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Abstract

In 4-connected grid-based path planning one often needs to
account for temporal and moving obstacles: ones that appear,
disappear and which can prevent the agent from reaching its
target. Such problems are common in a variety of settings
(games, robotics etc.) and they can be surprisingly challeng-
ing to solve. First, because the temporal aspect increases the
size of the search space; second because the search space
contains many symmetric paths, indistinguishable from one
another except by the order in which grid moves appear. To
tackle such problems we consider a new optimal algorithm
– in the style of Jump Point Search – which can identify and
break these symmetries and thus improves performance; from
several factors to more than one order of magnitude vs. SIPP,
arguably the gold standard baseline in the area.

Introduction
We consider optimal pathfinding in 4-connected grid maps
with temporal and moving obstacles. Such setups are in-
teresting in a variety of application areas. For example, in
automated warehouse logistics a mobile agent may need
to avoid the trajectories of other previously planned and
therefore higher priority agents. In computer games, another
popular application, the map can change due to scripted or
repeatedly timed events: for example a closed door is opened
at a certain time, or; an agent needs to reach its target but
without being crushed by moving blocks along the way.

In each of these situations the times and trajectories of
every dynamic obstacle is known but problem of finding a
time-optimal path is much more challenging than 2d grid
pathfinding. The first issue is that the branching factor of the
agent increases from 4 to 5, since waiting is now possible.
The second issue is that the number of states in the environ-
ment increases, since every grid cell (x, y) is time-indexed
and needs to be duplicated, potentially many times. The third
issue is that time only moves forward, which introduces
additional complications not found in other related domains
(e.g., spatial pathfinding in grids with three dimensions).
The fourth issue, perhaps most significant, is symmetry:
there exist in the time-expanded grid many paths which have
the same start and end location, and the same cost, and which
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Figure 1: An optimal
path from S to G (bold)
with many spatially
symmetric alternatives
(dashed).
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Figure 2: Time-space diagram
showing an optimal path (bold)
with three WAIT actions. There
are many temporal symmetries
(dashed).

differ from one another only in the order that grid moves
(UP, DOWN, LEFT, RIGHT, WAIT) appear.

Figure 1 shows an example where multiple equivalent
paths exist between a start and target location. The only
difference is where horizontal and vertical moves appear
in the sequence of actions. We refer to such interleavings
as spatial symmetries. Figure 2 shows a different type of
equivalence which we call temporal symmetries. We fix
the bold path of Figure 1, but assume there is a temporal
obstacle at E2 at times 7-9 (shown in grey in Figure 1). In
this example there exist three necessary wait actions on the
optimal path from start to target. Notice that there are many
equivalent solutions and each differs from all the rest only in
where the wait actions are taken.

In this work we develop Temporal Jump Point Search
(JPST), a new grid-based path planning algorithm that
breaks spatial and temporal symmetries in time-expanded
and 4-connected grid graphs. The main ingredient is a
new canonical ordering (Sturtevant and Rabin 2016) called
Vertical-then-Horizontal-then-Wait (VHW, for short). This
ordering generates paths where vertical and horizontal
moves appear as early as possible and where wait moves
are taken as late as possible. We show that for any optimal
time-expanded grid path there exists an equivalent path,
with the same cost, which is VHW. The ordering allows
JPST to prune symmetric path permutations per expanded
node which can dramatically improve search performance.

JPST is closely related to Jump Point Search (Harabor



and Grastien 2011; Harabor and Grastien 2014), a popular
pathfinder which breaks spatial symmetries in 2d maps.
Compared to that work, JPST can be understood as an
extended variant which adds temporal reasoning. JPST is
also closely related to Safe Interval Path Planning (SIPP)
(Phillips and Likhachev 2011), another popular technique
that speeds up search in time-expanded graphs. JPST breaks
temporal symmetries in a similar fashion to SIPP but further
enhances performance using additional spatial reasoning.

In a wide range of experiments we compare JPST to SIPP.
Problems include robotics-style settings, with few temporal
obstacles, and game-like settings with many thousands of
temporal obstacles. Results show that JPST is often much
faster, with speedups ranging from several factors to more
than one order of magnitude.

Preliminaries
A gridmap is a two-dimensional data structure often used
in the context of pathfinding search. It consists of w × h
non-overlapping square cells, each one marked as either
traversable or non-traversable. Each cell is uniquely iden-
tified by its x and y coordinates. In this work we consider
gridmaps where a cell has up to 4 adjacent neighbours, one
in each cardinal direction: UP, DOWN, LEFT, RIGHT. Moving
from one adjacent cell to the next is permitted and each such
action has a cost of 1. We say that the move is valid if the
origin and destination cell are both traversable.

A time-expanded grid is similar to a gridmap but with an
added dimension: time. In this representation time elapses
in episodes of equal duration known as timesteps and each
move action advances time by exactly one timestep.

We use the notation l@t to refer to the grid cell l = (lx, ly)
as it appears at timestep t. The neighbours of l@t are time-
indexed cells l′@(t + 1) where l′ is gridmap adjacent to l.
We say that a move from l@t to l′@(t + 1) is valid if l@t
and l′@(t + 1) are both traversable. When moving across a
time-expanded grid we consider the four standard directions
plus an additional move called WAIT. Waiting has a cost of
1 and its effect is to reposition the agent but only in the time
dimension: i.e. from l@t to l@(t+ 1). With waits included,
each l@t can thus have ≤ 5 neighbours.

A path π = 〈l0@t, . . . , lk@(t+ k)〉 is an ordered se-
quence of cells beginning with location l0 at timestep t and
finishing at location lk at timestep t+ k. We say that a path
is valid if every location on the path is traversable and if
there exists a valid move from each location on the path
to the next. When discussing paths, we sometimes refer to
their valid continuations. A continuation is a move ~v whose
application extends the path by one location. We use the
notation n′@(t + k) = n@t + k × ~d, with k a positive
integer, to say that node n′@(t + k) is reached from n@t

through the application of k valid moves in direction ~d.
A plan is an ordered sequence of move actions

[ ~d1, . . . , ~dk]. The actions are executed by an agent one after
the other, from an initial location l@t. The result of a plan is
to move the agent through the time-expanded gridmap and
to a new location l′@(t + k). We will say that each path π
is the result of executing an associated plan.

An instance is a pair of (non-time-indexed) grid cells
s and g and a set of time-indexed temporal obstacles O.
An instance is feasible if there exists a path that avoids all
permanent and temporal obstacles, beginning from s at time
index 0 (resp. the starting state) and finishing at g at some
future time index k ≥ 0 (resp. the goal or target state).

Given an instance, our objective is to find an optimal
path π∗ = 〈s@0, . . . , g@k〉 in the time-expanded grid which
avoids all obstacles. The path π∗ is optimal if it minimises,
among all possible paths from s to t the total cost of all
planned actions (which for this paper is equivalent to the
arrival time k).

Idea
We extend Jump Point Search (Harabor and Grastien 2011)
to time-expanded gridmaps with temporal obstacles. The
idea is simple: we introduce a new canonical ordering called
Vertical-then-Horizontal-then-Wait (VHW, for short). This
ordering generates paths with vertical and horizontal moves
that appear as early as possible and wait moves, which are
taken as late as possible. We show that for any optimal path
in a time-expanded grid there exists an equivalent path, with
the same cost and arrival time, which is also VHW. We refer
to this new algorithm as Temporal JPS or simply JPST.

When expanding a node, the successor set considered by
JPST only includes adjacent locations where the current path
can be continued in a way that is canonical. The canonical
property is a search invariant which prevents the exploration
of paths that are symmetric permutations of one another.
Definition 1. A path π = 〈n0, . . . , nk〉 is VHW-canonical if
its corresponding plan (n0, σ) where σ = [ ~d1, . . . , ~dk]) has:
(i) the vertical-first property; (ii) the wait-last property and;
(iii) the backtrack-free property.
• Vertical First: there exists in σ no subsequent pair of

actions, with ~di a horizontal move and ~di+1 a vertical
move, which could be swapped to generate a new valid
path π′ from n0 to nk.

• Wait Last: there exists in σ no subsequent pair of actions,
with ~di a wait move and ~di+1 a non-wait move, which
could be swapped to generate a new valid path π′ from n0
to nk.

• Backtrack Free: there exists in σ no subsequent pair of
actions, with ~di 6= ~di+1 which could be replaced with a
pair of subsequent WAIT actions, to generate a new valid
path π′ from n0 to nk.

Figure 1 shows an example (bold) where the Vertical-First
property breaks spatial symmetries. The property guarantees
that when JPST generates a node, the path to that node will
feature vertical moves as early as possible. Figure 2 mean-
while shows how Wait-Last breaks temporal symmetries.
Notice the optimal path (bold) features wait moves only after
all possible vertical and horizontal moves.

Pruning Rules
Each time JPST expands a node we apply a neighbour
pruning rule to reduce the set of adjacent cells. Pruning
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Figure 3: JPST moves to B1 in a variety of different situa-
tions. Some tiles (filled black) are blocked at all timesteps.
Others (filled grey) are labelled with the timesteps during
which they are blocked. For (d)-(f) B2 has a temporal
obstacle at time 0-3. The parent is indicated by a dark dot
and arrows indicate neighbours which are VHW canonical.
Other neighbours are non-canonical and can be pruned.

eliminates neighbours whose continuation fails to preserve
the VHW ordering. Figure 3 shows a number of examples.
We discuss each example in turn.

Spatial pruning: In Figure 3(a) JPST moves UP. Of
the five possible continuations, only DOWN is pruned by
the VHW ordering (this node violates the backtrack-free
property; i.e. we could have simply waited to reach the same
location with the same cost). By comparison, in Figure 3(b)
JPST moves RIGHT. Here the only canonical continuations
are RIGHT and WAIT. Notice that LEFT does not preserve
backtrack-free while UP and DOWN are not vertical-first
(i.e., there exists a path to each of B0 and B2 where the
vertical moves appear sooner). In Figure 3(c) we show
another situation where JPST passes next to an obstacle.
Here B2 cannot be pruned as the equivalent path where
vertical moves appear sooner is blocked. In such cases we
say that B2 is forced to be generated.

Temporal pruning: Figures 3(d)-3(f) show a running
example over several timesteps. In Figure 3(d) JPST moves
DOWN but a temporary obstacle impedes further progress. In
Figure 3(e) JPST waits for the obstacle to clear. Notice that
after a wait we can usually prune all neighbours save one.
In Figure 3(f) JPST is again forced to generate B2, and it
arrives there just as the obstacle disappears.
Theorem 1. Every optimal path π = 〈l0@0, . . . , lk@k〉 can
be transformed into an equivalent path π′ which is VHW-
canonical by reordering the moves in its corresponding plan.

Proof. (Sketch) There are three categories of actions: Hori-
zontal (H), Vertical (V) and Wait (W). These can be com-
bined in only six different ways to produce a canonical
turning point where an optimal path can bend. These are:
WH, WV, HW, HV, VW, VH. Consider any turning point
along the optimal path π. Either the turning point follows
the VHW-canonical ordering, or we can re-arrange the two

Algorithm 1 The function get-successors

Require: x@t: current node, ~d: direction, g: goal
1: S ← ∅
2: M ← get-canonical-moves(x@t, ~d)

3: for all ~d′ ∈M do
4: S ← S ∪ jump(x@t+ ~d′, ~d′, g)
5: return S

Algorithm 2 The function jump

Require: x@t: current node, ~d1: direction, g: goal
1: M ← get-canonical-moves(x@t, ~d1)

2: if x == g or ∃ ~d2 ∈M | ~d2 is forced then
3: return {(x@t, ~d1)}
4: S ← ∅
5: if t < max time index of any disappearing obstacle then
6: x′@(t+ 1)← x@t+ wait
7: S ← S ∪ jump(x′@(t+ 1),wait, g)
8: for all ~d2 ∈M such that ~d2 is horizontal do
9: x′@(t+ 1)← x@t+ ~d2

10: S ← S ∪ jump(x′@(t+ 1), ~d2, g)

11: for all ~d2 ∈M such that ~d2 is vertical do
12: x′@(t+ 1)← x@t+ ~d2
13: S ← S ∪ jump(x′@(t+ 1), ~d2, g)
14: return S

moves that make up the turning point such that vertical
actions appear sooner and wait actions appear later (as ap-
propriate for the situation). We continue to re-write turning
points in this way until no further modifications are possible.
Notice that the path produced by this revised plan is valid
and has the same cost as the original. This new path is
therefore optimal and is also VHW-canonical.

Jumping Rules
One way pruning rules can improve the performance of

search is in the context of the current node where they can
reduce the number of generated successors per expansion
step. Another way pruning rules can help is in the context
of the candidate successor set; i.e. for nodes where we have
already established there exists a VHW-canonical continua-
tion of the path. When applied to such candidate successors,
pruning rules can sometimes reduce the branching factor to
0 or 1. Rather than adding such nodes to the A* OPEN list
we propose to immediately expand and apply the rules anew.
The recursion continues until the next move is invalid (in
which case we say that the branch is a dead-end) or until
the recursion produces, and returns as a successor, a type of
node which we call a temporal jump point.

Definition 2. Let l@t be a time-indexed location in the
grid which is generated as a result of applying move ~d1 at
location p during timestep (t−1); i.e. p@(t−1)+ ~d1 = l@t.
We say that the tuple (l@t, ~d1) is a temporal jump point if:
(i) l@t is the target or; (ii) if l@t has a valid move ~d2 6= ~d1
such that:

• the plan p@(t− 1) + ~d1 + ~d2 is valid;



• the plan p@(t− 1) + ~d2 + ~d1 is invalid.

• ~d2 comes before ~d1 in the VHW ordering.

The definition says a node l@t is jump point if that node is
the target or if l@t has a neighbour which is forced; i.e. it can
only be locally reached by going against the VHW ordering,
since the preferred plan p@(t− 1) + ~d2 + ~d1 is invalid.

During recursion we process canonical continuations in a
specific partial order: first we consider nodes reached with
a WAIT action; then we consider the horizontal actions,
RIGHT and LEFT; finally we consider the vertical actions, UP
and DOWN. This ordering guarantees we only ever recurse
along paths which are VHW-canonical. That means before
every horizontal move we explore whether the path can bend
around an obstacle via a sequence of wait actions. Likewise,
before every vertical move, we explore whether the path can
bend via a sequence of horizontal actions.

Example 1. Consider the instance in Figure 1 with its
corresponding temporal dimension shown in Figure 2. JPST
expands the start state A3@0. This node has no parent so
every valid move forms a VHW-canonical continuation of
the path. There are three moves: UP, RIGHT and WAIT.

We first apply our pruning rules to the nodeA3@0+WAIT
and we reduce its branching factor to 1 (again, WAIT). Notice
however that no matter how much further we might recurse,
there is never any cell adjacent to A3 which becomes
unblocked at any future time. In other words this branch will
never be forced to change direction and it can never produce
the target. JPST will prune this branch as a dead-end once
the recursion reaches the maximum timestep associated with
any temporal obstacle.

The node A3@0 + RIGHT is processed next but this too
proves to be a dead-end. In particular, after each step RIGHT
the path can WAIT but every such continuation is a dead-end.
After two steps RIGHT obstacles impede further progress.

The node A3@0 + UP is more fruitful. After two steps
(i.e. from A1@2) the RIGHT continuation yields the jump
point (E1@6, RIGHT). We add this node to the list of suc-
cessors for A3@0 and we continue recursing: from A1@2
in the direction UP. Again we encounter a dead-end. Now
(E1@6, RIGHT) is the top node the OPEN list and the
only possible action is WAIT; the search having considered,
and pruned, all other equivalent ways to reach the target.
Recursing in the WAIT direction generates the jump point
(E1@9,WAIT) which has just one continuation: DOWN.
Expanding (E1@9,WAIT) produces the target.

Notice how recursive pruning allows the search to jump,
from one location to the next, all without adding to and
removing from the A* OPEN list any intermediate nodes
along the way. Our approach can be implemented as a
modification of the usual get-successors function of
grid A*, as per Algorithm 1, but where successor nodes
are generated by a recursive jumping procedure. We give
a pseudo-code description of this function in Algorithm 2.
Line 1 identifies the set of canonical continuations for the
node x@t. The vector ~d1 denotes the last move on the
canonical path, from s@0 to x@t. Lines 2-3 immediately
add x@t as a jump point successor if this node is the target

or if it has any forced continuations. The remainder of the
function (Lines 5-14) simply applies recursive pruning to
each non-forced canonical continuation. Notice (Line 5) that
we never explore WAIT branches after the time of the last
disappearing obstacle. Once this timestep has passed either
there exists a spatial path to the target, or else the target
cannot be reached. No amount of further waiting can help.

Theorem 2. JPST is optimal

Proof. (Sketch) We proceed by induction over the expan-
sion of states on an optimal canonical path, one state of
which is always on OPEN until the target is expanded. This
induction is straightforward, so we focus on showing that the
entire path can be generated through successive expansions.

Let π be an optimal VHW-canonical path. Now divide
π into segments such that each segment is produced by
taking as many moves as possible in a single direction.
Notice that the beginning and end of every segment, except
the start and target, is a turning point. Recall that every
turning point on a VHW-canonical path is a temporal jump
point. We apply Algorithm 2 to jump from the node at the
beginning of each segment to the node at the end of the
segment, without stopping at any point in between. Only the
start and target remain unaccounted for. In Definition 2, the
target is always returned as a temporal jump point and thus
also by Algorithm 2. For the start, recall that JPST expands
this node and considers every valid move and each of its
corresponding canonical continuations.

Further Examples
We now discuss several further examples of searching with
JPST. We demonstrate why optimal time-expanded search
is more challenging than conventional grid search and why
conventional algorithms such as JPS are insufficient.

Example 2. In Figure 4(b) we show a time-expanded
version of the map in Figure 4(a). The start and target are
adjacent but the direct path is blocked and the start soon will
be. From S, JPST has two canonical continuations: WAIT
and DOWN. The first is proven to be a dead-end in 2 steps.
The second yields a single successor, the temporal jump
pointA2@2 which has a forced successorA3@3. Expanding
A2@2 produces the jump point A3@5 with A2@6 being
forced, and A5@8 with A4@9 being forced. Expanding
A3@5 allows JPST to reverse y-direction and in 3 steps it
produces the target, A0@8. Notice how we systematically
explore the entire search space but use only canonical paths:
waiting before each horizontal step and continuing again as
soon as adjacent obstacles disappear. Notice also that the
optimal path contains spatial cycles.

Example 3. In Figure 4(c) JPST solves a small problem in
three dimensions. Notice locations C0 − C3 are blocked at
timesteps 0–7. When JPST recurses along row 3, it generates
one jump point adjacent to each of these locations, since at
timestep 7 – after a sequence of wait actions – there exists
in each case a forced neighbour. The example is interesting
because only one of these jump points, D0@6 is not a dead-
end. The others are generated but the branches are pruned at
timestep 8 after a forced move LEFT.



The examples, especially Figures 4(c) and 4(d), show
that more aggressive symmetry breaking (in the form of
speculative recursions) can eliminate unpromising branches
and further speed up search – not just for JPST but also JPS.
A more detailed discussion is a topic for further work.

Practical Considerations
We now discuss a number of additional considerations
which arise for JPST in practice.

Concrete paths: JPST returns a path of temporal jump
points but not necessarily a concrete path that can be readily
executed. However from any path produced by JPST it is
easy to derive a complete canonical path as follows. Simply
take the delta between every two adjacent jump points on the
JPST path: in the x-, y- and t-dimension. We then generate
a VHW-canonical subpath with δy vertical steps followed
by δx horizontal steps and δt wait steps. In other words,
the sequence of ≥ 1 canonical moves between two temporal
jump points follows the pattern V*H*W*. Moreover, every
such subpath is guaranteed to be valid as well as optimal.

Jump Limits: JPST can perform a great deal of grid
scanning. The scans are useful if they produce must-expand
successors, otherwise they can be regarded as wasted work.
To prevent JPST from scanning large and uninteresting
areas we apply a jump limit jl that stops each scan after a
fixed number of steps. When the limit is reached the node
currently scanned is added to the OPEN list as a pseudo
jump point successor. Similar ideas appear in bounded
JPS (Sturtevant and Rabin 2016) and for the same reason.
In experiments we use jl = 256 for map gardenofwar
and Sirocco, and jl = 128 for all other maps.

Fast Scanning: One critical aspect for JPST performance
is that grid scanning operations proceed efficiently. In (Hara-
bor and Grastien 2014) authors propose block jumping, a
speedup technique for JPS which improves performance by
increasing the size of the stride during scanning operations.
We consider a similar improvement for JPST.

To speed up horizontal scanning we use a bitfield repre-
sentation of the map, stored in row major order, to indicate
the position of permanent obstacles. Another similar bitfield
indicates the position of temporal obstacles. The only pos-
sible locations of jump points are at cells adjacent to the
locations indicated by the bitfields. Using only simple bit
scanning and bit manipulation operators we then construct
a forced neighbour checking procedure that allows JPST
to recurse horizontally across the grid in steps of size 32,
each time reasoning about all adjacent nodes and their
neighbours, simultaneously. Since the adaptation of this idea
is straightforward we omit the mechanical details. A full
description is available in (Harabor and Grastien 2014).

Speculative Waiting: JPST generates a WAIT successor
each time it scans a grid node where temporal obstacles
appear and disappear. In Figure 4(d), JPST expands A4@0
and scans RIGHT to reachB4@1. The search may eventually
generate up to three WAIT successors: B4@3, B4@5 and
B4@77. Such WAIT successors are necessary to maintain the
VHW-canonical property but adding them to the OPEN list
can introduce unnecessary overheads: in this case, none of
the three nodes can appear on the optimal path.

To mitigate such issues we propose to immediately ex-
pand all reachable wait successors and generate in their
stead any corresponding forced neighbours. In the example,
this strategy allows us to immediately prove each WAIT
successor leads to a dead-end. We reduce the size of the
OPEN list (nothing is added) and the search makes faster
progress toward the target. Where a dead-end proof is
unavailable, speculative waiting can still help: by generating
forced neighbours instead of WAIT successors we grow the
f -value faster and again potentially speed up search.

Safe Intervals: In our discussion thus far we have as-
sumed the search space is a completely specified time-
expanded grid graph. But such a representation may be
prohibitive under a long planning horizon T : there are w ×
h×T grid cells that need to be stored and potentially scanned
as JPST moves through the environment.

We can speed up temporal symmetry breaking by keeping
for each (x, y) location a list of intervals that specify when
that location is traversable. Equivalently, we store a list of
the times when (x, y) is a temporal obstacle. Recall that this
data is given as part of the instance specification. Suppose
now that we need to decide if location n@t has a forced
continuation after some k ≥ 0 number of WAIT actions.

• We scan the list of traversable intervals for n = (nx, ny)
and find the one where t ∈ [tb, te].

• We scan the list of intervals stored with each adjacent cell
n′ = (n′x, n

′
y). and we generate any which overlaps with

[tb, t
′
e]; i.e., JPST waits for k ≤ te − t timesteps and then

moves in a corresponding forced direction, arriving in the
adjacent safe interval as early as possible.

• Each safe interval has an associated g-value. This value
can be improved in the usual way: by finding a shorter
path which reaches the interval earlier. The g-value is
settled once the interval is expanded and any subsequent
paths through such an expanded interval can be pruned.

Safe Intervals and Speculative Waiting are closely re-
lated to Safe Interval Path Planning (SIPP) (Phillips and
Likhachev 2011). Like SIPP, we reason about time in terms
of intervals but we break temporal symmetries by taking
WAIT actions as late as possible (SIPP does not commit to
any concrete temporal plan). We also interleave temporal
symmetry breaking with spatial symmetry breaking which
allows us to generate and expand fewer nodes than SIPP.

Obstacles with Trajectories: The domain model of
JPST is a time-expanded grid where obstacles have fixed
spatial coordinates but can appear and disappear at different
times. In other settings, notably Multi-Agent Path Finding
(MAPF), obstacles represent other agents whose trajectories
we must avoid to prevent collisions. There are two types
of MAPF collisions: vertex collisions, where two agents
attempt to occupy the same time-indexed location at the
same time, and edge collisions, where two agents attempt
to swap (x, y) positions.

JPST jump rules account for vertex collisions but not edge
collisions. Consider Figure 4(d) where agent A1 attempts
to move to A2@2 and A2 attempts to move to A3@2. The
origin and destination vertices of both agents is traversable
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Figure 4: (a). A simple one dimensional map. (b). JPST searches for a path from S to G of the map of Figure 4(a). We show
the optimal solution (solid black), other canonical continuations (solid grey) and all temporal jump points (circles). (c). JPST
searches for a path from S to G. We show the optimal solution (bold lines) and the (x, y) position of temporal jump points
identified as successors of the start node. (d). We show two agents at S1 and S2. If each follows the unique optimal path to
their respective target locations G1 and G2 there is an edge collision at timestep 2 on the edge (A2,A3).

at the beginning and end of the action and our pruning rules
do not generate any forced neighbours for either agent.

We can adapt JPST to handle such cases by taking an
edge-centric view of the time-expanded domain. That means
reasoning explicitly about outgoing edges of each time-
indexed location and enabling or disabling moves depending
on the situation. One way to achieve this involves storing
with each safe interval a list of constraints on outgoing edges
for the timesteps bounded by the interval. Our definition of
forced neighbours is likewise easily adapted: we check not
only the nodes on equivalent path are traversable but also
that the necessary edges are enabled.

Evaluation
We evaluate JPST vs. SIPP (Phillips and Likhachev
2011) in two distinct settings: Pathfinding with Moving
Obstacles and Pathfinding with Constraints. Our maps
and instances are drawn from Sturtevant’s well known
benchmark set (Sturtevant 2012). Both SIPP and
JPST are implemented in C++ and both are based
on code from libMultiRobotPlanning, a freely
available pathfinding library due to Wolfgang Hönig.1 Our
implementation is also available. 2

Experiment #1: Moving Obstacles
In this experiment we consider pathfinding among groups
of moving obstacles with known/predictable trajectories.
Setups such as these can be found in crowd simulation
scenarios, collaborative robot applications (e.g. Amazon
Canvas) and in computer video games.

To generate instances we select four maps drawn from
real games: gardenofwar, orz700d, Sirocco and
w_woundedcoast. Each has an associated scenario file

1https://github.com/whoenig/libMultiRobotPlanning
2https://github.com/husl903/Multi-pathfinding

that specifies several thousand single-agent pathfinding in-
stances (i.e. start-target location pairs). We solve each in-
stance in turn and treat optimal plans from the previous
k instances as moving obstacle trajectories, to be avoided
when solving instance k + 1. For the first k problems we
generate obstacle trajectories by solving the last k problems
in the scenario file. The obstacle trajectories are just the
optimal plans returned by SIPP. That means both JPST and
SIPP solve the same problem instances and both must avoid
the same set of obstacle trajectories.

Results appear in Figure 5 using cactus plots. We sort the
instances by ratio of time for SIPP over JPST for each k
value. This shows the full distribution of behaviour. When
the ratio > 1 then JPST is better. We use both a Manhattan
distance heuristic, and a perfect 2D heuristic (the exact
distance to the target ignoring temporal obstacles), which
we compute offline. The k = 0 case shows the maximum
advantage that spatial symmetry breaking can give.

We observe that JPST improves on SIPP in a majority of
cases, with speedups from several factors to over one order
of magnitude. The speedups for JPST are larger when the
two algorithms rely on a Manhattan heuristic, and on larger
maps, such as gardenofwar and Sirocco, where open
space introduces more spatial symmetries. In corridor-like
maps, such as orz700d and w_woundedcoast, spatial
symmetries are fewer and the advantage for JPST is reduced.
As k increases, the gap narrows: there are more locations
with temporal obstacles which reduces jump distances and
forces JPST to expand more nodes. For k = 100 the
performance of JPST is similar to SIPP. Both methods
break temporal symmetries but spatial symmetries are few.
Here JPST can incur some small overheads due to grid
scanning. Adding still more obstacles, in an adversarial
manner, can eliminate even temporal symmetries. In this
case both algorithms will converge to time-expanded A*.
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Figure 5: Moving obstacles experiment. We insert k ∈ {0, 5, 10, 50, 100}moving obstacle trajectories on the map and compute
optimal paths with SIPP and JPST. In the top row, both algorithms use a Manhattan estimator. In the bottom row, both algorithms
use a precomputed Perfect 2D estimator. We report runtime ratios (SIPP time over JPST time). The dotted line is a ratio of 1.0.
Higher is better with values > 1.0 indicating performance-improving results for JPST. Symbol µ indicates average ratio.
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Figure 6: Runtime scatter plots for SIPP vs. JPST on CBS-
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9). Symbol µ indicates average time ratio (SIPP/JPST).
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Figure 7: Cactus plot for CBS-derived problem instances.
We compare A*, SIPP and JPST (with and without fast
scanning). All algorithms use a Manhattan heuristic. Symbol
µ indicates average performance.

Experiment #2: Pathfinding with Constraints
In some applications (e.g. autonomous warehouse logistics)
agents plan in time-expanded grids but subject to some
small set of operating constraints (cf. 2K to 20K temporal
obstacles to be avoided, as in the previous experiment).

To generate operating constraints we solve Multi-agent
Path Finding (MAPF) problems using Conflict-based Search
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Figure 8: Cactus plot for CBS-derived problem instances.
We compare A*, SIPP and JPST (with and without fast
scanning). All algorithms use a Perfect 2D heuristic. Symbol
µ indicates average performance.
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Figure 9: Cactus plot comparison between JPST with an
online-computed perfect 2D heuristic and JPST with a JPST
with Manhattan distance. We show performance on all CBS-
derived problems. Symbol µ indicates average run time.

(CBS) (Sharon et al. 2015). We use Hönig’s CBS imple-
mentation on two known benchmark maps: Berlin and
lak303d. For each map we take the CT tree of the largest
MAPF problem that CBS could solve with a 5 minute
timeout. We collect all the path planning problems solved at
each node in the CT tree and the corresponding constraints.
We then re-solve each of these problems, this time with SIPP
and JPST. We run both methods with two distinct heuristics
(Manhattan and Perfect 2D) and give separate comparisons.

Comparative results for JPST and SIPP, using Manhattan
heuristic are shown in Figure 6 and 7. Here the average im-
provement ratio for JPST is 11.7 on the map Berlin, and
12.0 on lak303d. Meanwhile Figure 8 shows comparative
results with a perfect 2D heuristic. Here we measure raw
runtimes. Again JPST has a clear advantage with reductions
in average running time of up to several factors vs SIPP
and up to several orders vs Time Expanded A*, which is
the default path planner in our implementation of CBS. We
also illustrate the significant benefits of fast scanning by
comparing against JPST with this optimisation turned off.

In the context of CBS it is usually worthwhile to compute
the perfect heuristic for each agent, since one typically
replans the path of every agent many times. If the tar-
get changes frequently however the cost of computing the
heuristic, plus the faster running time, can be a net loss vs.
searching with a less informed heuristic. In Figure 9 we
compare JPST running time when the cost of the perfect 2D
heuristic is included in the total time required to solve each

instance. For the Berlin instances Manhattan is usually
faster while for the lak303d instances the results are
mixed. Notice however that the absolute difference is just
milliseconds. These results indicate the main performance
improving benefits of JPST-Perfect-2D come from strong
symmetry breaking rather than a strong estimator.

Conclusion
We introduce Temporal Jump Point Search (JPST), a new al-
gorithm for pathfinding in 4-connected maps with temporal
obstacles. Fast, optimal and entirely online, JPST effectively
breaks both spatial and temporal symmetries using a new
canonical ordering scheme called Vertical-then-Horizontal-
then-Wait (VHW). JPST is closely related to SIPP, a leading
planner from the literature which only breaks temporal
symmetries. We compare these two algorithms in a range
of experiments, with few temporal constraints and with up
to tens of thousands. Results show that in both cases JPST
can be substantially faster, with speedups from a few factors
to over one order of magnitude. Further work in this area
could consider other types of grid symmetries. For example,
8-connected grids are a popular domain model in 2d (spatial)
pathfinding but the addition of time in this case makes
symmetry breaking substantially more complicated since
cost and time no longer coincide.
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