search methods,” in 26th Conference on Uncertainty
in Artificial Intelligence (UAI), 2010, pp. 474–483.

[18] ——, “On adversarial search spaces and sampling-based planning,” in
20th International Conference on Automated Planning and Scheduling
(ICAPS), 2010, pp. 242–245.

[19] S. Gudmundsson and Y. Björnsson, “Sufficiency-based selection strat-
egy for MCTS,” in Proceedings of the 23rd International Joint Confer-
ence on Artificial Intelligence, 2013, pp. 559–565.

[20] P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time analysis of the
multiarmed bandit problem,” Machine Learning, vol. 47, no. 2/3, pp.
235–256, 2002.

[21] H. S. Chang, M. C. Fu, J. Hu, and S. I. Marcus, “An adaptive sam-
pling algorithm for solving Markov Decision Processes,” Operations
Research, vol. 53, no. 1, pp. 126–139, 2005.

[22] A. Saffidine, “Solving games and all that,” Ph.D. dissertation, Université
Paris-Dauphine, Paris, France, 2013.

[23] B. Bouzy, “Old-fashioned computer Go vs Monte-Carlo Go,” in IEEE
Symposium on Computational Intelligence in Games (CIG), 2007,
Invited Tutorial.

[24] M. H. M. Winands, Y. Björnsson, and J.-T. Saito, “Monte-Carlo tree
search solver,” in 6th International Conference on Computers and
Games (CG 2008), ser. LNCS, vol. 5131, 2008, pp. 25–36.

[25] N. R. Sturtevant, “An analysis of UCT in multi-player games,” ICGA
Journal, vol. 31, no. 4, pp. 195–208, 2008.

[26] J. A. M. Nijssen and M. H. M. Winands, “Playout Search for Monte-
Carlo Tree Search in Multi-Player Games,” in ACG 2011, ser. LNCS,
vol. 7168, 2012, pp. 72–83.

[27] M. Lanctot, M. H. M. Winands, T. Pepels, and N. R. Surtevant, “Monte
Carlo tree search with heuristic evaluations using implicit minimax
backups,” CoRR, vol. abs/1406.0486, 2014, http://arxiv.org/abs/1406.
0486.

[28] G. Irving, H. H. L. M. Donkers, and J. W. H. M. Uiterwijk, “Solving
Kalah,” ICGA Journal, vol. 23, no. 3, pp. 139–148, 2000.

[29] F. Teytaud and O. Teytaud, “On the huge benefit of decisive moves in
Monte-Carlo tree search algorithms,” in IEEE Conference on Compu-
tational Intelligence in Games (CIG), 2010, pp. 359–364.

[30] M. P. D. Schadd, “Selective search in games of different complexity,”
Ph.D. dissertation, Maastricht University, Maastricht, The Netherlands,
2011.

[31] P. Eyerich, T. Keller, and M. Helmert, “High-quality policies for the
Canadian travelers problem,” in Proceedings of the Twenty-Fourth
Conference on Artificial Intelligence (AAAI), 2010, pp. 51–58.

[32] M. H. M. Winands and Y. Björnsson, “αβ-based play-outs in Monte-
Carlo tree search,” in IEEE Conference on Computational Intelligence
and Games (CIG), 2011, pp. 110–117.

[33] J. A. M. Nijssen and M. H. M. Winands, “Search policies in multi-
player games,” ICGA Journal, vol. 36, no. 1, pp. 3–21, 2013.

[34] M. H. M. Winands and H. J. van den Herik, “MIA: A world champion
LOA program,” in 11th Game Programming Workshop in Japan (GPW
2006), 2006, pp. 84–91.

[35] M. Guid and I. Bratko, “Detecting fortresses in chess,” Elektrotehniški
Vestnik, vol. 79, no. 1–2, pp. 35–40, 2012.

[36] J. Veness, D. Silver, A. Blair, and W. W. Cohen, “Bootstrapping
from game tree search,” in Advances in Neural Information Processing
Systems 22, 2009, pp. 1937–1945.

[37] H. Finnsson and Y. Björnsson, “Learning simulation control in general
game playing agents,” in Twenty-Fourth AAAI Conference on Artificial
Intelligence, 2010, pp. 954–959.


