
Artificial Intelligence 252 (2017) 232–266
Contents lists available at ScienceDirect

Artificial Intelligence

www.elsevier.com/locate/artint

MM: A bidirectional search algorithm that is guaranteed to

meet in the middle ✩

Robert C. Holte a, Ariel Felner b, Guni Sharon c, Nathan R. Sturtevant d,
Jingwei Chen d

a Department of Computing Science, University of Alberta, Edmonton, Canada
b Information Systems Engineering, Ben Gurion University, Beer-Sheva, 85104, Israel
c Department of Computer Science, University of Texas at Austin, Austin, TX, USA
d Department of Computer Science, University of Denver, Denver, CO, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 17 June 2016
Received in revised form 29 May 2017
Accepted 30 May 2017
Available online 22 August 2017

Keywords:
Heuristic search
Bidirectional search

Bidirectional search algorithms interleave two separate searches, a normal search forward
from the start state, and a search backward from the goal. It is well known that adding
a heuristic to unidirectional search dramatically reduces the search effort. By contrast,
despite decades of research, bidirectional heuristic search has not yet had a major impact.
Additionally, no comprehensive theory was ever devised to understand the nature of
bidirectional heuristic search. In this paper we aim to close this gap. We first present MM, a
novel bidirectional heuristic search algorithm. Unlike previous bidirectional heuristic search
algorithms, MM’s forward and backward searches are guaranteed to “meet in the middle”,
i.e. never expand a node beyond the solution midpoint. Based on this unique attribute
we present a novel framework for comparing MM, A*, and their brute-force variants. We
do this by dividing the entire state space into disjoint regions based on their distance
from the start and goal. This allows us to perform a comparison of these algorithms on
a per region basis and identify conditions favoring each algorithm. Finally, we present
experimental results that support our theoretical analysis.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

In a least-cost path problem over a state space the task is to find a least-cost path from an initial state (start) to a goal
state (goal). Breadth-first search and its weighted version uniform cost search (Dijkstra’s algorithm [12]) are best-first search
algorithms designed to solve least-cost path problems. They are guided by the cost function f (n) = g(n) where g(n) is the
cost of the cheapest known path from start to node n. We use the term unidirectional brute-force search, denoted Uni-BS, to
refer to these algorithms.

The A* algorithm [23] enhances Uni-BS by using f (n) = g(n) +h(n) to prioritize nodes, where h(n) is a heuristic function
estimating the cost from n to goal. If h(n) is admissible (i.e., is always a lower bound) then A* is guaranteed to find optimal
(least-cost) solutions. The main purpose of the heuristic function is to focus the search towards the goal. This is depicted
in Fig. 1 (left). C∗ is the cost of an optimal solution, i.e. the distance from start to goal. The circle of radius C∗ represents

✩ This paper is an invited revision of a paper which first appeared at the AAAI-2016 conference.
E-mail addresses: robert.holte@ualberta.ca (R.C. Holte), felner@bgu.ac.il (A. Felner), gunisharon@gmail.com (G. Sharon), sturtevant@cs.du.edu

(N.R. Sturtevant), chenjingwei1991@gmail.com (J. Chen).
http://dx.doi.org/10.1016/j.artint.2017.05.004
0004-3702/© 2017 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.artint.2017.05.004
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/artint
mailto:robert.holte@ualberta.ca
mailto:felner@bgu.ac.il
mailto:gunisharon@gmail.com
mailto:sturtevant@cs.du.edu
mailto:chenjingwei1991@gmail.com
http://dx.doi.org/10.1016/j.artint.2017.05.004
http://crossmark.crossref.org/dialog/?doi=10.1016/j.artint.2017.05.004&domain=pdf

R.C. Holte et al. / Artificial Intelligence 252 (2017) 232–266 233
Fig. 1. Uni-BS compared to A* (left) and Bi-BS (right).

Fig. 2. The circles represent a Bi-BS system that meets in the middle and the ovals represent a Bi-HS that does further pruning.

the states expanded by Uni-BS. The oval inside this circle represents the states expanded by A*. Nodes inside the circle will
be expanded by Uni-BS but not by A* if they have a sufficiently large heuristic value (h-value). By using a heuristic A* can
reduce the number of nodes expanded by many orders of magnitude compared to Uni-BS. A* and its many variants are
therefore commonly used when solving search problems.

A bidirectional search algorithm interleaves two separate searches, a normal search forward from start , and a search
backward (i.e. using reverse operators) from goal. In the backward search g(n) measures the cost of the reverse path from
goal to n, which is the cost of the forward version of the path from n to goal. Every node that has been generated in
both directions represents a solution, i.e. a path, possibly suboptimal, from start to goal. The first solution found is not, in
general, optimal, so additional search, or some sort of additional processing, is required after the two searches have met for
the first time to ensure the solution returned is optimal (see Section 2 for details). In its simplest form [47], bidirectional
brute-force search, denoted Bi-BS, is guided by g(n), just like Uni-BS, i.e. it selects for expansion a node n with minimum
g(n) among all the nodes that are open in either search direction. Selecting nodes in this way guarantees that the forward
and backward searches “meet in the middle”, in the sense that the forward search expands no state whose distance from
start is greater than 1

2 C∗ and, likewise, the backward search expands no state whose distance to goal is greater than 1
2 C∗ .

This is the definition of “meet in the middle” we will use throughout this paper.1 The nodes expanded by a Bi-BS system
that meets in the middle are depicted by the two smaller circles in Fig. 1 (right). In exponentially growing spaces, a Bi-BS
system that meets in the middle can expand exponentially fewer nodes than Uni-BS.

Since A* and Bi-BS speed up Uni-BS in two different ways, it is natural to try to combine them together into bidirectional
heuristic search (denoted Bi-HS). The expectation in combining them is that their benefits will be compounded. By being
bidirectional (as Bi-BS is) Bi-HS will be constrained to only expand nodes around start and goal. By using a heuristic (as
A* does), it will expand a small subset of those nodes. This expectation is depicted graphically in Fig. 2, where the ovals
representing nodes expanded by Bi-HS are a small subset of the circles representing nodes expanded by Bi-BS. Pursuit of
this idea began 50 years ago [14,15] but to date has produced little success in meeting these expectations.

An intuitive explanation for the failure of Bi-HS to live up to expectations was presented by Barker and Korf [4]. Their
analysis resulted in two main conclusions (for caveats, see their Section 3), which we call BK1 and BK2:

• BK1: if more than half of the nodes expanded by Uni-HS have g(n) ≤ 1
2 C∗ , then Uni-HS will expand fewer nodes than

Bi-HS.
• BK2: If fewer than half of the nodes expanded by Uni-HS using heuristic h have g(n) ≤ 1

2 C∗ , then adding h to Bi-BS
will not decrease the number of nodes it expands.

1 Meeting in the middle, according to our definition, is not so much about where the searches meet; it is about how far they venture from their starting
point.

234 R.C. Holte et al. / Artificial Intelligence 252 (2017) 232–266
In other words, Barker and Korf claim that except for pathological cases (see their Section 3) there is no situation in which
Bi-HS will be the method of choice; either Uni-HS will be best or Bi-BS will.2

A central assumption in Barker and Korf’s analysis is that Bi-HS’s forward and backward searches meet in the middle, in
the sense we have defined. However, no known Bi-HS algorithm is guaranteed to meet in the middle under all circumstances
(see Section 3). As a consequence, Barker and Korf’s analysis does not immediately apply to existing Bi-HS systems. More
importantly, because existing Bi-HS systems are not constrained to search within the two circles in Fig. 2 they can expand
nodes that are further than 1

2 C∗ from both start and goal. For example, in Barker and Korf’s Rubik’s Cube experiment
BS* [40] often expanded nodes at depth 13 in each direction even though C∗ was 16 or less.3 Because of this, it is easy to
imagine existing Bi-HS systems expanding more nodes than Bi-BS instead of fewer.

This paper aims to address these issues and makes the following contributions:

1. A new Bi-HS algorithm, MM, along with a formal proof that given an admissible heuristic (not necessarily consistent),
MM is guaranteed to meet in the middle and to return an optimal solution.

2. The brute-force version of MM (using h(s) = 0 ∀s), MM0, is equivalent to Nicholson’s Bi-BS algorithm [47] but with an
improved termination condition.

3. An enhanced variant of MM called MMe which has an enhanced priority rule for expanding nodes.
4. A version of MM adapted for parallel external-memory search called PEMM. PEMM can solve much larger problems than

would be possible in RAM.
5. A new analytical framework that divides the entire state space into disjoint regions based on the distances of nodes

from start and goal. Because MM meets in the middle, we can use this framework to do a careful comparison of MM0,
Uni-BS, MM, and A* on a region-by-region basis. We use this framework to identify conditions under which one method
is expected to expand fewer nodes than another. We summarize this analysis by providing general rules, based on
certain characteristics of the state space and the relative strength of the heuristic, that predict which algorithm is
expected to expand the fewest nodes.

6. The general rules we propose are tested experimentally in three domains, the 10-Pancake puzzle, a grid-based map
from the game Dragon Age: Origins, and Rubik’s Cube. The first two domains are small enough to allow a fully detailed
examination of each algorithm’s node expansions in each of the regions we defined. Rubik’s Cube is a large state
space (approximately 1019 states). It does not allow a detailed analysis, but gives confirmation that our general rules
continue to make correct predictions at that scale. Our experiments with Rubik’s Cube are the first experiments using
general-purpose search methods to solve problems with solutions at the greatest depth possible (C∗ = 20).

7. We show that Bi-HS is fundamentally different than Uni-HS. With a consistent4 non-zero heuristic (h(n) �= 0 for every
non-goal node) Uni-HS cannot possibly expand more nodes than Uni-BS (Result 6, p. 81 [49]). The corresponding state-
ment does not hold for bidirectional search. We present an example in which MM, or any Bi-HS algorithm guided by
f (n), expands more nodes than MM0, and witness this occurring in our experiments.

Although we introduce a new algorithm (MM), we do not claim that MM0 or MM are the best bidirectional search algorithms
in terms of minimizing run time or the number of nodes expanded under all circumstances. MM’s significance is that it is
the only Bi-HS algorithm that is guaranteed to meet in the middle. This has numerous benefits (see Section 3.3), one of
which is that our analysis, and Barker and Korf’s, applies to MM. These theories give strong justification for bidirectional
search algorithms that meet in the middle. As the first of its breed, MM represents a new direction for developing highly
competitive bidirectional heuristic search algorithms.

A preliminary version of this paper appeared in AAAI-2016 [29]. The MMe variant of MM was presented at SoCS-2016 [59]
and the PEMM variant was presented at IJCAI-2016 [61]. In addition to drawing together the material in those papers, the
current paper extends them in the following ways. First, it provides a deeper study of the algorithm and a deeper analysis
of the new framework. Second, it includes all the theorems about MM with full proofs (Appendix A). Third, it contains a
comprehensive discussion of previous work on bidirectional search. Finally, a more thorough experimental section (including
more domains) is provided that supports the theoretical claims.

2. Terminology and previous work

A problem instance is a pair (start, goal) of states. If x and y are states, with y a successor of x, then cost(x, y) is the cost
of the edge from x to y. We assume all edge costs are non-negative (a cost of 0 is permitted). The aim of search is to find a
least-cost path from start to goal. For any two states, u and v , d(u, v) is the distance (cost of a least-cost path) from u to v .
C∗ = d(start, goal) is the cost of an optimal solution. Unless otherwise stated, we assume the heuristics used are admissible
but not necessarily consistent.

2 Barker and Korf’s theory was further discussed in our conference paper [29] where we compared it to our new theoretical findings. The interested
reader is referred to that paper.

3 Personal communication, Joseph Barker to R. Holte, July 3, 2015.
4 A heuristic h is consistent if for any two states, n and m, h(n) ≤ d(n, m) + h(m) where d(n, m) is the cost of a least-cost path from n to m.

R.C. Holte et al. / Artificial Intelligence 252 (2017) 232–266 235
We use the usual notation— f , g, Open, etc.—and use gmin and f min for the minimum g- and f -value on Open. For
bidirectional search algorithms, we have separate copies of these variables for each search direction, with a subscript (F or B)
indicating the direction5:

• Forward search: f F , gF , hF , OpenF , ClosedF , gminF , etc.
• Backward search: f B , gB , hB , OpenB , ClosedB , gminB , etc.

There are three main algorithmic design decisions on which bidirectional search algorithms differ:

• stopping condition
• selecting which node to expand
• the nature of the heuristic used (for Bi-HS)

The alternatives used for these design decisions in existing bidirectional search systems are discussed individually in the
following subsections.

2.1. Stopping condition

For Bi-BS there are two different stopping conditions that guarantee optimal solutions are returned, Nicholson’s [47] and
Dreyfus’s [16].6 In our notation, Nicholson’s condition terminates the search when there is a node n closed in both directions
such that gF (n) + gB(n) ≤ gminF + gminB . In Section 4.2 we will give two improvements to this stopping condition. We use
the name “gmin stopping condition” to refer to any stopping condition of the form U ≤ gminF + gminB , where U is the cost
of some solution (path from start to goal) that the search has so far found. Nicholson’s stopping condition is a gmin stopping
condition in which U is the minimum cost solution path passing through a node closed in both directions. Dreyfus [16]
showed that the solution path created by the first node that becomes closed in both directions is not necessarily optimal.7

Dreyfus further observed that search can indeed stop as soon as the first node n is closed in both directions, but must be
followed by some final processing. Once a node n is closed in both directions the optimal path is either that path through
n or a path through some node that is currently closed in one direction and open in the other. Those nodes need to be
inspected to see if they form a cheaper path than the one through n. Helgason et al. [26] refer to this final checking for
optimal paths after search has stopped as the “mop-up” phase. Variations of Dreyfus’s stopping condition have been used
by several authors [21,30,43].

For Bi-HS, Pohl (p. 92 [53]) showed that Dreyfus’s stopping condition is not correct when generalized to Bi-HS and
proposed a stopping condition more like Nicholson’s, but based on f not g . The search algorithm keeps track of the
cost of the cheapest path from start to goal it has found so far—we use the variable U for this value—and stops when
U ≤ max(f minF , f minB). We call this the f min stopping condition. Most Bi-HS algorithms to date have used Pohl’s f min
stopping condition, the only difference being that some update U only when a node becomes closed in both direc-
tions (e.g. [3,8,46,53]) while others update U when a node becomes open in both directions (e.g. [22,38,40,52,64]). Barker
and Korf [3] were the first to recognize that Bi-HS could use a gmin stopping condition in addition to Pohl’s f min stopping
condition. An entirely different approach to terminating a Bi-HS is used in “two-phase” systems [33,55]. These stop their
bidirectional search as soon as a node is open in both directions, choose a search direction, and proceed thenceforth with a
unidirectional heuristic search until the usual Uni-HS stopping condition is satisfied. These can be regarded as generalizing
the “mop-up” phase associated with Dreyfus’s Bi-BS stopping condition.

2.2. Selecting the next node to expand

For Bi-BS there are two main methods for deciding which node to expand next. The most common method is to strictly
alternate between the search directions: expand a node with a minimum gF -value in the forward direction, then one with
a minimum gB -value in the backward direction, etc. [21,26,30,43]. This method results in the number of node expansions
in each search direction being within one of each other, but it also means they might expand a node in one search di-
rection even though there is an open node with a strictly smaller g-value in the other direction. By contrast, Nicholson’s
algorithm [47] selects a node with the smallest g-value in either search direction and has no explicit policy (such as strictly
alternating search direction) for changing search direction from time to time. Indeed, if all the edges leading to goal from
its predecessors cost more than 1

2 C∗ , Nicholson’s selection policy will result in goal being the only node expanded in the
backward direction, all the rest of the search will done in the forward direction. Nicholson’s algorithm also differs from
all other Bi-BS algorithms in that it expands all nodes with the minimum g-value in the chosen direction at once; other
methods expand one node at a time.

5 We define “forward” to be the direction in which Uni-HS searches.
6 Pohl (p. 13 [53]) gives a full description of this stopping condition and credits it to Dreyfus, citing the August 1967 version of Dreyfus’s unpublished

technical report, but it is not present in the October 1967 version [16], the earliest version we have been able to obtain.
7 This had incorrectly be used as a stopping condition by Berge [5].

236 R.C. Holte et al. / Artificial Intelligence 252 (2017) 232–266
For Bi-HS, Pohl (p. 96 [53]) proposed that the next node to be expanded be chosen in two steps—(1) choose a search di-
rection, and then (2) expand a node with the minimum f -value in the chosen direction—and proved that a Bi-HS algorithm
using his stopping condition would return optimal solutions no matter how the search direction is selected in step (1).
He then defined the “cardinality criterion” for choosing a search direction: choose the search direction whose Open list is
smaller. Pohl gave extensive arguments in favor of this criterion and almost all Bi-HS algorithms have used it. Auer and
Kaindl’s BiMax-BS∗

F [2] applies the cardinality criterion to choose a direction, but then expands all nodes in that direction
with the minimum f -value, even newly generated ones. Kowalski (p. 186 [38]) proposed a variation: choose the search
direction having the smaller number of nodes in its open list with the minimum f -value. Similarly, Barker and Korf [3]
expand an entire f -level in one direction and then choose the direction, for the next round of expansions, that did the
fewest node expansions when it was last used.

Other selection policies are oblivious to the size and contents of the open lists and have simple switching policies such as
strict alternation between the two directions [1,51,58] or switching to maintain a fixed ratio between the number of nodes
expanded in the two directions [64]. An extreme policy of this form is perimeter search [13,32,41,44], which begins by
doing a fixed amount of search in the backward direction and then does all the remaining search in the forward direction.

The Bi-HS analog of Nicholson’s selection policy is to select a node with the smallest f -value in either search direction.
Despite its simplicity, it has been used in only one Bi-HS algorithm [52].

2.3. Heuristics for bidirectional heuristic search

The heuristics (hF and hB) used in Bi-HS can either be static or dynamic. A static heuristic (also called a front-to-end
heuristic [32]) is the kind of heuristic used by Uni-HS: it directly estimates the distance from node n to the target of the
search (goal is the target of the forward search, start is the target of the backward search). Most Bi-HS systems use static
heuristics.

A dynamic heuristic also estimates the distance from a node n to the search target, but it takes into account information
generated by search in the opposite direction, so its value for a state may change as search proceeds. The first dynamic
heuristics were the “front-to-front” heuristics introduced by de Champeaux and Sint [10,11] and later used by other “front-
to-front” Bi-HS systems [1,8,9,18,54] and some perimeter search algorithms [13,44]. These estimate the distance from n to
the search target indirectly, using a function h(n, m) that estimates the distance between any two nodes. Given h(n, m), the
front-to-front heuristic for forward search is hF (n) = minm∈OpenB {h(n, m) + gB(m)} (hB is defined analogously).

Front-to-front heuristics are computationally expensive to use, leading Kaindl and Kainz [32] to develop two inexpensive
alternatives, which they called Add and Max. These were developed in the context of perimeter search, where they were
static adjustments only applicable to hF . Later work showed that they could be applied in both search directions and no
matter how the search direction is selected [2,31,51,64].

Single-frontier Bidirectional Search (SFBDS) [19,42], called BDS2 by Eckerle and Ottmann [18], also uses a heuristic
h(n, m) that estimates the distance between any two nodes, but in a different way than front-to-front search. In SFBDS
each node in the search tree is a pair of states (n, m) whose successors are either of the form (n′, m) or of the form of
(n, m′), where n′ is a successor of n in the forward direction and m′ is a successor of m in the backward direction. The
root node of SFBDS’s search tree is (start, goal) and any node of the form (x, x) is a goal node. The g-value of node (n, m)

is gF (n) + gB(m) and its h-value is h(n, m). Bidirectional search in the original state space is simulated by applying any
Uni-HS system to this expanded state space. The core idea underlying SFBDS was first described in 1966 in an unpublished
report [14]. Complete pseudocode for a SFBDS-like system, BHFFA2, was published in 1975 [10] (with an incorrect stopping
condition) but never implemented.

3. Meeting in the middle

Recall the definition of “meet in the middle” that we use throughout this paper.

Definition 1 (Meeting in the middle). A bidirectional search algorithm meets in the middle if its forward search never expands
a node n with gF (n) > 1

2 C∗ and its backward search never expands a node n with gB(n) > 1
2 C∗ .

3.1. Previous Bi-HS algorithms fail to meet in the middle

We now show that previous Bi-HS algorithms fail to meet in the middle on the graph in Fig. 3. All edges cost 1 and the
optimal path is start, A, B, C, D, goal (C∗ = 5). Inside each node are its hF -value (with a right-pointing arrow overhead) and
its hB -value (with a left-pointing arrow overhead). The heuristic values in each direction are consistent.

Any search algorithm that meets in the middle—Nicholson’s algorithm [47], for example, or the MM algorithm we will
define in Section 4—will expand start , A, B and perhaps some (or all) of the Xi in the forward direction and C, D , and goal
in the backward direction. In particular, B will certainly not be expanded in the backward direction. We will now show that
existing Bi-HS systems will expand B in the backward direction, and therefore do not meet in the middle according to our
definition.

R.C. Holte et al. / Artificial Intelligence 252 (2017) 232–266 237
Fig. 3. Graph on which previous Bi-HS systems fail to meet in the middle.

3.1.1. Cardinality criterion variants
Systems that use the cardinality criterion will only expand start in the forward direction. After that OpenF is always

strictly larger than OpenB so all further search will be in the backward direction. Kowalski’s variation on the cardinality
criterion does not change this behavior since all the nodes in OpenF have the same f F -value. With Barker and Korf’s
variation of the cardinality criterion start will be expanded in the forward direction, then goal, D, C , and B will be expanded
in the backward direction because they all have the same f B -value (f B = 3).

3.1.2. Alternation or smallest f
Systems that strictly alternate search direction will expand B in their backward search because their forward search

will be pre-occupied expanding the Xi nodes. Systems that expand a node with the smallest f -value will expand B in the
backward direction before expanding A or any of the Xi in the forward direction because f B(B) = 3 < f F (A) = f F (Xi) = 5.

3.1.3. Front-to-front systems
Front-to-front heuristics were introduced specifically to remedy the problem that Bi-HS systems using static heuristics

were not meeting in the middle [10,11].8 Some papers with front-to-front heuristics claim their searches meet in the
middle [8,10,11] but none has a theorem to this effect. The example in Fig. 3 can be adapted to show that Bi-HS with a
front-to-front heuristic will expand B in the backward direction if its policy for selecting nodes to expand is to alternate
search directions and then to select a node with the minimum f -value in the chosen direction. This is the exact policy
used by Arefin and Saha [1] and is a permissible policy for other front-to-front Bi-HS systems [8–11,18] since they are
indifferent to how the search direction is chosen. The front-to-front heuristic for this example has h(Xi , C) = h(Xi, D) = 1
and h(A, C) = h(A, D) = 2 (the other values do not matter, they can be set in several ways to make h admissible and
bi-monotone [17]). With this heuristic f F (A) is strictly larger than f F (Xi) when OpenB = {D} and when OpenB = {C}, so
the search will be proceed exactly as described above for alternating search and B will expanded in the backward direction.

3.2. Transforming heuristic search into brute-force search

The only previously existing bidirectional search algorithm guaranteed to meet in the middle is therefore Nicholson’s [47].
It is not a heuristic search algorithm, but, when hF and hB are consistent, it can be made to exactly simulate heuristic search
by transforming the edge costs in the state space to take into account the heuristic values, as follows [30]. If u and v are
nodes, with v a successor of u (in the forward direction), redefine the edge cost cost(u, v) to be:9

cost′(u, v) = cost(u, v) + 1

2
(hB(u) + hF (v) − (hF (u) + hB(v))). (1)

When Nicholson’s algorithm is run using the transformed edge costs, it is a Bi-HS algorithm that is guaranteed to meet in
the middle. Unfortunately, the “middle” at which it meets is with respect to the transformed edge costs not the original
ones. For example, if this transformation is applied to Fig. 3, it leaves all the edges emanating from start with a cost of 1
but changes the costs of edges (B, C), (C, D), and (D, goal) to zero. When Nicholson’s algorithm is run on this transformed
graph it will expand D , C , and B in the backward direction before expanding A or any Xi in the forward direction because
the latter have gF = 1 while the former have gB = 0. As it must be, this is exactly the same as the behavior on Fig. 3,
described above, of a Bi-HS system that selects nodes for expansion based on the minimum f -value.

8 It is not clear if de Champeaux and Sint [10,11] were using “meet in the middle” in the sense we have defined or in some other sense.
9 The justification of this formula is non-trivial. It is fully explained in the original paper [30].

238 R.C. Holte et al. / Artificial Intelligence 252 (2017) 232–266
3.3. Why meet in the middle?

Why is it important for a bidirectional search algorithm to “meet in middle” as we have defined it? There are several
reasons:

1. The original motivation for Bi-HS was to be able solve a problem whose optimal solution cost was C∗ doing only twice
the work it would take A∗ to solve a problem whose solution cost was 1

2 C∗ (p. 108 [53]). Meeting in the middle is
directly aimed at achieving this goal.

2. Meeting in the middle provides an upper bound on how many nodes a Bi-HS system will expand in the worst case
and an upper bound on how much memory it will need. In state spaces where the number of states at distance d
from start or goal grows exponentially with d, a system that ventures beyond d = 1

2 C∗ , whether it be bidirectional or
unidirectional, is at risk of expanding exponentially more nodes than a system that meets in the middle.

3. Meeting in the middle provides a characterization of nodes that are guaranteed not to be expanded, analogous to
the fact that A* is guaranteed not to expand nodes with f (n) > C∗ (Lemma 4 [24]). This characterization enables
us to partition the state space into disjoint regions and then provide an analytical comparison of bidirectional and
unidirectional searches on a region-by-region basis (see Section 6). It also enables other analyses to be applied. For
example, Barker and Korf’s analysis [4] only applies to systems that meet in the middle.

4. Meeting in the middle guarantees that a state expanded in one direction will not be expanded in the other direction
unless it is exactly distance 1

2 C∗ from both start and goal. In state spaces where no such states exist (e.g. unit-cost state
spaces when C∗ is odd) a system that meets in the middle does not need consistent heuristics or special mechanisms,
such as Kwa’s “nipping” and “pruning” [40], to prevent states from being expanded in both directions.

4. MM: a novel Bi-HS family of algorithms

In this section we describe MM, our new Bi-HS algorithm. We first describe the original version [29], which we refer to
as “basic MM”, and then describe an improved version, called MMe [59].

4.1. Basic MM

Basic MM10 runs an A*-like search in both directions, except that MM orders nodes on the Open list in a novel way. The
priority of node n on OpenF , prF (n), is defined to be:

prF (n) = max(f F (n),2gF (n)). (2)

prB (n) is defined analogously. We use prminF and prminB for the minimum priority on OpenF and OpenB , respectively,
and C = min(prminF , prminB). On each iteration MM expands a node with priority C .

When a state s is generated in one direction MM checks whether s is in the Open list of the opposite direction. If it is,
a solution (path from start to goal) has been found. MM maintains the cost of the cheapest solution found so far in the
variable U . U is initially infinite and is updated whenever a better solution is found. MM stops when

U ≤ max(C, f minF , f minB , gminF + gminB + ε) (3)

where ε is the cost of the cheapest edge in the state space.
Each of the terms inside the max is a lower bound on the cost of any solution that might be found by continuing to

search. Therefore, if U is smaller than or equal to any of them, its optimality is guaranteed and MM can safely stop.

4.1.1. Pseudocode for MM
Algorithm 1 gives the pseudocode for MM. When prminF = prminB any rule could be used to break the tie (e.g. Pohl’s

cardinality criterion [53]), it is not necessary to break such ties in favor of the forward direction as is done in line 9.
In addition, tie breaking within a given direction should be performed in Line 11. Lines 5–23 are the usual best-first search
expansion cycle. Duplicate detection is done in line 14. U is updated in line 21 and checked in line 7. Note that to determine
if a better solution path has been found, MM only checks (line 20) if a newly generated node is in the Open list of the
opposite search direction. That is all that is required by our proofs; it is not necessary to also check if a newly generated
node is in the Closed list of the opposite search direction. We introduce the term solution detection for this check.

As presented, only the cost of the optimal path is returned (line 8). It is straightforward to add code to return the
solution path.

10 MM is used to denote both the entire family of algorithms using some variant of the priority function, stopping conditions, and tie-breaking described
here as well as the specific basic variant. This is similar to A* which is used to denote both a general family of algorithms as well as the basic implemen-
tation.

R.C. Holte et al. / Artificial Intelligence 252 (2017) 232–266 239
Algorithm 1: Pseudocode for MM
1 gF (start) := gB (goal) := 0;
2 OpenF := {start};
3 OpenB := {goal};
4 U := ∞
5 while (OpenF �= ∅) and (OpenB �= ∅) do
6 C := min(prminF , prminB)

7 if U ≤ max(C, f minF , f minB , gminF + gminB + ε) then
8 return U

9 if C = prminF then
10 // Expand in the forward direction
11 choose n ∈ OpenF for which prF (n) = prminF

12 move n from OpenF to ClosedF

13 for each child c of n do
14 if c ∈ OpenF ∪ ClosedF and gF (c) ≤ gF (n) + cost(n, c) then
15 continue

16 if c ∈ OpenF ∪ ClosedF then
17 remove c from OpenF ∪ ClosedF

18 gF (c) := gF (n) + cost(n, c)
19 add c to OpenF

20 if c ∈ OpenB then
21 U := min(U , gF (c) + gB (c))

22 else
23 // Expand in the backward direction, analogously

24 return ∞

4.1.2. Properties of MM
When MM’s heuristics are admissible, it has the following properties:

(P1) MM’s forward and backward searches meet in the middle, i.e. neither search expands a node whose distance from the
search’s origin (gF (n) for forward search, gB(n) for backward search) is larger than 1

2 C∗ .
(P2) MM never expands a node whose f -value exceeds C∗ .
(P3) MM returns C∗ .

These are formally stated and proven in Appendix A. Here we provide sketches of their proofs based on the following
lemmas (L1–L3). For simplicity, in these sketches we assume MM stops if and only if U ≤ C .11

L1: If d(start, s) > 1
2 C∗ , then prF (s) > C∗ and if d(s, goal) > 1

2 C∗ , then prB(s) > C∗ .

Proof for the forward direction. prF (s) ≥ 2gF (s) ≥ 2d(start, s). If d(start, s) > 1
2 C∗ then prF (s) > C∗ . �

For the next lemma we need the following definition.

Definition 2. For any optimal path P = s0, s1, . . . sn from start (s0) to goal (sn), let i be the largest index such that sk ∈
ClosedF ∀k ∈ [0, i − 1], and let j be the smallest index such that sk ∈ ClosedB ∀k ∈ [j + 1, n]. We say that P “has not been
found” if i < j and that P “has been found” otherwise (i ≥ j).

For example, if i and j, as defined in Definition 2, are as shown in Fig. 4 then this path has not been found because i < j
(si is to the left of s j).

In the proof of the following lemma, i and j are as defined in Definition 2.

L2: If P is an optimal path from start to goal that has not been found, there will exist a node n ∈ P such that either
n ∈ OpenF with prF (n) ≤ C∗ or n ∈ OpenB with prB(n) ≤ C∗ .

11 Additional stopping conditions may improve MM’s running time but they do not affect these properties (see Section A.4 in Appendix A).

240 R.C. Holte et al. / Artificial Intelligence 252 (2017) 232–266
Fig. 4. The gap on an optimal path that has not yet been found.

Proof Sketch. Throughout MM’s execution there will be a node in P , si ,12 in OpenF with gF (si) = d(start, si) and a node
in P , s j , in OpenB with gB(s j) = d(s j, goal). Since P has not yet been found there must exist a gap between si and s j ,
i.e. one or more edges from P that connect si to s j that MM has not traversed. This situation is depicted in Fig. 4, where
the dashed line between si and s j is the gap consisting of one or more edges. In this situation, either gF (si) ≤ 1

2 cost(P)

or gB(s j) ≤ 1
2 cost(P) (or both), where cost(P) is the sum of the costs of P ’s edges. Therefore, prF (si) ≤ cost(P) = C∗ or

prB(s j) ≤ cost(P) = C∗ (or both). �
L3: U > C∗ until the first optimal path from start to goal is found, at which point U = C∗ . This is a direct consequence of
the process by which U is updated.

We now sketch the proofs that MM has properties P1–P3. L2 and L3 together ensure that MM will not terminate before an
optimal path has been found (L2 implies that C ≤ C∗ until all optimal paths have been found and L3 says U > C∗ until the
first optimal path is found). P3 follows because U = C∗ once an optimal path has been found (L3).

L2 and L1 together ensure that MM will find an optimal path before MM expands any node in the forward direction with
prF (n) > C∗ or any node in the backward direction with prB(n) > C∗ . Together with L3 this implies that MM will terminate
before it expands any node in the forward direction with f F (n) > C∗ or d(start, s) > C∗/2, or any node in backward direction
with f B(n) > C∗ or d(s, goal) > C∗/2, thus proving P1 and P2.

4.2. MM0

MM0 is the brute-force version of MM, i.e. MM when h(n) = 0 ∀n. Thus for MM0: prF (n) = 2gF (n) and prB(n) = 2gB(n). MM0
therefore selects for expansion a node on either open list with the smallest g-value, just as Nicholson’s algorithm [47] does,
and stops when U ≤ gminF + gminB + ε . MM0’s stopping condition is superior to Nicholson’s in two ways: (1) Nicholson’s
does not have the +ε term, and (2) Nicholson’s algorithm only updates U when a node is closed in both directions, MM0
updates U when a node becomes open in both directions. A third difference is that Nicholson’s algorithm only checks the
stopping condition after expanding all the nodes in the chosen search direction with the minimum g-value whereas MM0
checks the stopping condition after every node expansion. We return to this issue in Section 5, where we discuss immediate
and delayed solution detection.

4.3. MMe

We now present an enhanced version of MM, MMe [59], which is identical to basic MM except for a small change in how
an open node’s priority is defined. In all subsequent sections of the paper we will use the prF and prB to refer to MMe’s
definition of priority, but in this section, to clearly distinguish between basic MM’s priority function and MMe’s, we will use
prF and prB for basic MM’s priority function and use the special notation prε

F and prε
B for MMe’s priority function.

In MMe the priority of n ∈ OpenF is

prε
F (n) = max(f F (n),2gF (n) + ε) (4)

where ε is the cost of the cheapest edge in the state space. prε
B (n) is defined analogously.

We now prove that MMe has properties P1–P3 by showing that lemmas L1–L3 hold for MMe. L1 is still true since prε
F (n) ≥

prF (n) and prε
B(n) ≥ prB(n). L3 is still true because it is not affected by the definition of a node’s priority. To see that L2 is

still true, note that d(si, s j) is the cost of the gap illustrated in Fig. 4, i.e. C∗ = gF (si) + d(si, s j) + gB(s j). Hence, at least one
of gF (si) and gB(s j) must be less than or equal to 1

2 (C∗ − d(si, s j)).

12 Lemma 17 proves that goal will never be closed in the forward direction and start will never be closed in the backward direction, so i and j are both
always legal indexes of nodes in P .

R.C. Holte et al. / Artificial Intelligence 252 (2017) 232–266 241
Fig. 5. Basic MM expands more nodes than MMe.

Fig. 6. MMe expands more nodes than basic MM.

The exact value of d(si, s j) is not known, but it always holds that ε ≤ d(si, s j).13 Therefore, either gF (si) ≤ 1
2 (C∗ − ε) or

gB(s j) ≤ 1
2 (C∗ − ε). If gF (si) ≤ 1

2 (C∗ − ε) then 2gF (si) + ε ≤ C∗ . Similar reasoning applies for gB(s j). L2 follows because at
least one of these must hold.

4.3.1. MM vs. MMe
In this section we highlight the differences in behavior of basic MM and MMe with two examples. The first (Fig. 5)

represents situations in which basic MM expands nodes that MMe does not expand. This is what is expected, given that
prF (n) ≤ prε

F (n). The second example (Fig. 6) shows that the opposite behavior is also possible, there can be nodes that are
expanded by MMe but not by basic MM.

• Basic MM expands nodes that MMe does not expand.
Consider the graph depicted in Fig. 5 with a specific focus on node X . Basic MM proceeds as follows. After start is
expanded OpenF includes three nodes with the following priorities: A(7), X(4) and goal(10). At this point U is set
to 5. Now goal (prB = 3) is expanded in the backward direction. Finally, X is the only node with prF (X) = 4 ≤ U = 5
so it is expanded. By contrast, for MMe, prF (X) = 6 > U = 5 and it will not be expanded.

• MMe expands nodes that Basic MM does not expand.
It is possible for MMe to expand more nodes than basic MM. Fig. 6 gives an example when both algorithms use all of MM’s
stopping conditions (line 7 in Algorithm 1). Both algorithms begin by expanding start (forward) and goal (backward).
Node A will not be expanded in the forward direction by either algorithm because gF (A) = 8 > 6 = 1

2 C∗ and both
algorithms will halt as soon as A is expanded in the backward direction (when that happens U = 12 ≤ gminF + gminB +
ε = 18. For both algorithms prF (X) = f F (X) = 9. For MM, prB(A) = 8 so MM will expand A before X and then halt
without expanding X . For MMe, prB(A) = 12 so MM will expand X before A.

Which of these two situations will occur more commonly? We expect the first situation (Fig. 5) will occur much more
often than the second (Fig. 6), and therefore expect that MMe will usually expand fewer nodes than basic MM. Our reason is
that the second situation requires the priority of at least one node on every optimal path to have its priority increased to
be greater than the priority of nodes like X , a kind of collective conspiracy on the part of the optimal paths. By contrast,
the first situation occurs when an individual node’s priority increases beyond C∗ .

5. Parallel external-memory MM

In order to scale the size of the problems solvable by MM, we must either purchase the largest possible machine for
solving problems or make better use of the resources on available hardware. The most common approach is to use external

13 Any lower bound on d(si , s j) can be used where we are using ε . For example, if εF (n) (εB (n)) is the cost of the cheapest forward (reverse) operator
applicable to n then εF (si) ≤ d(si , s j) (εB (s j) ≤ d(si , s j)) and can be used here instead of ε . Similarly, if δ(x, y) is a lower bound on the number of edges
between x and y, then miny∈OpenB εδ(si , y) can be used here instead of ε .

242 R.C. Holte et al. / Artificial Intelligence 252 (2017) 232–266
memory (disk) as storage [6,36,48,39,63] in place of RAM. While disks are much larger than RAM, the cost of random
access to disk is high (high latency). The throughput of disk, however, is also high, so once the latency is overcome, disks
have relatively high throughput. Thus, if we wish to modify MM, or any other bidirectional search algorithm, to use external
memory, we must modify the algorithm to amortize high latency operations by grouping operations that access the same
data on disk.

Looking at Algorithm 1, there are three places where MM performs random access to the Open and Closed lists. In lines 14
and 16 MM performs duplicate detection, checking if a newly generated state has already been generated or expanded. In
line 20 MM performs solution detection, checking if a solution has been found.

The standard approach to avoiding the latency associated with duplicate detection in external memory is delayed dupli-
cate detection (DDD) [35]. DDD avoids duplicate detection on individual states, instead performing it on many states at a
time later in the search. In DDD successors are written to an open list on disk without duplicate detection. At a later time,
such as when all successors have been written to a file, duplicate detection can be performed in batches, amortizing the
disk latency.

Approaches for avoiding random access to disk for solution detection have not been previously been studied in external
memory search beyond our own work on MM [61], which is expanded on slightly in this presentation. MM by default uses
immediate solution detection (ISD), checking for solutions as soon as a state is generated. Delayed solution detection (DSD)
refers to any approach that does not perform solution check immediately, but does perform the check before any state with
larger f -cost is expanded.

We describe here DSD and our other modifications to MM to create PEMM, the parallel, external-memory version of MM.

5.1. Algorithmic changes to MM

PEMM makes the following changes to MM to ensure the efficiency of the search. While these are all part of our imple-
mentation, the core change required for PEMM is the use of DDD, DSD, and the change of termination conditions. It is likely
that other changes could be made to further increase the search efficiency without fundamentally changing the nature of
PEMM:

1. PEMM separates the states in Open and Closed, which are stored on disk, from the information about those states, which
can be summarized in smaller Open and Closed data structures in RAM.

2. PEMM partitions Open and Closed on disk into buckets of states with similar properties for the efficiency of duplicate
and solution detection.

3. PEMM expands states with the same priority from low to high g-cost.
4. PEMM uses delayed duplicate detection for finding duplicates.
5. PEMM uses delayed solution detection for finding solutions.
6. PEMM removes ε from the gmin stopping condition and uses Basic MM’s definition of pr(n), because the ε-based variants

do not work with delayed solution detection.
7. PEMM performs many operations in parallel.
8. PEMM assumes a consistent heuristic, an undirected search space, and unit-cost edges.

These changes are now described in detail. One change not discussed or studied here is the performance of PEMM with
inconsistent heuristics. The re-opening of nodes may or may not cause problems with the efficiency of external-memory
search; we do not study this issue here, but leave it as a point for future research.

5.1.1. States are not stored in Open and Closed in RAM
When using external memory, the assumption is that all states in the search will not fit in RAM at once. Thus, we

maintain separate Open and Closed lists in memory and on disk. The lists in memory only contain the properties of the
states; the actual states are kept on disk. While efficient data structures can be used to access and query this information
in RAM, in practice a simple (resizable) array is sufficient, since the cost of iterating through Open in RAM is dwarfed by
the cost of loading and processing states on Open from disk.

Individual states are stored unsorted on Open and Closed on disk, so writes can be efficiently performed at any time
by appending to a file on disk. Writes are buffered both in memory and by the filesystem, which improves efficiency and
eliminates latency concerns when writing.

5.1.2. States in Open and Closed are broken into buckets on disk
Since we cannot load all of Open into RAM at once, it must be subdivided into smaller buckets that will fit into RAM so

that we can load these files when doing duplicate detection.
States are divided into buckets by (1) the priority of a state, (2) the g-cost of the state, (3) the search direction, and (4)

the lower i bits of the state hash function. Every state in a given bucket will have the same values for each of these
attributes. This means that all duplicates in the same direction will fall in the same bucket, and nodes found on opposite
frontiers of the search will be found in similar buckets.

R.C. Holte et al. / Artificial Intelligence 252 (2017) 232–266 243
Fig. 7. PEMM cannot use ε in its gmin stopping condition or in its definitions of prF and prB .

Our previous implementations also divided states into buckets by h-cost. We have removed this division because we
sometimes found buckets with high g-cost (and thus high priority), but low h-cost. These buckets might only have a
few dozen states, but required DSD to be performed against the opposite frontier, which might contain billions of states.
Removing the h-cost division puts these states into larger buckets to make DSD more efficient, although we sometimes have
to expand more nodes to find the solution as a result.

5.1.3. Tie-breaking from low to high g-cost
As in MM, expansions are ordered by priority (low to high). But, in PEMM they are further ordered by search direction

(forward then backward), g-cost (low to high), and then by the h-cost and hash function (low to high). The ordering
by search direction, hash, and heuristic values does not influence the correctness or efficiency of search, but guarantees
consistency between runs and problem instances. Ordering buckets by low to high g-cost may seem counter-intuitive, since
it is the opposite of a typical A* ordering. This is important for PEMM, however, as it ensures that once we expand a bucket
we will not generate any new states back into that bucket. Without this ordering we would be forced to process buckets
multiple times as new states were re-added to the bucket.

For example, assume we process the bucket with g-cost 4 first, followed by the bucket with g-cost 3. Some of the
successors of the g-cost 3 bucket will possibly have the same priority as their parents, and thus will get written back into
the g-cost 4 bucket which has already been handled. Thus, the g-cost 4 bucket will then have to be processed a second
time. This isn’t a problem from the perspective of node expansions, but it can be quite inefficient for duplicate and solution
detection where we want to limit the number of times we must access disk for these operations.

The consequence of this tie-breaking is that we may have the solution on the open list (with high g-cost) for a long
time before it is found. In future work we will consider ways to improve DSD to find solutions earlier.

5.1.4. Delayed duplicate detection (DDD)
Hash-based delayed duplicate detection [35] is used to detect and remove duplicates when a bucket is loaded into RAM.

Hash-based DDD works by loading all states into a hash table. Since duplicates will be mapped to the same entries, they
are effectively removed in this process.

This is sufficient for removing duplicates within a bucket, but it will not remove duplicates between buckets, such as
when a state is re-generated with larger g-cost. This happens, for example, when a state re-generates its parent or one of
its siblings. In the general case we must look for duplicates in buckets on Closed that could possibly contain a given state
with lower g-cost. With unit edge costs this is more efficient, since a state from Open with g-cost gs can only be found in
buckets with g-cost gs − 1 or gs − 2. When looking for duplicates on Closed, we read the relevant Closed files incrementally
and check to see if any of their states are found in the hash table (bucket) in RAM. All such states are removed before
expansions begin.

Our implementation does not include enhancements for handling arbitrary edge costs, something that is addressed in
unidirectional search by PEDAL [25], and does not use frontier search [37], which uses additional domain-specific informa-
tion to avoid generating duplicates.

5.1.5. Delayed solution detection
The primary idea of delayed solution detection is to check to see if a solution has been found when a state is being

expanded as opposed to when the state is generated. We use a hash-based solution detection approach similar to hash-based
DDD. When a bucket is loaded into RAM and DDD has been completed, all other buckets in the opposite frontier that could
contain the same states as the current bucket are also loaded. These are not stored in RAM; instead we just check whether
the states in them are found in the hash table that stores the current bucket. If a duplicate is found, U is updated according
to the solution path through that state. For efficiency, only buckets in the opposite frontier that could lead to a better
solution than U need to be checked.

5.1.6. Remove ε variants from MM
MM uses a termination condition that allows the search to stop early based on the minimum edge cost (ε) and minimum

g-cost in Open in each direction. Unfortunately, this rule does not work in general with DSD. We illustrate this in Fig. 7,
where states a and b are the start and goal. All edges are marked with their costs; no heuristic is used.

In this example the search begins with a on OpenF and b on OpenB . After each of these states are expanded, c will be
on OpenF and OpenB . Although c is on both Open lists, this will not be detected until c is expanded. Before it is expanded
the minimum g-cost in the forward direction is 1 (c), and the minimum g-cost in the backward direction is 1 (also c).

244 R.C. Holte et al. / Artificial Intelligence 252 (2017) 232–266
Using the ε termination condition we would conclude that we could terminate with an optimal solution cost 3. Thus, the
search would terminate with the solution cost 2.5 between a and b, which is incorrect. The ε termination condition is
justified with ISD because there are no paths through Open that have not been discovered already. Thus, new paths can
only be found by adding new edges to existing paths. With DSD there can be undiscovered solutions on Open with cost
gminF + gminB such as through c in this example, hence the ε rule cannot be used.

As a result, the termination condition used for PEMM is:

U ≤ max(min(prminF , prminB), f minF , f minB , gminF + gminB).

MMe introduces a new priority rule prF (n) = max(f F (n), 2gF (n) + ε). We show here that the additional ε term cannot
be used with PEMM. Consider again the graph in Fig. 7, where states a and b are the start and goal. All edges are marked
with their costs; no heuristic is used.

In this example the search begins with a and b on Open. After each of these states are expanded, c will be on OpenF

and OpenB , but the solution will not yet be detected. The priority of c will be 3 in each direction. However, the search will
have also found the path of cost 2.5 between the start and the goal. So, with DSD and the MMe priority rule, PEMM will
terminate with the suboptimal solution cost 2.5.

As a result, the priority of a state in PEMM in the forward direction must be:

prF (n) = max(f F (n),2gF (n))

An analogous rule is used in the backward direction.

5.1.7. Parallel search
Because of the latency of disk, it makes sense to run as many PEMM operations in parallel as possible. PEMM performs

three sets of operations in parallel. (1) The expansions for a given bucket can all be performed in parallel. This is where the
greatest parallel efficiency is achieved. (2) Solution detection can be performed in parallel to expansion. If solution detection
is not complete when expansion is complete, we wait until solution detection completes before moving to the next bucket.
(3) The next bucket can be pre-loaded while the current bucket is being expanded.

5.2. Pseudocode for PEMM

Algorithm 2: Pseudocode for PEMM
1 gF (start) := gB (goal) := 0;
2 OpenF := {start};
3 OpenB := {goal};
4 U := ∞
5 while (OpenF �= ∅) and (OpenB �= ∅) do
6 C := min(prminF , prminB)

7 if U ≤ max(C, f minF , f minB , gminF + gminB) then
8 return U

9 if C = prminF then
10 // Expand in the forward direction
11 choose bucket b ∈ OpenF with prF (b) = prminF ; break ties by low gF

12 remove b from OpenF

13 load b into RAM // DDD
14 check for duplicates between b and ClosedF // DDD
15 write states in b to ClosedF

16 check states in b against OpenB for solutions // DSD (in parallel)
17 for each state n in b do
18 // Do in parallel for each n
19 for each child c of n do
20 gF (c) := gF (n) + cost(n, c)
21 add c to OpenF

22 else
23 // Expand in the backward direction, analogously

24 return ∞

Algorithm 2 contains the pseudocode for PEMM. We begin by initializing the data structures (lines 1 through 4). The
pseudocode refers to Open as the data structure in RAM containing information about each state and the data on disk
(line 11) as buckets. Adding a state to Open implicit adds it both to the data structures in memory and disk.

R.C. Holte et al. / Artificial Intelligence 252 (2017) 232–266 245
The important differences between PEMM and MM are that PEMM must explicitly load buckets of states into RAM (line 13).
It then performs all duplicate detection (lines 13 and 14) and solution detection (line 16) before expanding the states in a
bucket (line 17). Finally, it uses a simpler termination condition (line 8) than MM, omitting the ε condition.

We haven’t included the re-opening of states that are found with lower g-costs needed for inconsistent heuristics in the
pseudocode because we have not tested these conditions to see if they are efficient in practice.

5.3. Correctness of DSD

We analyze the correctness of DSD here assuming the correctness of MM. While Nicholson [47] uses a variant of DSD, MM
has only been proven to be correct with ISD. We show that delaying the solution detection cannot lead to termination with
a suboptimal solution.

It is clear that for each direction of a bidirectional search, a state will pass monotonically through three phases:
ungenerated → open → closed. We assume that solution detection will be performed at some point during the open phase
or exactly at the point when a state is written to closed, but do not distinguish when. In particular, we just need solution
detection to be performed before states with higher f are expanded.

Lemma 1. PEMM with DSD will terminate with an optimal solution.

Proof. Consider that MM finds an optimal solution through some state s∗ when it is generated and solution detection is
performed. PEMM will not find the solution through s∗ , but instead will put s∗ on Open. At this point s∗ has optimal g-cost
in both directions, s∗ is on an optimal path, and s∗ is found on Open in both directions. We let s∗ be any state that has
these three properties.

We show that until s∗ is removed from Open and a state with higher priority is expanded, PEMM cannot terminate with
a suboptimal solution. Since we perform solution detection on s∗ before it is placed on Closed, PEMM will terminate with
the optimal solution when expanding and performing solution detection s∗ .

Recall the PEMM termination conditions:

U ≤ max(min(prminF , prminB), f minF , f minB , gminF + gminB).

Let C∗ be the cost of the optimal solution through s∗ . As long as s∗ is on Open in both directions, the search cannot
terminate with a solution cost > C∗ . We examine the termination conditions one at a time and show that they will not be
met.

Since the heuristic is admissible and s∗ is on Open, f minF , f minB ≤ C∗ . This handles the second and third termination
conditions. Given that s∗ has optimal g-cost in each direction, either gF (s∗) ≤ 1

2 C∗ or gB(s∗) ≤ 1
2 C∗ , or both. Without loss

of generality, assume gF (s∗) ≤ 1
2 C∗ . In this case s∗ ’s bucket in the forward direction must have prminF ≤ C∗ . (Because

2gF (s∗) ≤ C∗ and f F (s∗) ≤ C∗ .) This handles the first termination condition. Finally, since s∗ is on Open in both directions,
gminF + gminB ≤ C∗ .

Thus, until s∗ is removed from Open, we cannot terminate with a suboptimal solution. Since we will perform solution
detection when removing s∗ from Open, we are guaranteed to find the optimal solution even when performing DSD. �
6. Region based analysis

In this section we analytically compare MM, MM0, and A*. “MM” here refers to the family of MM algorithms, including
MMe.14 Whenever we illustrate a point with a specific example, we use MMe as the particular member of the MM family in
the example. Even the examples involving MM0 use the MMe version of MM0, in which a node n’s priority is 2g(n) + ε . We
begin by providing a disjoint partitioning of the state space into regions.

6.1. Dividing the state space into disjoint regions

We say state s is “near to start” if d(start, s) ≤ 1
2 C∗ , “far from start” if 1

2 C∗ < d(start, s) ≤ C∗ , and “remote” if d(start, s) >
C∗ . “Near”, “far” and “remote” for goal are defined analogously. Taken together, these categories divide the state space into
the 9 disjoint regions shown in Fig. 8. We denote these regions by two letter acronyms. The first letter (N=near, F=far,
R=remote) indicates the distance from start , the second letter indicates the distance from goal. For example, FN is the set
of states that are far from start and near to goal. NN includes only those states at the exact midpoint of optimal solutions.

For the purpose of this paper we will only be interested in whether a node is near or not near to goal since MM’s
backward search is guaranteed to expand no nodes that are far or remote from goal. Therefore, we say that a node is
“distant” from goal if it is either far or remote from goal. That is D = F ∪ R. We thus use the following unified regions:
RD = RR ∪ RF, FD = FR ∪ FF, and ND = NR ∪ NF. This leaves only 6 regions depicted in Fig. 9. None of the search algorithms
in this paper expands a state in RD, so only 5 regions will enter our discussions.

14 In fact, our analysis applies to any Bi-HS that meets in the middle.

246 R.C. Holte et al. / Artificial Intelligence 252 (2017) 232–266
Fig. 8. Diagrammatic depiction of the 9 different regions.

Fig. 9. The 6 regions after unification.

6.2. Preliminaries

In Subsections 6.3–6.6 we compare MM0, MM, Uni-BS, and A* based mainly on the nodes they expand in each region. In
our analysis a region’s name denotes both the set of states and the number of states in the region. We will use the names
in equations and inequalities. An inequality involving two algorithms, e.g. A* < MM, indicates that one algorithm (A* in this
example) expands fewer nodes than the other. Since the region names denote both the number and set of states we will
use one symbol, “+”, to indicate both adding the number of states in two regions and the set of states defined by their
union. For example, the expression NN + FN + RN denotes both the union of those three regions and the number of states
in their union.

The novelty of our analysis stems from the fact that we isolate the behavior of the different algorithms to each of
the regions and then sum up these behaviors. As we will see, in all cases except Uni-HS vs. Uni-BS no algorithm-type is
superior to any other in all regions. We will summarize these analyses with three general rules (GR1, GR2, and GR3). These
are general expectations, not iron-clad guarantees. There are many factors in play in a given situation, some favoring one
algorithm-type, some favoring another. It is the net sum of these factors that ultimately determines which algorithm-type
outperforms another. Our general rules state what we expect will usually be the dominant forces.

Although MM and A* do not require their heuristics to be consistent, the analysis in this section, with the exception of
Section 6.5.1, is directly applicable only when the heuristics are consistent, for two reasons. First, our analysis reasons about
the number of distinct nodes that are expanded in each region, it does not take into account the number of times the same
node is expanded. With a consistent heuristic, a node will be expanded at most once. With an inconsistent heuristic the
same node can be expanded many times [20,45]. For example, the number of nodes in FD could be much larger than the
number of nodes in RN, but A* could do fewer node expansions in FD than MM does in RN if the heuristic is inconsistent.
The second reason is that our analysis assumes that A* will expand every node with f (n) < C∗ . This is true when A*’s
heuristic is consistent but it is not necessarily true when A*’s heuristic is inconsistent.

6.3. MM0 compared to Uni-BS

We begin by analyzing the brute-force algorithms MM0 and Uni-BS since this lays the foundation for the subsequent
comparisons.

Uni-BS only expands nodes that are near to or far from start . We write this as the equation:

Uni-BS = ND + NN + F′N + F′D. (5)

F′ here indicates that Uni-BS might not expand all the nodes that are far from start . For example, Uni-BS will usually not
expand all nodes that are exactly distance C∗ from start . By contrast, Uni-BS must expand all nodes near to start .

R.C. Holte et al. / Artificial Intelligence 252 (2017) 232–266 247
Fig. 10. MM0 need not expand all nodes with gF (n) < (C∗ − ε)/2 or gB (n) < (C∗ − ε)/2.

MM0 only expands nodes that are near to start or to goal as shown in the following equation:

MM0 = N′D + N′N′ + FN′ + RN′. (6)

N′ here indicates that MM0 might not expand all the nodes that are near to start or goal. For example, if ε > 0, MM0 will not
expand any node in NN. Moreover, MM0 can terminate before some nodes with gF (n) < (C∗ − ε)/2 or gB(n) < (C∗ − ε)/2
have been expanded. This is illustrated in Fig. 10. All edge costs in the figure are 1. The numbers in the nodes are discussed
in Sections 6.4 and 6.6; they may be ignored for now. Si (Gi) is the layer of nodes at depth i in the tree rooted at start
(goal) growing away from the optimal solution. After MM0 expands start and goal, A and S1 will be in OpenF , and C and G1
will be in OpenB , all with g = 1 (pr = 2g +ε = 3). Assuming ties are broken in favor of the forward direction, MM0 will next
expand A and S1, generating B and S2 with gF = 2 (prF = 5). It will then switch directions and expand C and G1 in some
order. As soon as C is expanded a solution costing U = 4 is found. Since gminF + gminB + ε = 2 + 1 + 1 ≥ U , MM0 can stop.
This may happen before some nodes in G1 are expanded even though they are distance 1 from goal and (C∗ − ε)/2 = 1.5.

The difference between F′N in Equation (5) and FN′ in Equation (6) is the following. FN is the intersection of two sets,
the set of states far from start , denoted F*, and the set of states near to goal, denoted *N. In F′N, F′ is a subset of F*, so F′N
is the intersection of *N and a subset of F*. By contrast, FN′ , is the intersection of F* and a subset of *N.

Uni-BS expands more nodes than MM0 iff (Eq. (5) > Eq. (6)) as written in the following inequality:

ND + NN + F′N + F′D > N′D + N′N′ + FN′ + RN′. (7)

To identify the core differences between the algorithms, i.e. regions explored by one algorithm but not the other, we ignore
the difference between N and N′ and between F and F′ , which simplifies Eq. (7) to:

FD > RN. (8)

We have identified two conditions that guarantee FD > RN:

• When C∗ = D , the diameter of the space, there are no remote states, by definition, so RN is empty.
• When the number of states far from start is larger than the number of states near to goal, i.e. if FD + FN > FN + NN +

RN, or equivalently,15 FD > NN + RN. We say a problem (start, goal) is bi-friendly if it has this property.

A special case of bi-friendly problems occurs when the following symmetry occurs: the number of states at any dis-
tance d from start is the same as the number of states at distance d from goal, for all d ≤ C∗ . This occurs often in standard
heuristic search testbeds, e.g. the Pancake Puzzle, Rubik’s Cube, and the Sliding Tile Puzzle when the blank is in the same
location type (e.g. a corner) in both start and goal. In such cases, a problem is bi-friendly if the number of states near to
start is less than the number of states far from start , i.e. more than half the states at depths d ≤ C∗ occur after the solution
midpoint. This is similar to the condition in BK1 with h(s) = 0 ∀s. In many testbeds this occurs because the number of
states distance d from any state continues to grow as d increases until d is well past 1

2 D . For example, Rubik’s Cube has
D = 20 and the number of states at distance d only begins to decrease when d = 19 (Table 5.1 in [57]).

Non-core differences (ND, NN, FN) can sometimes cause large performance differences. The example in Fig. 11 exploits
the fact that Uni-BS always expands all nodes in NN but MM0 expands none when ε > 0. All edges cost 1. start and goal
each have one neighbor (s and g respectively) that are roots of depth d binary trees that share leaves (the middle layer,
which is NN). C∗ = 2d + 2 and all paths from start to goal are optimal. FD and RN are empty. The values on the figure’s
left may be ignored for now; they are used in Section 6.4. MM0 expands all the nodes except those in the middle layer, for
a total of 2 · 2d nodes expanded. Uni-BS will expand all the nodes except goal, for a total of 3 · 2d – 1 nodes, 1.5 times as
many as MM0. This ratio can be made arbitrarily large by increasing the branching factor of the trees.

15 Technically, it is not correct to cancel the occurrences of FN on either side of the inequality because FN is being searched in the forward direction
by Uni-HS but in the backward direction by MM0. This can result in very different sets of nodes being expanded in FN. But just as we have ignored the
difference between N and N′ and between F and F′ in order to identify core differences, here we are ignoring this difference.

248 R.C. Holte et al. / Artificial Intelligence 252 (2017) 232–266
Fig. 11. State space in which NN is large.

The general rule based on the analysis in this section is:

GR1: FD and RN usually determine whether MM0 will expand fewer nodes than Uni-BS or more.

6.4. MM0 compared to A*

A heuristic, h, splits each region into two parts, the states in the region that are pruned by h, and the states that are not
pruned. For example, FNU is the unpruned part of FN. The set of states expanded by A* is therefore (modified Eq. (5)):

A∗ = NDU + NNU + FNU + FDU. (9)

We first compare the first three terms to the corresponding terms in Eq. (5) for MM0 and then compare FDU to RN′ .
Region ND: We expect A* to expand many nodes in ND. These nodes have gF (n) ≤ 1

2 C∗ so A* would prune them only
if hF (n) > 1

2 C∗ . One might expect MM0’s N′D to be larger than A*’s NDU because A* prunes ND with a heuristic. This
underestimates the power of the gminF + gminB + ε termination condition, which can cause N′D to be much smaller
than NDU. In Fig. 10, a number inside node n with a right-pointing arrow over it is hF (n). Not shown are hF (C) = 1 and
hF (s) = 1 ∀s ∈ S3. Region ND contains start , A, S1 and S2. The heuristic does no pruning in this region so these are all
expanded by A*. MM0 will not expand any node n with gF (n) = 1

2 C∗ (e.g. S2) so N′D is half the size of NDU. As a second
example, on Rubik’s Cube instances with C∗ = 20, MM0 only expands nodes with gF (n) ≤ 9 because of this termination
condition. The heuristic used by Korf [34] to solve Rubik’s Cube has a maximum value of 11, so A* with this heuristic will
not prune any nodes in N′D. In general, we do not expect A* to have a large advantage over MM0 in ND unless its heuristic
is very accurate.16

Region NN: As discussed above, MM0 usually expands no nodes in NN. Nodes in NN have gF (n) = gB(n) = 1
2 C∗ , so A*’s

f (n) cannot exceed C∗ on them. Therefore, even with an extremely accurate heuristic, A* may do little pruning in NN. For
example, the heuristic values shown on the left side of Fig. 11 are consistent and “almost perfect” [28] yet they produce no
pruning at all. A* behaves exactly the same on this example as Uni-BS and expands 1.5 times as many nodes as MM0.

Region FN: We expect A* to expand far fewer nodes than MM0 in FN. These nodes have gF (n) > 1
2 C∗ and are relatively close

to goal. It is common for heuristics to be very accurate near goal so we expect the heuristic values for these nodes to be
sufficiently large that many nodes in FN are pruned.

FDU vs RN′: RN′ certainly can be much smaller than FDU. In Fig. 10, RN (G1 + G2) is about the same size as FD (S3), which
is the same as FDU in this example. However, because MM0 will not expand any nodes with gB (n) > 1

2 (C∗ − ε) (= 1.5 in
this example), RN′ is half the size of RN (RN′ contains G1 but not G2), so MM0 expands many fewer nodes in RN than A*
does in FD. On the other hand, with a sufficiently accurate heuristic, FDU will certainly be the same size as or smaller than
RN′ . In the extreme case, when RN′ is empty, this requires a heuristic that prunes every node in FD. This is not impossible,
since no optimal path passes through FD, but it does require an extremely accurate heuristic. Moreover, FD even without
any pruning can be much smaller than RN′ . Deleting S3 from Fig. 10 makes FD empty, while RN′ can be made arbitrarily
large.

The general rule based on the analysis in this section is:

GR2: When FD > RN, A* will expand more nodes than MM0 unless A*’s heuristic is very accurate.

16 We recognize the imprecision in terms like “very accurate”, “inaccurate”, etc. We use these qualitative gradations to highlight that as the heuristic’s
accuracy increases or decreases, the advantage shifts from one algorithm to another. This is discussed in Section 6.7.

R.C. Holte et al. / Artificial Intelligence 252 (2017) 232–266 249
Fig. 12. Depiction of the situation when FNB = FNU + “extra”.

Fig. 13. State space in which A* re-opens nodes an exponential number of times but MM expands each node once.

6.5. MM compared to A*

Modifying Eq. (6), the equation for MM is:

MM= N′DU + N′N′U + FN′B + RN′B. (10)

B has the same meaning as U, but is based on hB , the heuristic of MM’s backwards search. For example, FNB is the part of FN
that is not pruned by hB . In general, FNB will be different than FNU, the part of FN that is not pruned by hF , the heuristic
used by A*.

Regions ND and NN: By definition, N′DU ≤ NDU and N′N′U ≤ NN, so MM has an advantage over A* in ND and NN.

Region FN: Because A* and MM are searching in different directions in FN, FNU is almost certainly smaller than FN′B. In
A*’s forward search nodes in FN have gF (n) > 1

2 C∗ and hF is estimating a small distance (at most 1
2 C∗). By contrast, in MM’s

backwards search, nodes in FN have gB (n) ≤ 1
2 C∗ and hB would need to accurately estimate a distance larger than 1

2 C∗ to
prune them. So, A* has an advantage over MM’s backward search in FN. This is illustrated by the two ovals in Fig. 12. The left
oval (solid) represents A* in the forward direction. The right oval (dotted) represents MM in the backward direction. All the
nodes in FNU are also inside the dotted oval, i.e. are expanded by the backward search. In addition, FNB includes the striped
areas marked “extra” in the figure. These are nodes expanded by MM’s backward search but not by A*’s forward search.

FDU vs RNB: Not much pruning will usually occur during MM’s backward search in RN because RN’s gB -values are small and
the distances being estimated by hB are large. The comparison of FDU and RNB therefore has the same general conclusion
as the comparison in the previous subsection of FDU and RN′ namely, that FDU will certainly be the same size as or smaller
than RNB with a sufficiently accurate heuristic.

The general rule based on this section’s analysis is the same as GR2 with MM0 replaced by MM.

6.5.1. MM compared to A* with inconsistent heuristics
Martelli [45] showed that A* could re-expand nodes an exponential number of times if its heuristic is inconsistent. This

will also happen with MM when pr(n) = f (n) for all nodes, since in that case MM’s forward search will be identical to A*’s.
However, if the heuristic is sufficiently weak that pr(n) = 2g(n)[+ε] for many nodes, MM can do exponentially fewer node
re-expansions than A*. This is illustrated in Fig. 13, which is a slightly modified version of Martelli’s 6-node graph. The

250 R.C. Holte et al. / Artificial Intelligence 252 (2017) 232–266
Fig. 14. Example where MMe expands an arbitrarily large number of nodes more than MM0 even though there are no ties to break.

optimal path is start − A − B − C − D − goal, with C∗ = 23. The numbers inside the nodes are their hF values. They are
admissible but not consistent. hB (goal) (not shown) is 23, which is larger than any prminF -value that occurs during search
after start is expanded, so on this graph MM only searches in the forward direction, the same as A*. Just as in Martelli’s
original 6-node graph, A* re-expands nodes an exponential number of times on this graph. Nodes D , C and B are expanded
a total of 8, 4 and 2 times, respectively, by A*. By contrast, MM expands each node only once.

We believe, but have not fully proven, that the opposite situation cannot occur, i.e. that if MM’s forward search re-expands
a node then A* must also re-expand it. It is easy to show that if node X is expanded by MM’s forward search when gF (X)

is suboptimal it is because of the heuristic function, i.e. prF (X) = f F (X) and, at the time X is expanded with a suboptimal
gF (X), there is a node N on the optimal path to X such that prF (N) = f F (N) > f F (X). This shows that if A* reaches X by a
suboptimal path of the same cost, A* will expand X with this suboptimal gF -value and later have to re-expand it. What we
have not yet proven is that if MM’s forward search reaches X by a suboptimal path then A* will also reach X by a suboptimal
path of the same cost. Of course, node re-expansions by MM’s backward search are not connected in any direct way to A*’s
forward search.

6.6. MM0 compared to MM: an anomaly

If h1 and h2 are admissible heuristics and h1(s) > h2(s) for all non-goal nodes, then every node expanded by A* using
h1 will also be expanded by A* using h2 (RESULT 6, p. 81 [49]). In particular, A* with a consistent non-zero heuristic cannot
expand more nodes than Uni-BS.

This is not necessarily true for MM or most Bi-HS algorithms. In Fig. 10 the value in a node is its h-value in the direction
indicated by the arrow. All nodes in layer S3 (G3) have hF (s) = 1 (hB(s) = 1). The heuristic values in each direction are
consistent. MMe expands all the nodes in S1 and G1 because they have pr(s) = 2g(s) + ε = 3 while prF (A) = prB(C) = 4. By
contrast, we saw (Section 6.3) that MM0 could stop before expanding all the nodes in S1 and G1. Thus we see that MM0 can
expand strictly fewer nodes than MM with a consistent, non-zero heuristic. Bi-HS algorithms that strictly alternate search
direction or use the cardinality criterion to choose the direction and then expand the node in the chosen direction with the
smallest f -value will expand even more nodes—they will expand all the nodes in S2 and G2 (f (n) = 3) before expanding A
and C (f F (A) = f B(C) = 4).

This example mimics behavior we report with the GAP-2 and GAP-3 heuristics in the Pancake puzzle experiments below.
We believe it occurs commonly with heuristics that are very accurate near the goal but inaccurate elsewhere.

The largest excess of MMe over MM0 occurs when f F (n) = f B(n) = C∗ for all nodes n on all optimal paths, and f F (n) and
f B(n) are both strictly less than C∗ for all other nodes. The situation for unit edge costs is different than that for non-unit
edge costs, as we now discuss.

• In state spaces where all edge costs are 1 there are two cases. If C∗ is odd, the difference between the two algorithms
is entirely due to how they break ties among nodes with gF (n) = (C∗ − 1)/2 and gB(n) = (C∗ − 1)/2. If C∗ is even,
there can be nodes with gF (n) = C∗/2 − 1 or gB(n) = C∗/2 − 1 that MMe must expand but that MM0 will only expand
in its worst case (G1, S1, A and C in Fig. 10).

• For state spaces with non-unit costs there is even greater scope for MMe to expand more nodes than MM0, even when
there are no ties to break. This is illustrated in Fig. 14. MM0 will expand start (forward), goal (backward), D (backward)
and B (forward) and then stop because it has found the path through C costing U = 31 and gminF + gminB + ε =
9 + 21 + 1 = 31. By contrast, once MMe has expanded start (forward), goal (backward), and D (backward), node A will
have the lowest priority (prF (A) = 2gF (A) + ε = 19, compared to prF (B) = 31 and prB(C) = 43), so MMe will expand A
and the whole cloud of nodes below it before expanding B (forward) and stopping.

R.C. Holte et al. / Artificial Intelligence 252 (2017) 232–266 251
The phenomenon we have just been discussing causes MM to expand more nodes than MM0, but MM’s heuristic can result
in nodes being pruned that MM0 would expand. If MM’s heuristic is sufficiently accurate, the number of nodes its heuristic
prunes will exceed the number of excess nodes MM expands because of the anomalous behavior described above, and MM
will expand fewer nodes than MM0. This is the general conclusion we draw from this section’s analysis.

GR3: Bi-HS with an inaccurate heuristic will expand more nodes than Bi-BS.

6.7. Summary

Many factors come into play in determining which algorithm—A*, MM0, or MM—will expand the fewest nodes. Our general
rules express what we think will be the most common outcomes. GR1 says that MM0 will expand more nodes than Uni-BS
if region FD is smaller than region RN. Adding a heuristic to both brute-force searches in this situation is not expected
to reverse this conclusion, so we expect A* to expand fewer nodes than MM0 and MM (and of course, Uni-BS) when FD is
smaller than RN.

When FD is larger than RN, the algorithm that expands the fewest nodes will depend on the accuracy of the heuristics.
With sufficiently inaccurate heuristics, MM0 is expected to expand fewer nodes than A* (GR2) and MM (GR3). As the heuristics’
accuracy increases, the advantage of MM0 over MM will diminish and eventually MM will expand fewer nodes than MM0.
Because MMe is generally stronger than basic MM, MMe is expected to expand fewer nodes than MM0 with a less accurate
heuristic than basic MM. Of course, A* will also be benefiting from the improved heuristic, but, contrary to Barker and
Korf [4], we expect MM to expand fewer nodes than both MM0 and A* when the heuristics are moderately accurate. As the
accuracy continues to increase, A* will eventually expand fewer nodes than either of the bidirectional searches (because
FDU will become very small (GR2)).

7. Experiments

The purpose of the experiments in this section is to verify the correctness of our general rules (GR1–GR3) and the
conjectures in Section 6.7 about which algorithm—A*, MM0, MM,17or MMe—will expand the fewest nodes. Since some of the
rules refer to the sizes of certain regions, they could only be tested in domains small enough to be fully enumerated.
Likewise, since some of the rules and conjectures refer to a heuristic’s relative accuracy, we used at least two heuristics of
different accuracy in each domain. All heuristics used in these experiments were consistent, not just admissible. The three
domains used in our study are the 10-Pancake Puzzle, grid pathfinding, and Rubik’s Cube. In these domains all problems
are bi-friendly. Because GR1–GR3 make predictions about the number of nodes expanded, that is the quantity we focus on
in our experiments.

7.1. 10-Pancake puzzle

In the 10-pancake puzzle a state is a vector with 10 numbers and the task is to sort them. Operators only allow the
reversal of prefixes of the vector. We ran MM0, MM, MMe, Uni-BS, and A* on 30 random instances for each possible value of
C∗ (1 ≤ C∗ ≤ 11). We used the GAP heuristic [27]18 and derived less accurate heuristics from it, referred to as GAP-X, by not
counting the gaps involving any of the X smallest pancakes. For example, GAP-2 does not count the gaps involving pancakes
0 or 1.

7.1.1. C∗ = 10
Table 1 shows the number of nodes expanded in each region for each algorithm using each heuristic for C∗ = 10. The

first row, “|Region|” shows the number of states in each region. Column “Total” is the total of the five rightmost columns.
The total for |Region| is not the size of the entire state space because it does not include region RD (it is not in the table
because none of the algorithms expand nodes in RD).

We see that RN is small (929) and FD is very large (3.5M). As a consequence, MM0 expands many fewer nodes than
Uni-BS (GR1), as shown in the first two rows. ND is identical in size to FN+RN (= DN) because of the symmetry in this
space. The asymmetry of MM0’s expansions in ND and FN+RN is because, for C∗ = 10, MM0 must expand all the nodes with
g(s) = 4 in one direction but not the other. MM’s expansions in these regions are much more balanced.

For the more accurate heuristics (GAP and GAP-1), FDU is very small, and A*’s total is largely determined by ND. By
contrast for the less accurate heuristics (GAP-2, GAP-3, and GAP-4) A*’s total is largely determined by FDU. Even with these
less accurate heuristics FDU is less than 10% of FD but FDU is large enough to dominate the other regions.

The bold numbers show the best algorithm for a given heuristic. Depending on the heuristic, the algorithm expanding
the fewest nodes is A* (GAP), MM/MMe (GAP-1 and GAP-2), or MM0 (GAP-3 and GAP-4). MM and MMe were identical except for
GAP and GAP-4 where MMe had a slight advantage. We explain this behavior below (Section 7.1.3).

17 In this section, “MM” refers to a specific implementation of basic MM, not to the general MM family.
18 A gap occurs when two adjacent tokens in the current state are not consecutive numbers. The GAP heuristic counts the number of gaps in the entire

state.

252 R.C. Holte et al. / Artificial Intelligence 252 (2017) 232–266
Table 1
10-Pancake results: average nodes expansions by region for instances with C∗ = 10.

Total f < C∗ ND NN FD FN RN

|Region| 3,556,497 NA 27,432 13 3,501,619 26,504 929

Brute-force searches
Uni-BS 2,078,788 NA 27,432 13 2,040,232 11,112 0
MM0 6,070 NA 4,620 0 0 1,390 60

GAP-4
A* 270,337 255,745 25,906 13 240,118 4,300 0
MM 8,944 8,944 4,324 0 0 4,447 173
MMe 8,812 8,812 4,192 0 0 4,447 173

BS* 119,032 119,032 16,071 13 83,779 18,741 420
MM-2g 144,138 144,138 19,403 13 104,315 19,942 457

GAP-3
A* 68,344 66,693 17,981 13 48,194 2,156 0
MM 8,415 8,415 4,223 0 0 4,050 141
MMe 8,415 8,415 4,223 0 0 4,050 141

BS* 77,095 77,095 10,563 13 51,903 14,469 147
MM-2g 95,900 95,900 16,589 13 63,145 15,924 227

GAP-2
A* 12,124 11,741 6,153 12 5,101 857 0
MM 5,037 5,037 2,517 0 0 2,498 22
MMe 5,037 5,037 2,517 0 0 2,498 22

BS* 16,949 16,949 4,696 12 7,990 4,244 8
MM-2g 21,641 21,641 6,208 12 9,060 6,342 19

GAP-1
A* 909 864 627 11 128 143 0
MM 771 771 399 0 0 372 0
MMe 771 770 399 0 0 372 0

BS* 1,144 1,144 488 12 159 485 0
MM-2g 1,423 1,423 647 12 185 579 0

GAP
A* 38 17 22 2 3 11 0
MM 91 28 48 4 0 39 0
MMe 60 24 34 0 0 26 0

BS* 47 30 20 3 3 21 0
MM-2g 46 30 21 3 3 19 0

We also experimented with two Bi-HS algorithms that are not guaranteed to meet in the middle. The first was BS* [40]
which uses Pohl’s cardinality criterion for selecting the next node to expand. In addition, to examine the effect of the 2g
term in MM’s definition of a node’s priority, we ran an altered version of MM, called MM-2g, which is identical to MM except
it omits the 2g term in the definition of pr(n), so node n’s priority is the usual f (n). We also added code to prevent MM-2g
from expanding the same node in both directions. MM-2g is reminiscent of the algorithm by Piljs & Post [52] in that both
algorithms choose the node with the minimal f -value in either direction. BS* usually outperforms MM-2g, showing that the
cardinality criterion is a better approach. Unlike MM, these algorithms expand many nodes in FD and many more nodes than
MM in ND, NN, and FN. Therefore, these algorithms are much worse than MM, highlighting the importance of meeting in the
middle. The GAP heuristic is an exception where BS* outperforms MM. The reason is that, similar to A*, when the heuristic
is very accurate, using only f -values is beneficial.

GR1, GR2, and GR3 are all confirmed by this experiment.

• GR1: For every instance for every value of C∗ , FD > RN and MM0 expanded fewer nodes than Uni-BS.
• GR2: A* expands more and more nodes in FD as the heuristic becomes less accurate, while MM and MM0 always expand

a small fraction of the nodes in RN. With GAP-4 through GAP-1 A* expanded more nodes in FD than MM and MM0
expanded in RN. As expected by GR2, A* is inferior with these heuristics. With GAP, A* expanded fewer nodes in FD
than MM0 expanded in RN. Thus, A* was the best with GAP. We note that A* expanded slightly more nodes in FD than
MM in RN (3 compared to 0). Still, A* expanded fewer nodes than both MM0 and MM with GAP because of ND and FN
(non-core regions).

• GR3: With the best heuristic, GAP, MM expands many fewer nodes than MM0. As the heuristic becomes less accurate, the
difference between MM and MM0 steadily diminishes and eventually (GAP-2) turns into a steadily growing advantage for
MM0.

R.C. Holte et al. / Artificial Intelligence 252 (2017) 232–266 253
Fig. 15. Nodes expanded vs. heuristic accuracy for C∗ = 10 (X = 0 is the most accurate).

Fig. 16. Nodes expanded vs. heuristic accuracy for C∗ = 11 (X = 0 is the most accurate).

In summary, as expected, with the very accurate heuristic (GAP), A* was the best. With moderately accurate heuristics
(GAP-1 and GAP-2) MM was the best. Finally, with the weaker heuristics (GAP-3 and GAP-4) MM0 was the best. We have
performed similar experiments with C∗ = 11. Similar trends were observed with some exceptions, which we explain below
in Section 7.1.3.

7.1.2. Does MM outperform A* because of tie-breaking?
If MM’s savings over A* all occurs on nodes with f (n) = C∗ then it could be argued that MM just has a better tie-breaking

rule than A* and the gain does not really show that bidirectional search is inherently superior to unidirectional search (on
our instances). On the other hand, we know that A*, with a consistent heuristic, must expand all nodes with f (n) < C∗ , but
MM does not. So, if we see MM expanding fewer nodes with f (n) < C∗ than A*, then we have shown that MM is fundamentally
superior to unidirectional search on our test instances.

The f < C∗ column in Table 1 presents the number of nodes with f < C∗ expanded by the different algorithms. Clearly,
MM expands fewer such nodes than A*, showing that its advantage is not due to better tie breaking.

7.1.3. Convergence to MM0
As the heuristics get weaker the relative advantage of MM0 over MM increases due to the phenomenon underlying GR3.

However, at some stage, this trend must stop as MM with the least accurate heuristic possible (h(s) = 0 ∀s) is equivalent
to MM0. In order to validate this we varied the heuristics from GAP through GAP-9 (always returns 0) for A*, MM, MMe.
Figs. 15 and 16 present the number of nodes expanded (y-axis), averaged over 30 random instances, as a function of the
heuristic (x-axis; x = 0 is GAP). The rightmost point for MM and MMe in each plot (x = 9 is GAP-9) is MM0. For C∗ = 10
(Fig. 15), the curves for MM and MMe are indistinguishable and are slightly inferior to MM0 for heuristics GAP-3 through
GAP-8. For C∗ = 11 (Fig. 16), MMe never expands more nodes than MM0, but the advantage of MM0 over MM increases as
we move from GAP through to GAP-3, decreases at GAP-4, and at GAP-5 the two algorithms expand the same number of
nodes.

We note that, for C∗ = 10 MM and MMe were close or identical in the number of nodes expanded. By contrast, for C∗ = 11
MMe outperformed MM for the range of GAP-1 until GAP-4. The difference between C∗ = 11 and C∗ = 10 is explained as

254 R.C. Holte et al. / Artificial Intelligence 252 (2017) 232–266
Table 2
Results on the Dragon Age: Origins brc203 map: average node expansions by region with different heuristic weights.

Total f < C∗ ND NN FD FN RN

|Region| 20,713.0 NA 6,427.5 0.8 4,261.5 3,537.0 1,149.9

Brute-force searches
Uni-BS 14,213.0 14,197.8 6,427.5 0.8 4,254.8 3,529.8 0.0
MM0 11,025.2 11,025.2 6,381.1 0.0 0.0 3,505.9 1,138.3

Octile. W = 0.1
A* 13,726.3 13,725.3 6,427.5 0.8 3,863.7 3,434.2 0.0
MMe 11,025.3 11,025.3 6,381.1 0.0 0.0 3,505.9 1138.3

Octile. W = 0.4
A* 12,118.5 12,117.5 6,396.4 0.8 2,631.1 3,090.2 0.0
MMe 10,999.1 10,999.1 6,355.8 0.0 0.0 3,512.0 1,131.3

Octile. W = 0.6
A* 10,526.7 10,525.7 5,921.4 0.8 1,835.2 2,769.3 0.0
MMe 10,353.3 10,353.3 5,892.3 0.0 0.0 3,512.3 948.8

Octile. W = 0.8
A* 8,543.6 8,542.6 5,140.3 0.8 1,071.6 2,330.8 0.0
MMe 9,086.3 9,086.3 5,124.0 0.0 0.0 3,330.2 632.1

Octile. W = 1
A* 5,781.1 5,678.6 3,943.1 0.6 644.3 1,193.1 0.0
MMe 6,752.0 6,713.7 3,941.8 0.0 0.0 2,504.5 305.7

follows. As in Section 4.3, to clearly distinguish between basic MM’s priority function and MMe’s, in this explanation we
will use prF and prB for basic MM’s priority function and use the special notation prε

F and prε
B for MMe’s priority function.

When C∗ = 11 all nodes u at depth 5 have prF (u) = 10 < C∗ but they have prε
F (u) = 11 = C∗ . So, MM is likely to expand

many more such nodes than MMe. Thus, for C∗ = 11 MMe has a large advantage over MM due to such nodes. For C∗ = 10
nodes u at depth 4 will have prF (u) = 8 < C∗ and prε

F (u) = 9 < C∗ . Thus, MMe will have no advantage over MM for such
nodes since for both systems these nodes have a priority smaller than C∗ . Nodes u at depth 5 will have prF (u) = 10 = C∗
and prε

F (u) = 11 > C∗ . MMe will never expand such nodes. However, only very few (or none) such nodes are expanded by
MM, so the advantage of MMe over MM is very small (e.g. for GAP and GAP-4) or does not exist (e.g. for GAP-1, GAP-2 and
GAP-3).

7.2. Grid maps

In this section we investigate grid maps because they have significantly different properties than the other domains that
we study. First, they have non-unit edge costs. Second, the maps are irregular. Third, the size of the various regions in
the maps can differ drastically between instances. To avoid averaging away too many differences we select a single map
(brc203) from the game Dragon Age: Origins in the moving AI benchmark repository [60]. Agents can move in any of 8
directions on these maps, and the default heuristic is the octile heuristic, which is the perfect free-space heuristic for 8-way
movement. This heuristic is relatively strong. Therefore, similar to the GAP heuristic for the Pancake puzzle, we weakened
it artificially in order have a spectrum of heuristic strengths. For this we multiplied the octile heuristic by the following
weights: W = {0.1, 0.4, 0.6, 0.8, 1}.

In Table 2 we report the primary results of this experiment on a variety of weights. Results are averages over 1320
problem instances that vary in length from 0 to 527. We focus on the A* and MMe algorithms, and report the average node
expansions and region sizes across all problems on the map. We analyze GR1–GR3 in grid worlds and make the following
observations:

• GR1: On average, in this map FD > RN and, as predicted, MM0 expanded fewer nodes than Uni-BS.
• GR2: Because FD > RN we expect MMe to outperform A* unless the heuristic is accurate. As predicted, A* outperformed
MMe with stronger heuristics, as it is able to perform significant pruning in FN. For weaker heuristics MMe was better
than A*.

• GR3: With a heuristic weight of 0.1, MMe expands 0.1 more nodes than MM0 on average. This difference is minimal,
suggesting that there are not a significant number of nodes that meet the conditions for GR3 in this state space.

Thus, two of the three general rules are strongly confirmed, and the third is weakly confirmed. As we saw with the
Pancake puzzle, tie breaking with f -cost < C* does not play a significant role in node expansions, especially with weaker
heuristics.

R.C. Holte et al. / Artificial Intelligence 252 (2017) 232–266 255
Table 3
Summary node expansion results on the 10 Korf instances [34] and the superflip (S) position. M = millions; B = billions; T = trillions.

PDB

0 1997 888 8210

Depth PEMM0 PEMM IDA* PEMM IDA* PEMM IDA*

1 16 1.08B 428M 244M 95M 19M 18M 4M
2 17 1.69B 1.00B 1.51B 249M 116M 165M 30M
3 17 2.86B 1.54B 8.13B 608M 675M 202M 127M
4 17 2.33B 949M 6.56B 570M 467M 18M 86M
5 18 4.12B 3.91B 29.69B 3.26B 2.40B 1.20B 435M
6 18 7.59B 6.74B 15.37B 4.23B 1.04B 1.32B 208M
7 18 16.32B 13.99B 41.57B 6.80B 3.13B 1.63B 659M
8 18 7.56B 6.72B 45.88B 4.56B 3.75B 1.40B 659M
9 18 6.25B 5.67B 58.35B 4.01B 5.00B 1.52B 1.17B
10 18 5.29B 4.84B 70.31B 3.48B 4.78B 1.15B 1.01B

S 20 38.52B 38.08B 3.03T 38.08B 116.39B 35.61B 24.59B

7.3. Rubik’s cube

Rubik’s cube is a well-studied domain with 4.3 × 1019 states; the maximum distance between any two states is twenty
moves [57]. Optimal solutions to random Rubik’s cube instances were first found in 1997 [34] using pattern databases
(PDBs) [7]. The cube is made up of 8 corner cubes which have 3 possible orientations each and 12 edge cubes which have
2 possible orientations each.

We study PEMM on Rubik’s cube with three different heuristics and with no heuristic (PEMM0). The first heuristic is
h1997, the heuristic used for the first optimal solutions. This heuristic uses an 8-corner PDB and two 6-edge PDBs. We use
4-bits per state for the PDBs. The 8-corner PDB has 8!37 = 88,179,840 entries19 and requires 42 MB of RAM. The 6-edge
PDBs have 12!

6! 26 = 42,577,920 entries and require 20 MB of RAM. Problem symmetry is used for reverse heuristic lookups,
so the same PDB can be used in both directions.

The second heuristic is h888. This heuristic uses the 8-corner PDB and two 8-edge PDBs. The 8-edge PDBs have 12!
4! 28 =

5,109,350,400 entries and require 2.4 GB of space each. The final heuristic is h8210. This uses the 8-corner PDB, a 2-edge
PDB and a 10-edge PDB. The 10-edge PDB has 12!

2! 210 = 245,248,819,200 entries and requires 114.2 GB of RAM.
All experiments are run on a server with dual 2.4 GHz Intel Xeon E5 processors with 128 GB of RAM. Each processor has

8 cores, so a total of 16 compute cores are available, and 32 cores are available with hyperthreading. The machine has two
8TB SAS hard disk drives (HDD) combined in a RAID and two 1.6 TB SATA solid state drives (SSD). The experiments that we
perform here use the HDDs for external memory and the SSDs for storing PDBs, but alternate configurations could provide
higher performance.

In addition to running PEMM, we compare against IDA* using the standard operator pruning rules for Rubik’s Cube [34].
To compare the implementations more fairly, we parallelized IDA* using the approach of AIDA* [56]. This parallel imple-
mentation is very efficient, achieving almost perfect speedups.

In our experimental results we solve the 10 instances from Korf [34] as well as the superflip (S) position [57], one of
the positions that is maximally distant (20 moves) from the goal. This is the first time, to our knowledge, that a 20-move
Rubik’s cube position has been solved with general-purpose search algorithm.

For IDA* we report the total running time and total number of nodes expanded. Note that experiments with IDA* typically
report node generations. We report expansions here to be comparable to the expansions performed by PEMM. In our previous
results [29], we reported the number of nodes that would be expanded by a unidirectional search without parallelization.
Here, we report the total number of nodes actually expanded by our parallel implementation. This might be more or less
than a unidirectional implementation, depending on which thread finds the solution and how many solutions there are.

The efficiency of PEMM does depend, to some extent, on the number of buckets used during search. In all experiments
here PEMM uses 9 bits of the hash in addition to the other bucket parameters, although using fewer bits is faster on easier
problems. Using 9 bits is necessary for PEMM0 when solving the superflip position; in preliminary results increasing from 7
to 9 bits reduced the running time from 195,380 seconds to 102,893 seconds. A custom hash table and other enhancements
further reduced this time to 59,743 seconds.

Summary results comparing IDA* and PEMM are found in Tables 3 and 4; more detailed results on the performance of
PEMM follow.

We first look at node expansions in Tables 3. First, note that Rubik’s cube is bi-friendly, so FD > RN. We would then,
according to GR2, expect that A* does more work than PEMM0, except with a very accurate heuristic. Indeed, with the
less-accurate 1997 heuristic, PEMM dominates IDA*, except on the first (easiest) problem. PEMM0 also does fewer node

19 Parity between the corners means that the last corner orientation is fixed given the rotation of the remaining corners.

256 R.C. Holte et al. / Artificial Intelligence 252 (2017) 232–266
Table 4
Summary timing results. All times in seconds.

PDB

0 1997 888 8210

Depth PEMM0 PEMM IDA* PEMM IDA* PEMM IDA*

1 16 898 1,025 135 418 15 1,046 6
2 17 1,652 2,438 823 864 74 1,234 23
3 17 4,463 3,637 4,421 1,406 416 2,038 79
4 17 3,243 2,276 3,570 1,340 288 708 53
5 18 5,994 9,541 16,281 8,010 1,472 3,649 259
6 18 10,186 13,895 8,413 9,506 637 4,221 123
7 18 14,235 22,691 22,843 13,514 1,918 4,662 382
8 18 7,579 13,758 25,156 10,116 2,294 4,215 385
9 18 6,587 12,065 32,066 9,227 3,058 4,791 681
10 18 5,850 10,880 38,642 8,161 2,924 3,513 586

S 20 59,743 110,842 1,794,329 90,148 71,848 83,591 14,129

Table 5
Disk usage required to solve each problem.

0 1997 888 8210

1 143G 57G 13G 2.4G
2 224G 132G 33G 22G
3 378G 204G 81G 27G
4 309G 126G 76G 2.5G
5 549G 520G 433G 159G
6 1002G 893G 560G 175G
7 2.2T 1.9T 900G 215G
8 1003G 892G 604G 186G
9 830G 752G 532G 201G
10 699G 643G 461G 153G

S 5.0T 5.0T 5.0T 4.7T

expansions than IDA*, except on the first two problems. PEMM0 does worse than IDA* with the more-accurate 888 heuristic
on all problems except the superflip problem; PEMM is only better on the hardest problems.

When we use the 114 GB 8210 PDB, which is extremely accurate, IDA* has better performance than PEMM across all
problems except one. But, digging into the results, there is significant room for PEMM to improve. On the superflip position
less than 1% of the states expanded by IDA* were expanded while searching at depth 20. PEMM0 also expands about 1%
of the total states at depth 20, finding the solution in the first bucket. PEMM with the 888 heuristic expanded 3% of the
total states at depth 20, but with the 8210 heuristic 65.8% of its node expansions are at depth 20. Here there is a conflict
between the g-cost ordering needed for efficient search and the g-cost ordering needed for efficient tie-breaking. More
research is needed to resolve this conflict.

In general, these results confirm GR2 and show the phase transition that occurs from PEMM0 to PEMM to IDA* as the
problems get easier or the heuristic gets more accurate. PEMM still has room for optimization, as we will see clearly when
looking at timing results.

In Table 4 we look at timing for each algorithm. Here we see a slightly different picture than node expansions. PEMM0
is faster than all other approaches by a wide margin on the superflip position, except when IDA* has a 114 GB pattern
database. With the 1997 heuristic PEMM is generally faster than IDA*, but with the 888 heuristic IDA* is faster than PEMM.

One significant reason for the difference is that we expand states much slower when using a heuristic. The primary
cost during search is the ranking function that converts states to and from integers for storage on disk. When using the
heuristics we must perform additional ranking operations, which slows down the search. While our IDA* implementation is
very efficient, there is still significant research that can be done on more efficient search for PEMM.

Looking into detail at the performance of PEMM and PEMM0 we find that PEMM spends from 95–99% of its time perform-
ing node expansions, with a negligible amount of time doing I/O. Before implementing a better hash table and removing
the h-cost from the bucket computation PEMM was spending up to 40% of its time doing I/O, so these optimizations were
effective in reducing I/O, which does not parallelize well. PEMM0 spends 40–50% of its time doing I/O, except on the eas-
iest two problems. The majority of this time (30–40% overall) is spend on DSD. This suggest that PEMM0 needs different
optimizations than PEMM moving forward, even though PEMM and PEMM0 are using exactly the same code.

Finally, we look at the disk usage required to solve each problem. These results are in Table 5. The superflip position
consistently takes 5 TB of disk to solve, while the memory required for the other problems is significantly less, depending
on the strength of the heuristic, which reduces storage, and the difficulty of the problem, which increases storage.

R.C. Holte et al. / Artificial Intelligence 252 (2017) 232–266 257
To summarize the results here, we see that GR2 is descriptive of performance on Rubik’s cube. While our implementation
of PEMM0 set a new milestone by solving a depth-20 problem without heuristic guidance, there is still room for improving
the performance of PEMM and PEMM0 by reducing the overhead from DSD in PEMM0 and the cost of heuristic lookups in
PEMM.

8. Conclusions and future work

In this paper we introduced MM, the first Bi-HS algorithm guaranteed to meet in the middle. We also introduced a
framework that divides the state space into disjoint regions and allows a careful analysis of the behavior of the different
algorithms in each of the regions. We studied the various types of algorithms and provided some general rules that were
confirmed by our experiments.

This paper initiated this direction. Future work will continue as follows: (1) A deeper analysis on current and new MM
variants may further deepen our knowledge in this issue. (2) A thorough experimental comparison should be done on more
domains and with more bidirectional search algorithms. (3) Heuristics that are specifically designed for MM, i.e., that only
return values larger than C∗/2 are needed [62].

Acknowledgements

Thanks to Joseph Barker for answering questions and providing extra data related to [4] and to Sandra Zilles and André
Grahl Pereira for suggesting improvements in the theoretical analysis of MM. Financial support for this research was in part
provided by the Natural Sciences and Engineering Research Council of Canada (NSERC) and by Israel Science Foundation
(ISF) grants #417/3 and #212/17. Computational facilities for some of our experiments were provided by Compute Canada.
This material is based upon work supported by the National Science Foundation under Grant No. 1551406.

Appendix A. Proofs of MMe’s properties

In this appendix we prove that given an admissible heuristic (not necessarily consistent) MMe has various properties
including:

(P1) MMe’s forward and backward searches meet in the middle; neither search expands a node whose distance from the
search’s origin (gF (n) for forward search, gB(n) for backward search) is larger than 1

2 (C∗ − ε) (Corollary 15).
(P2) MMe never expands a node whose f -value exceeds C∗ (Corollary 15).
(P3) MMe returns C∗ (Lemma 8 if there is no path from start to goal, Theorem 18 if there is).
(P4) If there exists a path from start to goal MMe never expands a state in both search directions (Theorem 16).

A.1. Terminology – nodes vs. states

States and nodes are different kinds of entities. A state is an immutable element of a state space, with a fixed distance
to start and goal. A node, by contrast, is an entity created and updated by a search algorithm representing a path (or set of
paths) in the state space. At a minimum, node n stores the path’s cost (g(n)) and the last state on the path, which we call
the state associated with n.

Rarely, if ever, is there ambiguity about which term should be used in a given context. Nodes are expanded, not states,
because the process of expansion requires a g-value and states do not have g-values, only nodes do. Similarly, the regions
defined in Section 6.1 (FD, NN, etc.) are regions of a state space—sets of states—because they are defined in terms of
distances to start and goal and only states have such distances (nodes have g-values).

However, there are a few situations where the correct wording would be awkward. For example, it is technically incorrect
to write “how many nodes are expanded in region FD?” The correct way to say this is “how many nodes are expanded whose
associated state is in FD?”. We prefer the simpler expression even though it is not technically correct. As a second example,
property P4 has the technically incorrect wording “never expands a state in both search directions”. What is meant is that
if state s is associated with a node expanded in one direction s will not be associated with any of the nodes expanded
in the other direction. Likewise, if we say a state s is open (or closed), we mean there is an open (or closed) node whose
associated state is s.

A.2. Formal definitions, theorems, and proofs

In this appendix we will use the pseudocode in Algorithm 1 except for the stopping condition (line 7). For the moment,
we will use a weaker stopping condition: MMe will terminate search as soon as U ≤ C . This simplifies the proofs of MMe’s key
properties. In Section A.4 we will replace this stopping condition with the stronger stopping condition used in Algorithm 1
and show that MMe maintains all its key properties when the stronger stopping condition is used.

258 R.C. Holte et al. / Artificial Intelligence 252 (2017) 232–266
In this appendix we use the prF and prB (and related terms in the pseudocode such as prminF and prminB) to refer to
MMe’s definition of priority20

prF (n) = max(f F (n),2gF (n) + ε) (A.1)

and prB(n) is defined analogously.
The core reasoning behind the proofs of P1–P3 is as follows. As long as there remains an optimal path that has not been

“found” (Definition 2, page 239) C will be less than or equal to C∗ (Theorem 7), and as soon the first optimal path is found
U will be set to C∗ (Lemma 13). Property P3 follows directly from these two facts (Theorem 18), since they show that MMe
will not halt until after U has been set to C∗ . These two facts also imply that MMe will terminate without expanding any
node whose priority is greater than C∗ (Lemma 14), which immediately proves properties P1 and P2 (Corollary 15), since
any node n with g X (n) > 1

2 (C∗ − ε) or f X (n) > C∗ will have prX (n) > C∗ (X here is a search direction, either F or B).
We assume that all edge costs (cost(u, v)) are non-negative (zero-cost edges are allowed), that start �= goal, and that the

heuristic used by MMe in each search direction is admissible.
The following definition and Lemmas 2–4 are closely based on Hart, Nilsson, and Raphael’s Lemma 1 and its proof [23].

Definition 3. Node n is “permanently closed” in the forward search direction if n ∈ ClosedF and gF (n) = d(start, n). Likewise,
n is permanently closed in the backward search direction if n ∈ ClosedB and gB(n) = d(n, goal).

The name “permanently closed” is based on the following lemma.

Lemma 2. If node n is permanently closed in a particular search direction at the start of some iteration, it will be permanently closed
in that direction at the start of all subsequent iterations.

Proof. This proof is for the forward search, the proof for the backward search is analogous. There is no code in Algorithm 1
to directly change gF (n) while n ∈ ClosedF , so n can only stop being permanently closed by being removed from ClosedF .
This is possible (line 17) but only if a strictly cheaper path to n is found (line 14). This is not possible since gF (n) =
d(start, n) for a node permanently closed in the forward direction. Therefore, once n is permanently closed in the forward
direction it will remain so. �
Lemma 3. Let P = s0, s1, . . . sn be an optimal path from start (s0) to any state sn. If sn is not permanently closed in the forward direc-
tion and either n = 0 or n > 0 and sn−1 is permanently closed in the forward direction, then sn ∈ OpenF and gF (sn) = d(start, sn).
Analogously, let P = s0, s1, . . . sn be an optimal path from any state s0 to goal = sn. If s0 is not permanently closed in the backward
direction and either n = 0 or n > 0 and s1 is permanently closed in the backward direction, then s0 ∈ OpenB and gB(s0) = d(s0, goal).

Proof. This proof is for the forward search, the proof for the backward search is analogous. If n = 0, s0 = start has not been
closed in the forward direction and the lemma is true because lines 1–2 put start ∈ OpenF with gF (start) = d(start, start) =
0. Suppose n > 0. When sn−1 was expanded to become permanently closed in the forward direction sn was generated
via an optimal path (in lines 14 and 18, gF (n) + cost(n, c) = d(start, sn−1) + cost(sn−1, sn) = d(start, sn)). sn cannot have
been permanently closed in the forward direction at that time because if it was, it still would be (Lemma 2). If sn ∈
ClosedF ∪ OpenF at that time with a suboptimal g-value, then it would have been removed from ClosedF ∪ OpenF (line 17)
and added to OpenF (line 19) with gF = d(start, sn). If sn /∈ ClosedF ∪ OpenF at that time, it would likewise have been
added to OpenF with gF = d(start, sn) (line 19). Finally, if sn ∈ OpenF at that time with gF (sn) = d(start, sn) it would have
remained so. Therefore, no matter what sn ’s status was at the time sn−1 was expanded to become permanently closed in the
forward direction, at the end of that iteration sn ∈ OpenF and gF (sn) = d(start, sn). In subsequent iterations gF (sn) cannot
have changed, since that only happens if a strictly cheaper path to sn is found (lines 14 and 15), which is impossible. It also
cannot have been closed, since if that had happened it would now be permanently closed. �
Lemma 4. Let P = s0, s1, . . . sn be an optimal path from start (s0) to any state sn. If sn is not permanently closed in the forward
direction then there exists an i (0 ≤ i ≤ n) such that si ∈ OpenF and gF (si) = d(start, si). Let imin be the smallest such i and define nF
(for path P) to be simin . Analogously, let P = s0, s1, . . . sn be an optimal path from any state s0 to goal = sn. If s0 is not permanently
closed in the backward direction then there exists a j (0 ≤ j ≤ n) such that s j ∈ OpenB and gB(s j) = d(s j, goal). Let jmax be the
largest such j and define nB (for path P) to be s jmax .

Proof. This proof is for the forward search, the proof for the backward search is analogous. If start /∈ ClosedF then i =
0 has the required properties (start ∈ OpenF and gF (start) = d(start, start) = 0, because of lines 1–2). Suppose start ∈
ClosedF . Let k (0 ≤ k < n) be the largest index such that sk is permanently closed. Such a k must exist because start
(k = 0) is permanently closed. By Lemma 3 sk+1 ∈ OpenF and g(sk+1) = d(start, sk+1). Therefore i = k + 1 has the required
properties. �
20 MM is a special case of MMe for ε = 0, so anything said about MMe also holds for MM.

R.C. Holte et al. / Artificial Intelligence 252 (2017) 232–266 259
Fig. 17. Illustration of nF for path s0(start), s1, . . . sn as defined in Lemma 4.

The definition of nF for path s0(start), s1, . . . sn is illustrated in Fig. 17.
The following lemma shows that, for an optimal path P from start to goal, nF and nB for P are exactly the states si and

s j for P defined in Definition 2 (page 239).

Lemma 5. Let P = s0, s1, . . . sn be an optimal path from start(s0) to goal(sn) that has not been found. Then nF and nB , as defined in
Lemma 4, both exist for P and nF = si and nB = s j , where si and s j are as defined in Definition 2.

Proof. Let i and j be as in Definition 2. For the forward search, s0, s1, . . . si is an optimal path from start to si and si �∈
ClosedF and therefore is not permanently closed in the forward direction. Therefore, s0, s1, . . . si satisfies the conditions of
Lemma 4 for the forward direction and nF = si′ exists for path s0, s1, . . . si . Because s0, s1, . . . si−1 are all in ClosedF , it must
be that i′ = i. Since i′ is the smallest index between 0 and i such that si′ ∈ OpenF and gF (si′) = d(start, si′), it is also the
smallest index between 0 and n with these properties, so si′ is also nF for path P . For the backward search, the reasoning
is analogous. s j, s j+1, . . . sn is an optimal path from s j to goal and s j �∈ ClosedB and therefore is not permanently closed in
the backward direction. Therefore, s j, s j+1, . . . sn satisfies the conditions of Lemma 4 for the backward direction and nB = s j′
exists for path s j, s j+1, . . . sn . Because s j+1, s j+2, . . . sn are all in ClosedB , it must be that j′ = j. Since j′ is the largest index
between j and n such that s j′ ∈ OpenB and gB(s j′) = d(s j′ , goal), it is also the largest index between 0 and n with these
properties, so s j′ is also nB for path P . �
Lemma 6. If P = s0, s1, . . . sn is an optimal path from start(s0) to goal(sn) that has not been found, let nF = si and nB = s j be as
defined in Lemma 4. Then gF (nF) + gB(nB) ≤ C∗ − ε .

Proof. Lemma 5 guarantees that nF and nB exist for P . Because i < j, d(start, si) + d(si, s j) + d(s j, goal) = C∗ , the cost of
the whole path P . Because edge costs are non-negative d(si, s j) ≥ ε , and therefore d(start, si) + d(s j, goal) ≤ C∗ − ε . The
lemma follows because gF (nF) = d(start, si) and gB(nB) = d(s j, goal). �
Theorem 7. If, at the beginning of an MMe iteration, there exists an optimal path P from start to goal that has not been found, then
C ≤ C∗ .

Proof. Let nF and nB on path P be as defined in Lemma 4. By Lemma 6, gF (nF) + gB(nB) ≤ C∗ − ε , and therefore at least
one of gF (nF) and gB(nB) must be less than or equal to 1

2 (C∗ − ε). Suppose, without loss of generality, that gF (nF) ≤
1
2 (C∗ − ε). Then prF (nF) ≤ C∗ because f F (nF) ≤ C∗ (because the heuristic hF is admissible and gF (nF) is optimal) and
2gF (nF) + ε ≤ C∗ . Since C is the minimum priority of all the nodes in both Open lists and nF ∈ OpenF , C cannot be larger
than prF (nF) and therefore C ≤ C∗ . �

Much of the following proof is closely based on Pearl’s proof that A* always terminates on finite graphs (Section 3.1.2
in [50]).

Lemma 8. For any finite state space S with non-negative edge costs MMe halts for any start and goal states in S. If there is no path
from start to goal, MMe returns ∞.

Proof. If the condition in line 7 is satisfied on some iteration, MMe will halt immediately. Suppose the condition in line 7 is
never satisfied. Lines 14 and 15 ensure that MMe never expands a node via the same path twice and, because there are no
negative-cost cycles21 (non-negative edge costs guarantee this), they also ensure that MMe never expands a node via a path
containing a cycle. In a finite space there are a finite number of acyclic paths to each state. Therefore each state can only
be expanded a finite number of times in each search direction before it becomes permanently closed in that direction, and
once it becomes permanently closed in a direction it remains so (Lemma 2). Since each iteration expands a node in one of
the search directions, after a finite number of iterations MMe will have permanently closed all the nodes reachable in one of

21 The observation that the proof only requires that there be no negative-cost cycles, as opposed to requiring all edge costs to be non-negative, is due to
Gaojian Fan (University of Alberta).

260 R.C. Holte et al. / Artificial Intelligence 252 (2017) 232–266
the search directions, the Open list for that search direction will be empty, the condition in line 5 for continuing to iterate
will not be satisfied, and MMe will halt (line 24).

If there is no path from start to goal the condition in line 20 will never be satisfied, so U will always have its initial value
of ∞. If C becomes infinite—for example because all n ∈ OpenF have hF (n) = ∞ indicating that goal cannot be reached from
them and all n ∈ OpenB have hB(n) = ∞ indicating that they cannot be reached from start—then the condition in line 7 will
be satisfied and MMe will return U = ∞. If C never becomes infinite, we have shown in the previous paragraph that, after
a finite number of iterations, the condition in line 5 for continuing to iterate will not be satisfied, and MMe will return ∞
(line 24). �

Implementations of search algorithms often maintain “parent pointers” for each open and closed node. The parent pointer
for an open node, n, points to the node p that is responsible for n being on Open with its current g(n) value. If n is closed
it keeps the parent pointer it had on Open at the time it was expanded. Our pseudocode for MMe does not contain parent
pointers, but the proof of Lemma 12 makes use of properties of the “generating path” of an open node n, which is the
sequence of nodes defined by the parent pointers from n back to start (for forward search, back to goal for backward
search). Definitions 4 and 5 are the formal definitions of “parent” and “generating path” and Lemmas 9 to 11 prove basic
properties about them.

Definition 4. If s �= start and s ∈ OpenF ∪ ClosedF at the start of iteration t with gF (s) = g then parentF (〈s, t, g〉) is defined
to be the triple 〈s′, t′, g′〉 such that on iteration t′ , s was added to OpenF with gF (s) = g as a consequence of s′ being
expanded in the forward direction with g′ = gF (s′) = g − cost(s′, s). parentF (〈start, t, g〉) is undefined. Similarly, if s �= goal
and s ∈ OpenB ∪ ClosedB at the start of iteration t with gB(s) = g then parentB(〈s, t, g〉) is defined to be the triple 〈s′, t′, g′〉
such that on iteration t′ , s was added to OpenB with gB(s) = g as a consequence of s′ being expanded in the backward
direction with g′ = gB(s′) = g − cost(s, s′). parentB(〈goal, t, g〉) is undefined.

Lemma 9. Suppose s �= start and s ∈ OpenF ∪ ClosedF at the start of iteration t with gF (s) = g. Then:

(a) parentF (〈s, t, g〉) exists,
(b) parentF (〈s, t, g〉) is unique, and
(c) If parentF (〈s, t, g〉) = 〈s′, t′, g′〉 then t′ < t.

Likewise, suppose s �= goal and s ∈ OpenB ∪ ClosedB at the start of iteration t with gB(s) = g. Then:

(a) parentB(〈s, t, g〉) exists,
(b) parentB(〈s, t, g〉) is unique, and
(c) If parentB(〈s, t, g〉) = 〈s′, t′, g′〉 then t′ < t.

Proof. This proof is for the forward direction, the proof for the backward direction is analogous.
(a) If s �= start , the only way it can be added to OpenF is by having been generated by some other node being expanded,

and the only way it can be added to ClosedF is to have first been added to OpenF .
(b) If a state is added to OpenF multiple times, it must be with a different g-value each time. Therefore s and g together

uniquely identify the state (s′) that caused s to be added to OpenF with gF (s) = g .
(c) A state cannot be on OpenF or ClosedF with gF (s) = g until after it has been added to OpenF with gF (s) = g . �

Lemma 10. Suppose s �= start and s ∈ OpenF ∪ ClosedF at the start of iteration t with gF (s) = d(start, s). If parentF (〈s, t, g〉) =
〈s′, t′, g′〉, then s′ is permanently closed in the forward direction. Likewise, Suppose s �= goal and s ∈ OpenB ∪ ClosedB at the start of
iteration t with gB(s) = d(s, goal). If parentB(〈s, t, g〉) = 〈s′, t′, g′〉, then s′ is permanently closed in the backward direction.

Proof. This proof is for the forward direction, the proof for the backward direction is analogous. d(start, s) = gF (s) =
g′ + cost(s′, s) ≥ d(start, s′) + cost(s′, s) ≥ d(start, s). Therefore all these terms are equal. In particular g′ + cost(s′, s) =
d(start, s′) + cost(s′, s), i.e. g′ = d(start, s′). Hence, s′ became permanently closed on iteration t′ and will remain so for all
future iterations (Lemma 2). �
Definition 5. If s �= start and s ∈ OpenF ∪ ClosedF at the start of iteration t with gF (s) = g then the forward generating path
for 〈s, t, g〉, GenPathF (〈s, t, g〉), is defined recursively:
GenPathF (〈start, t, g〉) = ∅
if s �= start , GenPathF (〈s, t, g〉) = GenPathF (parentF (〈s, t, g〉)) :: parentF (〈s, t, g〉),
where X :: Y adds element Y to the end of a sequence X . Likewise, if s �= goal and s ∈ OpenB ∪ ClosedB at the start of
iteration t with gB(s) = g then the backward generating path for 〈s, t, g〉, GenPathB(〈s, t, g〉), is defined analogously.

The forward (backward) generating path for 〈s, t, g〉 is well-defined because the recursion must terminate (t strictly
decreases as each recursive call is made (Lemma 9(c)), and t cannot be negative) and it cannot terminate at any state other

R.C. Holte et al. / Artificial Intelligence 252 (2017) 232–266 261
than start (for the forward direction, goal for the backward direction) because parentF (〈s, t, g〉) (for the forward direction,
parentB(〈s, t, g〉) for the backward direction) exists for all the 〈s, t, g〉 generated in this sequence of recursive calls unless
s = start (Lemma 9(a)).

Lemma 11. Suppose s �= start and s ∈ OpenF ∪ ClosedF at the start of iteration t with gF (s) = d(start, s). Then all the states in
GenPathF (〈s, t, g〉) are permanently closed in the forward direction. Likewise, suppose s �= goal and s ∈ OpenB ∪ ClosedB at the start
of iteration t with gB(s) = d(start, s). Then all the states in GenPathB(〈s, t, g〉) are permanently closed in the backward direction.

Proof. This proof is for the forward direction, the proof for the backward direction is analogous. By Lemma 10, if
parentF (〈s, t, g〉) = 〈s′, t′, g′〉 then s′ is permanently closed in the forward direction. The same lemma can therefore be
applied to 〈s′, t′, g′〉 to show that s′′ is permanently closed, where 〈s′′, t′′, g′′〉 = parentF (s′, t′, g′). This process can be re-
peated backwards through the entire chain, showing that all states in GenPathF (〈s, t, g〉) are permanently closed in the
forward direction. �
Lemma 12. If there exists a path from start to goal, MMe will not terminate until at least one optimal path from start to goal has been
found.

Proof. Lemma 5 guarantees that OpenF and OpenB are both non-empty as long as there is any optimal path from start to
goal that has not been found, so the termination condition in Line 5 cannot be satisfied until all optimal paths from start
to goal have been found. The only other termination condition is U ≤ C (the version of line 7 we are using in these proofs).
Assume (for the purpose of contradiction) that this termination condition is satisfied before any optimal path from start to
goal has been found. Theorem 7 shows that C ≤ C∗ until all optimal paths from start to goal have been found, so for U ≤ C
to hold if no optimal paths from start to goal have been found, U must be equal to C∗ . We will now show that U = C∗
implies an optimal path from start to goal has been found, contradicting our assumption, thereby proving the lemma. U is
set in line 21. On the iteration in which U was set to C∗ , there must have been a child node generated, c, that satisfied
the conditions of line 20, i.e. c ∈ OpenB and gF (c) + gB(c) = C∗ . The latter implies gF (c) = d(start, c) and gB(c) = d(c, goal),
i.e. c is on an optimal path from start to goal with optimal g-values in both directions. This means Lemma 11 applies to c
in both directions, i.e. that all the nodes on the forward and backward generating paths for c are permanently closed. The
concatenation of these two paths, with c in between, is an optimal path from start to goal that was found on the iteration
when U was set to C∗ . �
Lemma 13. If there exists a path from start to goal, let P = s0, s1, . . . sn be the first optimal path from start(s0) to goal(sn) that is
found during MMe’s execution, and let nF = si and nB = s j be as defined in Lemma 4 at the beginning of the iteration on which P is
found. Then during that iteration U will be set to C∗ in line 21.

Proof. Lemma 12 guarantees that P exists, and Lemma 5 guarantees that nF and nB exist for P at the beginning of the
iteration on which it becomes found. One of them must be expanded on this iteration because P ’s status will not change
from “not found” to “found” if nF remains on OpenF and nB remains on OpenB . We will complete the proof assuming that
nF is expanded. The proof in the case that nB is expanded is analogous. We will prove the following before proving the
lemma:

(a) When nF is expanded, nB will be generated as one of its children;
(b) When the test in Line 14 is applied to nB (nB ∈ OpenF ∪ ClosedF and gF (nB) ≤ gF (nF) + cost(nF , nB)) it will fail.

Proof of (a): Suppose nB is not generated as a child of nF when it is expanded in the forward direction. Then there must
exist one or more nodes between them, i.e. P = start . . .nF t1 . . . tk nB . . . goal(k ≥ 1). In order for P to be “found” at the
end of this iteration, it must be the case that ti ∈ ClosedF ∀1 ≤ i ≤ k. Since the path start . . .nF t1 is an optimal path from
start to t1, t1 ∈ ClosedF after being generated by nF means that it had previously been generated via a different optimal
path, which implies an optimal path had previously been found from start to all the ti and, indeed, to nB . Combining this
previously found optimal path from start to nB with the optimal path found by the backwards search from nB to goal
creates an optimal path from start to goal that had been found prior to P . This contradicts the premise that P is the first
optimal path found from start to goal.

Proof of (b): The path start . . .nF nB is optimal, i.e. gF (nF) + cost(nF , nB) = d(start, nB). The test in line 14 can therefore
only succeed if an optimal path from start to nB had previously been found, which contradicts the premise that P is the
first optimal path found from start to goal.

Proof of the lemma: Because of (b), the test in line 20 succeeds because nB is a child of nF (by (a)) and nB ∈ OpenB by
definition. Because of (b), gF (nB) + gB(nB) = d(start, nB) + d(nB , goal) = C∗ , so U will be set to C∗ in line 21. �
Lemma 14. If there exists a path from start to goal and MMe begins an iteration with C > C∗ it will terminate immediately (i.e. without
expanding a node on this iteration) and return U = C∗ .

262 R.C. Holte et al. / Artificial Intelligence 252 (2017) 232–266
Proof. By Theorem 7, C > C∗ implies that all optimal solutions have been found, which implies (Lemma 13) U = C∗ so the
termination criterion U ≤ C in line 7 is satisfied (and it is tested before a node is expanded). �

The following establishes MMe’s properties P1 and P2.

Corollary 15. MMe’s forward search never expands a node n with f F (n) > C∗ or gF (n) > 1
2 (C∗ − ε), and MMe’s backward search

never expands a node n with f B(n) > C∗ or gB(n) > 1
2 (C∗ − ε).

Proof. If there does not exist a path from start to goal, C∗ = ∞ and nothing can be strictly larger than C∗ . If there exists
a path from start to goal, the proof for the forward search is as follows. The proof for the backward search is analogous.
By Lemma 14, MMe’s forward search never expands a node when C > C∗ , so if n was expanded in the forward search
prF (n) ≤ C∗ . Since prF (n) = max(f F (n), 2gF (n) + ε) this means both f F (n) and 2gF (n) + ε are less than or equal to C∗ . �

The following establishes property P4.

Theorem 16. If MMe’s heuristics are admissible and there exists a path from start to goal then MMe never expands the same state in
both search directions.

Proof. Suppose (for the purpose of contradiction) that there is a state that is expanded in the forward direction and in
the backward direction. Let n be the first state to be expanded in both directions. By Corollary 15, gF (n) ≤ 1

2 (C∗ − ε) and
gB(n) ≤ 1

2 (C∗ −ε), and the path from start to goal via n would therefore cost C∗ −ε or less. Because C∗ is finite and optimal,
this implies ε = 0 and that gF (n) = gB(n) = 1

2 C∗ , i.e. n is a state on an optimal solution path and prF (n) = prB(n) = C∗ . On
the iteration when n is about to be expanded for the second time (in direction X ∈ {F , B}), C = prX (n) = C∗ . We will prove
in the next paragraph that U will be equal to C∗ before n is expanded for the second time. Thus, on the iteration when n
is about to be expanded for the second time the test in line 7 (U ≤ C) will succeed and MMe will terminate immediately,
without expanding n for the second time. Therefore no state is expanded in both directions.

To be expanded in both directions, n must first have been open, with its optimal g-value, in both directions. Suppose n
first becomes open with its optimal g-value in the backward direction (an analogous argument holds if this happens first
in the forward direction). There are two cases to consider:

Case 1. n is generated with its optimal gF -value in the forward direction before it is expanded, with its optimal gB -value, in the
backward direction. In this case, the test in line 20 will succeed and U will be set to gF (n) + gB(n) = C∗ .

Case 2. n is not generated with its optimal gF -value in the forward direction until after it is expanded in the backward direction with
its optimal gB -value. Let P be the path from start to n that eventually results in n being added to OpenF with its
optimal gF -value, and let p be the node on P that immediately precedes n, i.e. p is the node that is expanded in the
forward direction, with its optimal gF -value, to put n on OpenF with its optimal gF -value.22 There are two subcases
to consider.
Case 2.1. p ∈ OpenF with its optimal gF -value at the time n is expanded in the backward direction with its optimal gB-value.

In this case the test in line 20 will succeed and U will be set to gF (p) + gB(p) = C∗ .
Case 2.2. p is not in OpenF with its optimal gF -value at the time n is expanded in the backward direction with its optimal

gB -value. Expanding n in the backward direction with its optimal gB -value will add p to OpenB with its
optimal gB -value and, because n is the first node expanded in both directions, p cannot be expanded in
the backward direction until after n has been expanded in the forward direction. Therefore, when p is
eventually generated in the forward direction with its optimal gF -value, the test in line 20 will succeed
and U will be set to gF (p) + gB(p) = C∗ .

Summing up, regardless of the sequence of events, if there is any possibility of n being expanded in both directions, U is
guaranteed to be set to C∗ before n is expanded for the second time. �
Lemma 17. If MMe’s heuristics are admissible and there exists a path from start to goal then OpenF and OpenB are never empty.

Proof. This is the proof for the forward direction. The proof for the backward direction is analogous. By Lemma 4, for
OpenF to be empty all states reachable from start must be permanently closed in the forward direction. This is impossible
because goal is reachable from start but, as we will now show, it will never be permanently closed in the forward direction.

Suppose, for the sake of contradiction, that goal becomes permanently closed in the forward direction on some itera-
tion, t . This implies that goal was added to OpenF with gF (goal) = C∗ on some earlier iteration and, by Theorem 16, that

22 p is guaranteed to exist because n first becomes open with its optimal g-value in the backward direction and therefore n �= start .

R.C. Holte et al. / Artificial Intelligence 252 (2017) 232–266 263
goal is never closed in the backward direction, i.e. that all search is in the forward direction. In particular, goal ∈ OpenB

on the iteration when goal was added to OpenF with gF (goal) = C∗ and therefore the test in line 20 would have suc-
ceeded and U would have been to set to C∗ . At the beginning of iteration t we therefore would have U = C∗ and
C = prF (goal) = 2C∗ + ε , so the test in line 7 (U ≤ C) would have succeeded and MMe would have terminated immedi-
ately, without permanently closing goal in the forward direction. �

The following establishes MMe’s property P3.

Theorem 18. If there exists a path from start to goal MMe returns U = C∗ .

Proof. Lemma 17 has shown that, if there is a path from start to goal, MMe will never terminate by OpenF or OpenB

becoming empty, and MMe cannot terminate if C < C∗ , because U cannot be smaller than C∗ . Therefore, MMe is certain to
reach an iteration where C ≥ C∗ . If MMe reaches an iteration where C > C∗ , Lemma 14 guarantees MMe will return U = C∗ .
The only reason it might not reach an iteration with C > C∗ is that it might terminate on an iteration with C = C∗ . If
termination occurs on such an iteration then we have U ≤ C = C∗ and therefore U = C∗ is returned. �
A.3. MMe with consistent heuristics

In this section we consider additional properties of MMe if its heuristics are consistent.
The following trivial lemma will be used in the proofs of Lemmas 20 and 24.

Lemma 19. If a1 > a2 and b1 > b2 then max(a1, b1) > max(a2, b2).

Proof. Suppose max(a1, b1) = a1. Then a1 ≥ b1 > b2. In addition, a1 > a2 is a premise of the lemma. Together these imply
a1 > max(a2, b2). Combining this with the symmetric argument when max(a1, b1) = b1 we have proven the lemma. �
Lemma 20. If MMe’s heuristics are consistent and node c was added to OpenF as the result of expanding node n, then prF (c) ≥ prF (n).
Likewise if MMe’s heuristics are consistent and node c was added to OpenB as the result of expanding node n, then prB(c) ≥ prB(n).

Proof. This proof is for the forward search, the proof for the backward search is analogous. f F (c) ≥ f F (n) because the
heuristic is consistent, and gF (c) = gF (n) + cost(n, c) ≥ gF (n) because edge costs are non-negative. Therefore, by Lemma 19,
prF (c) = max(f F (c), 2gF (c) + ε) ≥ prF (n) = max(f F (n), 2gF (n) + ε). �

The proof of Lemma 3 requires the ability to re-open closed nodes, and virtually all the results of the previous section
depend on that lemma. With consistent heuristics we wish to remove the re-opening of closed nodes from the algorithm,
so we now must re-prove the equivalent of Lemma 3 without re-opening closed nodes.

Lemma 21. If MMe’s heuristics are consistent then C never decreases from one iteration (n − 1 ≥ 1) of MMe to the next (n).

Proof. Let n ≥ 2 be any iteration that MMe executed beyond line 8 in solving a given problem, and let si denote the node
chosen for expansion on iteration i ≤ n and X the search direction (forward or backward) used for expanding si , i.e. on
iteration i si was moved from OpenX to ClosedX and its children added to OpenX with no changes being made to the open
and closed lists in the other direction. Finally, let Ci = prX (si) be MMe’s C value as set in line 6 on iteration i.

If sn �= start and sn �= goal then sn was added to OpenX with priority prX (sn) on some previous iteration. Let p < n (p
for “parent”) be the iteration that most recently added sn to OpenX with priority prX (sn). If p = n − 1 then Cn = prX (sn) ≥
prX (sn−1) = Cn−1 follows directly from Lemma 20. If p < n − 1, then sn has been on OpenX with its current prX -value ever
since iteration p +1, so it has been available for expansion, but not selected, on all iterations from p +1 up to and including
n − 1. In particular, it was on OpenX with its current prX -value in the most recent iteration n − 1, where MMe chose to
expand a different node sn−1 in a possibly different direction Y , instead of expanding sn in direction X . Since MMe chooses
a node with the smallest priority on either open list Cn = prX (sn) ≥ Cn−1 = prY (sn−1).

Now consider start and goal. Before the first iteration begins OpenF is initialized to contain start and OpenB is initialized
to contain goal. Because gF (start) = gB(goal) = 0, once these are expanded they will never be added to the open list in
that direction again, since 0 is the shortest possible path to them. One of these was expanded on MMe’s first iteration
(n = 1). Suppose it was start (analogous reasoning applies if goal was expanded on the first iteration). If goal was never
expanded then our proof is complete since it plays no role in determining a C value for any of MMe’s iterations. If goal
was first expanded in the backwards direction on the very next iteration (n = 2) then, because MMe chooses the node
with the smallest priority on either open list we must have C2 = prB(goal) ≥ prF (start) = C1. If goal was first expanded
in the backwards direction on a subsequent iteration, n > 2, then similar reasoning to p < n − 1 case (above) applies, as
follows. goal has been on OpenB with its current prB value ever since the first iteration (n = 1), so it has been available for

264 R.C. Holte et al. / Artificial Intelligence 252 (2017) 232–266
expansion, but not selected, on all iterations up to and including n − 1. In particular, it was on OpenB with its initial prB

value in the most recent iteration n − 1, where MMe chose to expand a different node sn−1 in a possibly different direction
Y , instead of expanding goal in the backwards direction. Since MMe chooses a node with the smallest priority on either
open list Cn = prB(goal) ≥ Cn−1 = prY (sn−1). �
Lemma 22. Suppose MMe’s heuristics are consistent. Let P = s0, s1, . . . sn be an optimal path from start (s0) to any state sn. If sn is
not permanently closed in the forward direction and either n = 0 or n > 0 and sn−1 is permanently closed in the forward direction,
then on no iteration is sn ∈ ClosedF with gF (sn) > d(start, sn). Analogously, let P = s0, s1, . . . sn be an optimal path from any state s0
to goal = sn. If s0 is not permanently closed in the backward direction and either n = 0 or n > 0 and s1 is permanently closed in the
backward direction, then on no iteration is s0 ∈ ClosedB with gB(s0) > d(s0, goal).

Proof. This proof is for the forward search, the proof for the backward search is analogous. If n = 0, s0 = start has not
been closed in the forward direction and the lemma is true because ClosedF is initially empty and remains so until start is
closed, permanently, in the forward direction.

Suppose n > 0 and let t1 be the iteration on which sn−1 was expanded to become permanently closed in the forward
direction. The value of C = Ct1 during that iteration was prt1

F (sn−1). If sn was added to OpenF as a result of expanding
sn−1 on iteration t1 then its priority prt1

F (sn) ≥ prt1
F (sn−1) (by Lemma 20). If sn was not been added to OpenF as a result

of expanding sn−1 on iteration t1, it must have already been on OpenF with its optimal gF (sn) value, and therefore have
the same priority that it would have had if it had been added as a result of expanding sn−1 on iteration t1. In either case
prt1

F (sn) ≥ prt1
F (sn−1). If sn had been on ClosedF with a suboptimal gF -value prior to iteration t1 it must have been expanded

on an earlier iteration t0 < t1. The value of C on that iteration was Ct0 = prt0
F (sn). Because sn had only been reached via a

suboptimal path, prt0
F (sn) (i.e. Ct0) would be strictly greater than prt1

F (sn). Hence Ct0 > Ct1 even though t0 < t1, contradicting
Lemma 21. So sn cannot have been on ClosedF with a suboptimal gF -value prior to iteration t1. On iteration t1 it was added
to OpenF (if it was not already there) with an optimal gF -value, so it will never subsequently be added to OpenF with a
suboptimal gF -value, hence it will never subsequently be on ClosedF with a suboptimal gF -value. �

The following is the equivalent of Lemma 3 when MMe has consistent heuristics but does not have the ability to re-open
closed nodes.23

Corollary 23. Suppose MMe’s heuristics are consistent and MMe does not re-open closed nodes. Let P = s0, s1, . . . sn be an optimal
path from start (s0) to any state sn. If sn is not permanently closed in the forward direction and either n = 0 or n > 0 and sn−1
is permanently closed in the forward direction, then sn ∈ OpenF and gF (sn) = d(start, sn). Analogously, let P = s0, s1, . . . sn be an
optimal path from any state s0 to goal = sn. If s0 is not permanently closed in the backward direction and either n = 0 or n > 0 and s1
is permanently closed in the backward direction, then s0 ∈ OpenB and gB(s0) = d(s0, goal).

Proof. The proof of Lemma 3 applies directly since, by Lemma 22, there is no need to test if a newly generated node is on
Closed with a suboptimal value. �

Since the proofs of the other lemmas and theorems in the previous section are all based on the conclusion of Lemma 3,
because of Corollary 23 they continue to hold when MMe has consistent heuristics but does not have the ability to re-open
closed nodes.

Lemma 24. If MMe’s heuristics are consistent and MMe does not re-open closed nodes, then when MMe expands a node its g-value is
optimal.

Proof. This is the proof for nodes expanded in MMe’s forward search. The proof for its backward search is analogous.
Suppose node n has just been added to OpenF (line 19) with a suboptimal cost c, i.e. n ∈ OpenF with gF (n) = c > d(start, n).
Let P be an optimal path from start to n. Since n �∈ ClosedF , P satisfies the conditions of Lemma 4 and there exists a
node m = nF ∈ OpenF on P with gF (m) = d(start, m). To prove the lemma, all that we need to show is that m will be
expanded before n, i.e. that prF (m) < prF (n). By definition, prF (m) = max(d(start, m) +hF (m), 2d(start, m) +ε) and prF (n) =
max(c + hF (n), 2c + ε). By Lemma 19, to show that prF (m) < prF (n) it suffices to show that d(start, m) + hF (m) < c + hF (n)

and that d(start, m) < c. The latter follows because edge costs are non-negative, so d(start, m) ≤ d(start, n) < c. The former
follows because the heuristic hF is consistent, i.e. hF (m) ≤ d(m, n) + hF (n). This implies d(start, m) + hF (m) ≤ d(start, m) +
d(m, n) + hF (n) = d(start, n) + hF (n) < c + hF (n). �
23 The changes to Algorithm 1 are: (a) “∪ ClosedF ” is removed from lines 16 and 17, and (b) the test in line 14 is changed to “(c ∈ ClosedF) or
(c ∈ OpenF and gF (c) ≤ gF (n) + cost(n, c))”.

R.C. Holte et al. / Artificial Intelligence 252 (2017) 232–266 265
Theorem 25. Suppose MMe’s heuristics are consistent and MMe does not re-open closed nodes. If there exists a path from start to goal
then MMe never expands a state twice.

Proof. MMe will not expand a state twice in the same search direction because Lemma 24 guarantees that the first time
a state becomes closed it becomes permanently closed. The only remaining possibility for a state to be expanded twice is
that it is expanded once in the forward direction and once in the backward direction. Theorem 16 shows that this cannot
happen. �
A.4. Using a stronger stopping condition

We will now show that MMe maintains its four key properties (P1–P4) if it stops as soon as any of the following condi-
tions is true:

1. U ≤ C (the stopping condition used above)
2. U ≤ f minF
3. U ≤ f minB
4. U ≤ gminF + gminB + ε

i.e. U ≤ max(C, f minF , f minB , gminF + gminB + ε).
P3 continues to hold because f minF , f minB , and gminF + gminB + ε are all lower bounds on the cost of any solution

that might be found by continuing to search. The other properties continue to hold when MMe uses the stronger stopping
condition because with a stronger stopping condition MMe will execute a subset of the iterations it executed with the
stopping condition used to prove MMe’s properties. Since those properties were true of every iteration done with MMe’s
original stopping condition, they are true of every iteration done with the stronger stopping condition.

References

[1] Kazi Shamsul Arefin, Aloke Kumar Saha, A new approach of iterative deepening bi-directional heuristic front-to-front algorithm (IDBHFFA), Int. J. Electr.
Comput. Sci. (IJECS-IJENS) 10 (2) (2010).

[2] Andreas Auer, Hermann Kaindl, A case study of revisiting best-first vs. depth-first search, in: Proc. 16th European Conference on Artificial Intelligence,
ECAI, 2004, pp. 141–145.

[3] Joseph K. Barker, Richard E. Korf, Solving peg solitaire with bidirectional BFIDA*, in: Proc. 26th AAAI Conference on Artificial Intelligence, 2012,
pp. 420–426.

[4] Joseph Kelly Barker, Richard E. Korf, Limitations of front-to-end bidirectional heuristic search, in: Proc. 29th AAAI Conference on Artificial Intelligence,
2015, pp. 1086–1092.

[5] Claude Berge, Alain Ghouila-Houri, Programming, Games and Transportation Networks, Methuen, 1965, originally published in French in 1962.
[6] Yi-Jen Chiang, Michael T. Goodrich, Edward F. Grove, Roberto Tamassia, Darren Erik Vengroff, Jeffrey Scott Vitter, External-memory graph algorithms,

in: SODA, vol. 95, 1995, pp. 139–149.
[7] Joseph Culberson, Jonathan Schaeffer, Pattern databases, Comput. Intell. 14 (3) (1998) 318–334.
[8] Henry W. Davis, Randy B. Pollack, Thomas Sudkamp, Towards a better understanding of bidirectional search, in: Proc. National Conference on Artificial

Intelligence, AAAI, 1984, pp. 68–72.
[9] Dennis de Champeaux, Bidirectional heuristic search again, J. ACM 30 (1) (1983) 22–32.

[10] Dennis de Champeaux, Lenie Sint, An improved bi-directional heuristic search algorithm, in: Fourth International Joint Conference on Artificial Intelli-
gence, 1975, pp. 309–314.

[11] Dennis de Champeaux, Lenie Sint, An improved bidirectional heuristic search algorithm, J. ACM 24 (2) (1977) 177–191.
[12] E.W. Dijkstra, A note on two problems in connexion with graphs, Numer. Math. 1 (1959) 269–271.
[13] John F. Dillenburg, Peter C. Nelson, Perimeter search, Artif. Intell. 65 (1) (1994) 165–178.
[14] James E. Doran, Double Tree Searching and the Graph Traverser, Technical Report Research Memo EPU-R-22, Dept. of Machine Intelligence and Percep-

tion, University of Edinburgh, 1966.
[15] James E. Doran, D. Michie, Experiments with the Graph Traverser Program, in: Proc. of the Royal Society, Ser. A, vol. 294, 1966, pp. 235–259.
[16] Stuart E. Dreyfus, An Appraisal of Some Shortest Path Algorithms, Technical Report RM-5433-PR, RAND Corporation, Santa Monica, California, October

1967.
[17] Jürgen Eckerle, An optimal bidirectional search algorithm, in: Proc. KI-94: Advances in Artificial Intelligence, 18th Annual German Conference on

Artificial Intelligence, 1994, p. 394.
[18] Jürgen Eckerle, Thomas Ottmann, An efficient data structure for bidirectional heuristic search, in: ECAI, 1994, pp. 600–604.
[19] Ariel Felner, Carsten Moldenhauer, Nathan R. Sturtevant, Jonathan Schaeffer, Single-frontier bidirectional search, in: Proceedings of the Twenty-Fourth

AAAI Conference on Artificial Intelligence, 2010.
[20] Ariel Felner, Uzi Zahavi, Robert Holte, Jonathan Schaeffer, Nathan R. Sturtevant, Zhifu Zhang, Inconsistent heuristics in theory and practice, Artif. Intell.

175 (9–10) (2011) 1570–1603.
[21] Andrew V. Goldberg, Chris Harrelson, Computing the shortest path: A* search meets graph theory, in: Proceedings of the Sixteenth Annual ACM-SIAM

Symposium on Discrete Algorithms, SODA’05, 2005, pp. 156–165.
[22] Patrick A.V. Hall, Branch-and-bound and beyond, in: Proceedings of the 2nd International Joint Conference on Artificial Intelligence, IJCAI’71, 1971,

pp. 641–650.
[23] Peter E. Hart, Nils J. Nilsson, Bertram Raphael, A formal basis for the heuristic determination of minimum cost paths, IEEE Trans. Syst. Sci. Cybern.

4 (2) (1968) 100–107.
[24] Peter E. Hart, Nils J. Nilsson, Bertram Raphael, Correction to “A formal basis for the heuristic determination of minimum cost paths”, SIGART Newsl.

37 (1972) 28–29.
[25] Matthew Hatem, Ethan Burns, Wheeler Ruml, Heuristic search for large problems with real costs, in: Proceedings of the Twenty-Fifth AAAI Conference

on Artificial Intelligence, 2011, pp. 30–35.

http://refhub.elsevier.com/S0004-3702(17)30090-5/bib41726566696E32303130s1
http://refhub.elsevier.com/S0004-3702(17)30090-5/bib41726566696E32303130s1
http://refhub.elsevier.com/S0004-3702(17)30090-5/bib417565724B61696E646C3034s1
http://refhub.elsevier.com/S0004-3702(17)30090-5/bib417565724B61696E646C3034s1
http://refhub.elsevier.com/S0004-3702(17)30090-5/bib4261726B65724B6F72663132s1
http://refhub.elsevier.com/S0004-3702(17)30090-5/bib4261726B65724B6F72663132s1
http://refhub.elsevier.com/S0004-3702(17)30090-5/bib4261726B65724B6F72663135s1
http://refhub.elsevier.com/S0004-3702(17)30090-5/bib4261726B65724B6F72663135s1
http://refhub.elsevier.com/S0004-3702(17)30090-5/bib426572676531393635s1
http://refhub.elsevier.com/S0004-3702(17)30090-5/bib636869616E673139393565787465726E616Cs1
http://refhub.elsevier.com/S0004-3702(17)30090-5/bib636869616E673139393565787465726E616Cs1
http://refhub.elsevier.com/S0004-3702(17)30090-5/bib63756C626572736F6E533938s1
http://refhub.elsevier.com/S0004-3702(17)30090-5/bib44617669733834s1
http://refhub.elsevier.com/S0004-3702(17)30090-5/bib44617669733834s1
http://refhub.elsevier.com/S0004-3702(17)30090-5/bib64654368616D70656175783833s1
http://refhub.elsevier.com/S0004-3702(17)30090-5/bib64654368616D70656175783735s1
http://refhub.elsevier.com/S0004-3702(17)30090-5/bib64654368616D70656175783735s1
http://refhub.elsevier.com/S0004-3702(17)30090-5/bib64654368616D70656175783737s1
http://refhub.elsevier.com/S0004-3702(17)30090-5/bib44494A3539s1
http://refhub.elsevier.com/S0004-3702(17)30090-5/bib44696C6C656E627572673934s1
http://refhub.elsevier.com/S0004-3702(17)30090-5/bib446F72616E31393636s1
http://refhub.elsevier.com/S0004-3702(17)30090-5/bib446F72616E31393636s1
http://refhub.elsevier.com/S0004-3702(17)30090-5/bib446F72616E4D696368696531393636s1
http://refhub.elsevier.com/S0004-3702(17)30090-5/bib447265796675733637s1
http://refhub.elsevier.com/S0004-3702(17)30090-5/bib447265796675733637s1
http://refhub.elsevier.com/S0004-3702(17)30090-5/bib45636B65726C653934s1
http://refhub.elsevier.com/S0004-3702(17)30090-5/bib45636B65726C653934s1
http://refhub.elsevier.com/S0004-3702(17)30090-5/bib45636B65726C65454341493934s1
http://refhub.elsevier.com/S0004-3702(17)30090-5/bib534642445332303130s1
http://refhub.elsevier.com/S0004-3702(17)30090-5/bib534642445332303130s1
http://refhub.elsevier.com/S0004-3702(17)30090-5/bib46656C6E65725A4853535A3131s1
http://refhub.elsevier.com/S0004-3702(17)30090-5/bib46656C6E65725A4853535A3131s1
http://refhub.elsevier.com/S0004-3702(17)30090-5/bib476F6C646265726732303035s1
http://refhub.elsevier.com/S0004-3702(17)30090-5/bib476F6C646265726732303035s1
http://refhub.elsevier.com/S0004-3702(17)30090-5/bib48616C6C3731s1
http://refhub.elsevier.com/S0004-3702(17)30090-5/bib48616C6C3731s1
http://refhub.elsevier.com/S0004-3702(17)30090-5/bib61737461723638s1
http://refhub.elsevier.com/S0004-3702(17)30090-5/bib61737461723638s1
http://refhub.elsevier.com/S0004-3702(17)30090-5/bib6173746172436F7272656374696F6E31393732s1
http://refhub.elsevier.com/S0004-3702(17)30090-5/bib6173746172436F7272656374696F6E31393732s1
http://refhub.elsevier.com/S0004-3702(17)30090-5/bib44424C503A636F6E662F616161692F486174656D42523131s1
http://refhub.elsevier.com/S0004-3702(17)30090-5/bib44424C503A636F6E662F616161692F486174656D42523131s1

266 R.C. Holte et al. / Artificial Intelligence 252 (2017) 232–266
[26] Richard V. Helgason, Jeffery L. Kennington, B. Douglas Stewart, The one-to-one shortest-path problem: an empirical analysis with the two-tree Dijkstra
algorithm, Comput. Optim. Appl. 2 (1) (1993) 47–75.

[27] Malte Helmert, Landmark heuristics for the pancake problem, in: Proc. 3rd Annual Symposium on Combinatorial Search, SoCS, 2010.
[28] Malte Helmert, Gabriele Röger, How good is almost perfect?, in: Proc. 23rd AAAI Conference on Artificial Intelligence, 2008, pp. 944–949.
[29] Robert C. Holte, Ariel Felner, Guni Sharon, Nathan R. Sturtevant, Bidirectional search that is guaranteed to meet in the middle, in: Proceedings of the

AAAI Conference on Artificial Intelligence, 2016.
[30] Takahiro Ikeda, Min-Yao Hsu, Hiroshi Imai, Shigeki Nishimura, Hiroshi Shimoura, Takeo Hashimoto, Kenji Tenmoku, Kunihiko Mitoh, A fast algorithm

for finding better routes by AI search techniques, in: Proc. Vehicle Navigation and Information Systems Conference, 1994, pp. 291–296.
[31] Marcelo Johann, Andrew Caldwell, Andrew Kahng, Ricardo Reis, A new bidirectional heuristic shortest path search algorithm, in: Symposium on

Computational Intelligence in the International ICSC Congress on Intelligent Systems and Applications, 2000.
[32] Hermann Kaindl, Gerhard Kainz, Bidirectional heuristic search reconsidered, J. Artif. Intell. Res. (JAIR) 7 (1997) 283–317.
[33] Hermann Kaindl, Gerhard Kainz, Roland Steiner, Andreas Auer, Klaus Radda, Switching from bidirectional to unidirectional search, in: Proc. 16th Inter-

national Joint Conference on Artificial Intelligence, IJCAI, 1999, pp. 1178–1183.
[34] Richard E. Korf, Finding optimal solutions to Rubik’s Cube using pattern databases, in: Proc. 14th National Conference on Artificial Intelligence, AAAI,

1997, pp. 700–705.
[35] Richard E. Korf, Best-first frontier search with delayed duplicate detection, in: Proc. 19th National Conference on Artificial Intelligence, AAAI, 2004,

pp. 650–657.
[36] Richard E. Korf, Peter Schultze, Large-scale parallel breadth-first search, in: Proc. 20th National Conference on Artificial Intelligence, AAAI, 2005,

pp. 1380–1385.
[37] Richard E. Korf, Weixiong Zhang, Ignacio Thayer, Heath Hohwald, Frontier search, J. ACM 52 (5) (2005) 715–748.
[38] Robert A. Kowalski, AND/OR graphs, theorem-proving graphs, and bidirectional search, in: B. Meltzer, D. Michie (Eds.), Mach. Intell., vol. 7, Edinburgh

University Press, 1972, pp. 167–194.
[39] Daniel Kunkle, Gene Cooperman, Solving Rubik’s Cube: disk is the new RAM, Commun. ACM 51 (4) (2008) 31–33.
[40] James B.H. Kwa, BS*: an admissible bidirectional staged heuristic search algorithm, Artif. Intell. 38 (1) (1989) 95–109.
[41] Carlos Linares López, Andreas Junghanns, Perimeter search performance, in: Proc. 3rd International Conference on Computers and Games, CG, 2002,

pp. 345–359.
[42] Marco Lippi, Marco Ernandes, Ariel Felner, Efficient single frontier bidirectional search, in: Proceedings of the Fifth Annual Symposium on Combinatorial

Search, SoCS, 2012.
[43] Michael Luby, Prabhakar Ragde, A bidirectional shortest-path algorithm with good average-case behavior, Algorithmica 4 (1) (1989) 551–567.
[44] Giovanni Manzini, BIDA*: an improved perimeter search algorithm, Artif. Intell. 75 (2) (1995) 347–360.
[45] Alberto Martelli, On the complexity of admissible search algorithms, Artif. Intell. 8 (1) (1977) 1–13.
[46] Th. Mohr, C. Pasche, A parallel shortest path algorithm, Computing 40 (4) (1988) 281–292.
[47] T.A.J. Nicholson, Finding the shortest route between two points in a network, Comput. J. 9 (3) (1966) 275–280.
[48] Robert Niewiadomski, José Nelson Amaral, Robert C. Holte, A parallel external-memory frontier breadth-first traversal algorithm for clusters of work-

stations, in: International Conference on Parallel Processing (ICPP), 2006, pp. 531–538.
[49] Nils J. Nilsson, Principles of Artificial Intelligence, Tioga Press, 1980.
[50] Judea Pearl, Heuristics – Intelligent Search Strategies for Computer Problem Solving, Addison-Wesley, 1984.
[51] Wim Pijls, Henk Post, A new bidirectional algorithm for shortest paths, Eur. J. Oper. Res. 198 (2009) 363–369.
[52] Wim Pijls, Henk Post, Note on “A new bidirectional algorithm for shortest paths”, Eur. J. Oper. Res. 207 (2) (2010) 1140–1141.
[53] Ira Pohl, Bi-Directional and Heuristic Search in Path Problems, Technical Report 104, Stanford Linear Accelerator Center, 1969.
[54] George Politowski, Ira Pohl, D-node retargeting in bidirectional heuristic search, in: Proc. National Conference on Artificial Intelligence, AAAI, 1984,

pp. 274–277.
[55] Francisco Javier Pulido, Lawrence Mandow, José-Luis Pérez de la Cruz, A two-phase bidirectional heuristic search algorithm, in: Proc. 6th Starting AI

Researchers Symposium, STAIRS, 2012, pp. 240–251.
[56] Alexander Reinefeld, Volker Schnecke, AIDA*-asynchronous parallel IDA*, in: Proceedings of the Biennial Conference-Canadian Society for Computational

Studies of Intelligence, Canadian Information Processing Society, 1994, pp. 295–302.
[57] Tomas Rokicki, Herbert Kociemba, Morley Davidson, John Dethridge, The diameter of the Rubik’s Cube group is twenty, SIAM J. Discrete Math. 27 (2)

(2013) 1082–1105.
[58] Samir K. Sadhukhan, A new approach to bidirectional heuristic search using error functions, in: Proc. 1st International Conference on Intelligent

Infrastructure at the 47th Annual National Convention COMPUTER SOCIETY of INDIA, CSI-2012, 2012.
[59] Guni Sharon, Robert Holte, Nathan Sturtevant, Ariel Felner, An improved priority function for MM, in: SoCS, 2016.
[60] N. Sturtevant, Benchmarks for grid-based pathfinding, IEEE Trans. Comput. Intell. AI Games 4 (2) (2012) 144–148.
[61] Nathan Sturtevant, Jingwei Chen, External memory bidirectional search, in: International Joint Conference on Artificial Intelligence, IJCAI, 2016.
[62] Nathan R. Sturtevant, Ariel Felner, Malte Helmert, Value compression of pattern databases, in: AAAI Conference on Artificial Intelligence, 2017.
[63] Nathan R. Sturtevant, Matthew J. Rutherford, Minimizing writes in parallel external memory search, in: Proc. 23rd International Joint Conference on

Artificial Intelligence, IJCAI, 2013.
[64] Christopher Makoto Wilt, Wheeler Ruml, Robust bidirectional search via heuristic improvement, in: Proc. 27th AAAI Conference on Artificial Intelli-

gence, 2013, pp. 954–961.

http://refhub.elsevier.com/S0004-3702(17)30090-5/bib48656C6761736F6E31393933s1
http://refhub.elsevier.com/S0004-3702(17)30090-5/bib48656C6761736F6E31393933s1
http://refhub.elsevier.com/S0004-3702(17)30090-5/bib48656C6D6572743130s1
http://refhub.elsevier.com/S0004-3702(17)30090-5/bib416C6D6F7374506572666563743038s1
http://refhub.elsevier.com/S0004-3702(17)30090-5/bib4D4D414141493136s1
http://refhub.elsevier.com/S0004-3702(17)30090-5/bib4D4D414141493136s1
http://refhub.elsevier.com/S0004-3702(17)30090-5/bib496B6564613934s1
http://refhub.elsevier.com/S0004-3702(17)30090-5/bib496B6564613934s1
http://refhub.elsevier.com/S0004-3702(17)30090-5/bib4A6F68616E6E32303030s1
http://refhub.elsevier.com/S0004-3702(17)30090-5/bib4A6F68616E6E32303030s1
http://refhub.elsevier.com/S0004-3702(17)30090-5/bib4B61696E646C4B61696E7A3937s1
http://refhub.elsevier.com/S0004-3702(17)30090-5/bib4B61696E646C3939s1
http://refhub.elsevier.com/S0004-3702(17)30090-5/bib4B61696E646C3939s1
http://refhub.elsevier.com/S0004-3702(17)30090-5/bib4B6F72663937s1
http://refhub.elsevier.com/S0004-3702(17)30090-5/bib4B6F72663937s1
http://refhub.elsevier.com/S0004-3702(17)30090-5/bib4B6F72663034s1
http://refhub.elsevier.com/S0004-3702(17)30090-5/bib4B6F72663034s1
http://refhub.elsevier.com/S0004-3702(17)30090-5/bib4B6F7266313570757A7A6C65s1
http://refhub.elsevier.com/S0004-3702(17)30090-5/bib4B6F7266313570757A7A6C65s1
http://refhub.elsevier.com/S0004-3702(17)30090-5/bib44424C503A6A6F75726E616C732F6A61636D2F4B6F72665A54483035s1
http://refhub.elsevier.com/S0004-3702(17)30090-5/bib4B6F77616C736B693732s1
http://refhub.elsevier.com/S0004-3702(17)30090-5/bib4B6F77616C736B693732s1
http://refhub.elsevier.com/S0004-3702(17)30090-5/bib44424C503A6A6F75726E616C732F6361636D2F4B756E6B6C65433038s1
http://refhub.elsevier.com/S0004-3702(17)30090-5/bib4B7761425331393839s1
http://refhub.elsevier.com/S0004-3702(17)30090-5/bib4361726C6F73506572696D657465723032s1
http://refhub.elsevier.com/S0004-3702(17)30090-5/bib4361726C6F73506572696D657465723032s1
http://refhub.elsevier.com/S0004-3702(17)30090-5/bib534642445332303132s1
http://refhub.elsevier.com/S0004-3702(17)30090-5/bib534642445332303132s1
http://refhub.elsevier.com/S0004-3702(17)30090-5/bib4C75627931393839s1
http://refhub.elsevier.com/S0004-3702(17)30090-5/bib4D616E7A696E693935s1
http://refhub.elsevier.com/S0004-3702(17)30090-5/bib4D617274656C6C693737s1
http://refhub.elsevier.com/S0004-3702(17)30090-5/bib4D6F687231393838s1
http://refhub.elsevier.com/S0004-3702(17)30090-5/bib4E6963686F6C736F6E3636s1
http://refhub.elsevier.com/S0004-3702(17)30090-5/bib4E6965776961646F6D736B693036s1
http://refhub.elsevier.com/S0004-3702(17)30090-5/bib4E6965776961646F6D736B693036s1
http://refhub.elsevier.com/S0004-3702(17)30090-5/bib4E696C73736F6E3830s1
http://refhub.elsevier.com/S0004-3702(17)30090-5/bib706561726C3834s1
http://refhub.elsevier.com/S0004-3702(17)30090-5/bib50696C6A7332303039s1
http://refhub.elsevier.com/S0004-3702(17)30090-5/bib50696C6A7332303130s1
http://refhub.elsevier.com/S0004-3702(17)30090-5/bib706F686C545231393639s1
http://refhub.elsevier.com/S0004-3702(17)30090-5/bib506F6C69746F77736B693834s1
http://refhub.elsevier.com/S0004-3702(17)30090-5/bib506F6C69746F77736B693834s1
http://refhub.elsevier.com/S0004-3702(17)30090-5/bib50756C69646F3132s1
http://refhub.elsevier.com/S0004-3702(17)30090-5/bib50756C69646F3132s1
http://refhub.elsevier.com/S0004-3702(17)30090-5/bib7265696E6566656C643139393461696461s1
http://refhub.elsevier.com/S0004-3702(17)30090-5/bib7265696E6566656C643139393461696461s1
http://refhub.elsevier.com/S0004-3702(17)30090-5/bib527562696B73437562654469616D65746572s1
http://refhub.elsevier.com/S0004-3702(17)30090-5/bib527562696B73437562654469616D65746572s1
http://refhub.elsevier.com/S0004-3702(17)30090-5/bib53616468756B68616E3132s1
http://refhub.elsevier.com/S0004-3702(17)30090-5/bib53616468756B68616E3132s1
http://refhub.elsevier.com/S0004-3702(17)30090-5/bib536861726F6E32303136s1
http://refhub.elsevier.com/S0004-3702(17)30090-5/bib73747572746576616E743230313262656E63686D61726B73s1
http://refhub.elsevier.com/S0004-3702(17)30090-5/bib73747572746576616E743230313670656D6Ds1
http://refhub.elsevier.com/S0004-3702(17)30090-5/bib73747572746576616E74323031377663s1
http://refhub.elsevier.com/S0004-3702(17)30090-5/bib53747572746576616E743133s1
http://refhub.elsevier.com/S0004-3702(17)30090-5/bib53747572746576616E743133s1
http://refhub.elsevier.com/S0004-3702(17)30090-5/bib57696C743133s1
http://refhub.elsevier.com/S0004-3702(17)30090-5/bib57696C743133s1

	MM: A bidirectional search algorithm that is guaranteed to meet in the middle
	1 Introduction
	2 Terminology and previous work
	2.1 Stopping condition
	2.2 Selecting the next node to expand
	2.3 Heuristics for bidirectional heuristic search

	3 Meeting in the middle
	3.1 Previous Bi-HS algorithms fail to meet in the middle
	3.1.1 Cardinality criterion variants
	3.1.2 Alternation or smallest f
	3.1.3 Front-to-front systems

	3.2 Transforming heuristic search into brute-force search
	3.3 Why meet in the middle?

	4 MM: a novel Bi-HS family of algorithms
	4.1 Basic MM
	4.1.1 Pseudocode for MM
	4.1.2 Properties of MM

	4.2 MM0
	4.3 MMe
	4.3.1 MM vs. MMe

	5 Parallel external-memory MM
	5.1 Algorithmic changes to MM
	5.1.1 States are not stored in Open and Closed in RAM
	5.1.2 States in Open and Closed are broken into buckets on disk
	5.1.3 Tie-breaking from low to high g-cost
	5.1.4 Delayed duplicate detection (DDD)
	5.1.5 Delayed solution detection
	5.1.6 Remove ε variants from MM
	5.1.7 Parallel search

	5.2 Pseudocode for PEMM
	5.3 Correctness of DSD

	6 Region based analysis
	6.1 Dividing the state space into disjoint regions
	6.2 Preliminaries
	6.3 MM0 compared to Uni-BS
	6.4 MM0 compared to A*
	6.5 MM compared to A*
	6.5.1 MM compared to A* with inconsistent heuristics

	6.6 MM0 compared to MM: an anomaly
	6.7 Summary

	7 Experiments
	7.1 10-Pancake puzzle
	7.1.1 C*=10
	7.1.2 Does MM outperform A* because of tie-breaking?
	7.1.3 Convergence to MM0

	7.2 Grid maps
	7.3 Rubik's cube

	8 Conclusions and future work
	Acknowledgements
	Appendix A Proofs of MMe's properties
	A.1 Terminology - nodes vs. states
	A.2 Formal deﬁnitions, theorems, and proofs
	A.3 MMe with consistent heuristics
	A.4 Using a stronger stopping condition

	References

