
Learning To Play Hearts

Nathan R. Sturtevant and Adam M. White

Department of Computer Science
University of Alberta

Edmonton, AB, Canada T6G 2E8
{nathanst, awhite}@cs.ualberta.ca

Abstract. Temporal difference (TD) learning has been used for learning
in a variety of different games. TD-gammon illustrated how the combina-
tion of game tree search and learning methods can achieve grand-master
level play in backgammon. However, this expert level of intelligence has
been difficult to replicate in other games. In this work, we develop a
hearts player based on a linear perceptron and TD learning. By carefully
engineering a small set of basic game features, our simple learner was able
to beat the best known search based hearts agents with little parameter
tuning. We report initial results on learning with various combinations
of features and training under self-play and against expert level search
players.

1 Introduction and Background

Learning algorithms offer the promise of successfully solving complex control
tasks. But, in practice there is a significant amount of work that needs to be
done to tune each learning approach for specific problems and domains. We
describe here the methods used to build a program to play the game of Hearts
which is significantly stronger than a previously built expert-based program.

1.1 Hearts

Hearts is a trick-based card game, usually played with four players and a stan-
dard deck of 52 cards. Before play begins, 13 cards are dealt out to each player
face-down. After all players look at their cards, the first player plays (leads) a
card face-up on the table. The other players follow in order, if possible playing
the same suit as was lead. When all players have played, the player who played
the highest card in the suit that was led wins or takes the trick. This player
places the played cards face-down in his pile of taken tricks, and leads the next
trick. This continues until all cards have been played.

The goal of Hearts is to take as few points as possible. A player takes points
based on the cards in the tricks taken. Each card in the suit of hearts (♥) is
worth one point, and the queen of spades (Q♠) is worth 13. If a player takes
all 26 points, also called shooting the moon, they instead get 0 points, and the
other players get 26 points each.



For those familiar with the game of Hearts, there are many variations on
the rules of Hearts for passing cards between players before the game starts,
determining who leads first, determining when you can lead hearts, and providing
extra points based on play. In this work we use the simplest variations of the
rules; there is no passing of cards and no limitations on when cards can be played.
Also, we do not use the rule for shooting the moon.

Hearts is an imperfect information game because players cannot see their
opponents’ cards. In practice, imperfect information in card games has been
handled successfully using Monte-Carlo search ([1], [2]) despite the known lim-
itations of this approach [3]. We concentrate on learning to play the perfect-
information version of the game for use with Monte-Carlo sampling in the full
game.

1.2 Hearts-Related Research

There have been several studies on learning and search algorithms for the game of
Hearts. Because Hearts is a multi-player game (more than two players) minimax
search cannot be used. Instead maxn [4] is the general algorithm for playing
multi-player games.

Perkins [5] developed two search-based approaches for multiplayer imperfect
information games based on maxn search. The first search method built a maxn

tree based on move availability and value for each player. The second method
maximized the maxn value of search trees generated by Monte-Carlo. The resul-
tant players yielded low to moderate levels of play against human and rule-based
based players.

One of the strongest computer Hearts programs [2] resulted from work fo-
cused primarily on algorithms for playing multi-player games. This program was
significantly stronger than one of the best commercial programs available at the
time. However, the program is still weaker than humans; its biggest weakness is
its inability to stop opponents from ‘shooting the moon’. We used this program
as an expert to train against in some of our experiments for this paper.

Fujita et al have done several studies on applying reinforcement learning
(RL) algorithms to the game of hearts. In their recent work [6], Fujita et al ap-
proached the game as a POMDP, where the agent can observe the game state,
but other dimensions of the state, such as the opponents’ hands, are unobserv-
able. Using a one step history, they constructed a new model of the opponents’
action selection heuristic according to the previous action selection models. Al-
though their learned player performed better than their previous players and
also beat rule-based players, it is difficult to know the true strength of the learn-
ing algorithm and resultant player. This is due to the limited number of training
games and lack of validation of the final learned player. The work of Fujita et
al differs from ours in that they understate the feature selection problem, which
was a crucial factor in the high level of play exhibited by our learning agents.

Finally, Fürnkranz et al [7] have done some initial work using RL techniques
to employ an operational advice system to play hearts. A neural network was
used with temporal difference learning to learn a mapping from state abstraction



and action selection advice to a number of move selection heuristics. This allowed
their system to learn a policy using a very small set of features (15) and little
training. However, this work is still in its preliminary stages and the resulting
player exhibited only minor improvement over the greedy action selection of the
operational advice system on which the learning system was built.

1.3 Reinforcement Learning

In reinforcement learning an agent interacts with an environment by selecting
actions in various states to maximize the sum of scalar rewards given to it by
the environment. In hearts, for example, a state consists of the cards held by
and taken by each player in the game and negative reward is assigned each time
you take a trick with points on it. The environment includes other players as
well as the rules of the game.

The RL approach has strong links to the cognitive processes that occur in
the brain and has proved very effective in Robocup soccer [8], industrial elevator
control and backgammon [9]. These learning algorithms were able to obtain near
optimal policies simply from trial and error interaction with the environment in
high dimensional and sometimes continuous valued state and action spaces.

All of the above examples use temporal difference (TD) learning [9]. In the
simplest form of TD learning an agent stores a scalar value for the estimated
reward of each state, V (s). The agent selects the action which leads to the state
with the highest utility. In the tabular case, the value function is represented
as an array indexed by states. At each decision point or step of an episode the
agent updates the value function according to the observed rewards. TD uses
bootstrapping, where an agent updates its state value with the reward received
on the current time step and the difference between the current state value
and the state value on the previous time step. TD(λ) updates all previously
encountered state values according to an exponential decay, which is determined
by λ.

V (sT ) = <T

V (si) = (1− λ)V (si) + λV (si+1)

<T is the final reward at the end of an episode. Due to space restrictions we
refer the reader to Sutton and Barto [9] for a full description of the algorithm.

1.4 Function Approximation

Under certain technical conditions TD(λ) is guaranteed to converge to an opti-
mal solution in the tabular case, where a unique value can be stored for every
state. But, many interesting problems such as Hearts have a restrictively large
number states. Given a deck of 52 cards with each player being dealt 13 cards,
there are 52!/13!4 = 5.4 × 1028 possible hands in the game. But, this is only a
lower bound on actual size of the state space because it does not consider the
possible states that we could encounter while playing the game. Regardless, we



cannot store this many states in memory, and even if we could, we do not have
the time to visit and train in every state.

Therefore, we need some method to approximate the states of the game. In
general this is done by choosing a set of features which approximate the states
of the environment. A function approximator must map these features into a
value function for each state in the environment. This generalizes learning over
similar states and increases the speed of learning, but potentially introduces
generalization error as the features will not represent the state space exactly.

One of the simplest function approximators is the linear perceptron. A per-
ceptron computes a state value function as a weighted sum of its input features.
In a learning task the perceptron only has to update the appropriate weights
for the input features. In a state, s, we update the weights, w, according to the
output error for a state, which is provided by TD learning:

w ← w + α· error·φs

where φs is the input features for the current state.
The output of a perceptron is a linear function of its input. Thus, a perceptron

can only learn linearly separable functions. But most interesting problems require
a nonlinear mapping from features to state values. In many cases one would
turn to a more complex function approximator, such as a neural network or
radial-basis functions. Neural networks can represent any nonlinear function,
given several technical conditions on learning parameters and number of hidden
layers [10]. Neural networks, however, suffer from slow learning rates and large
computation costs, making them less than ideal in practice. So, instead of using
a more complicated function approximator, we instead use a more complicated
set of features with a simple perceptron.

This can be demonstrated with a simple example: Consider the task of learn-
ing the XOR function based on two inputs1. A two input perceptron cannot
learn this function because XOR is not linearly separable. But, if we simply
augment the network input with an extra input which is the logical AND of the
first two inputs, the network can learn the optimal weights. In fact, all subsets
of n points are always linearly separable in n−1 dimensional space. Thus, given
enough features, a non-linear problem can have a exact linear solution.

2 Learning to Play Hearts

Before we look at Hearts, we briefly discuss the features of backgammon which
make it an ideal domain for TD learning. For instance, in backgammon, pieces are
always forced to move forward, except in the case of captures, so games cannot
run forever. Also, the moves available to each player are randomly determined
by a dice roll, which means that the learning player encounters different lines of
play each game, unlike in a deterministic game like chess where the same game
can be repeated. Thus, self-play has worked well in backgammon.
1 The output of an XOR function is 1 iff both inputs differ, otherwise the output is 0.



Hearts has some similar properties. Each player makes exactly 13 moves in
every game, which means we do not have to wait long to evaluate the rewards
associated with play. Thus, we can quickly generate and play training games. Ad-
ditionally, cards are dealt randomly, so, like in backgammon, players are forced
to explore different lines of play in each game. Another useful characteristic of
Hearts is that even a weak player occasionally gets good cards. Thus, we are
guaranteed to see examples of good play.

One key difference between Hearts and backgammon is that the value of
board positions in backgammon tend to be independent. In Hearts, however,
the value of any card is relative to what other cards have been played. For
instance, it is a strong move to play the 10♥ when the 2-9♥ have already been
played. But, if they have not, it is a weak move. This complicates the features
needed to play the game.

2.1 Feature Generation

Given that we are using a simple function approximator, we need a rich set of
features. In the game of Hearts, and card games in general, there are many very
simple features which are readily accessible. For instance, we can have a single
binary feature for each card that each player holds in their hand and for each
card that they have taken (e.g. the first feature is true if Player 1 has the 2♥,
the second is true if Player 1 has the 3♥, etc.). This would be a total of 104
features for each player and 416 total features for all players. This set of features
fully specifies a game, so in theory it should be sufficient for learning, given a
suitably powerful function approximator.

However, consider a simple question like: “Does player 1 has the lowest heart
left?” Answering this question based on such simple features is quite difficult,
because the lowest heart is determined by the cards that have been played al-
ready. If we wanted to express this given the simple features described above,
it would look something like: “[Player 1 has the 2♥] OR [Player 1 has the 3♥
AND Player 2 does not have the 2♥ AND Player 3 does not have the 2♥ AND
Player 4 does not have the 2♥] OR [Player 1 has the 4♥ ...]” While this full
combination could be learned by a sufficiently powerful function approximator,
it is unlikely.

So, instead of using the most basic features possible in the game, we defined
our own set of simple features, which we will call atomic features. These features
are perfect-information features, so they depend on the cards other players hold.
Then we built higher level features by combining these atomic features together.
One set of atomic features used for learning can be found in Appendix A.

We might be able to sit down and write all useful combinations of our atomic
features, but this would be tedious, error-prone, and time consuming. Instead,
given a set of atomic features, we generated new features by taking successive
pair-wise AND combinations of all atomic features. Obviously we could take this
further by adding OR operations and negations. But, to limit feature growth we
currently only consider the AND operator.



2.2 TD Parameters

For all experiments described here we used TD-learning as follows. The value of
λ was set to 0.75. We first generated and played out a game of Hearts using a
single learning player and either three expert search players [2], or three copies of
our learned network for self-play. Moves were selected using the maxn algorithm
with a lookahead depth of one to four, based on how many cards were left to
play on the current trick. We used our own network as the evaluation function
for our opponents.

To simplify the learned network we only evaluated the game in states where
there were no cards on the current trick. Additionally we did not learn in states
where all the points had already been played. After playing a game we computed
the reward for the learning player and then stepped backwards through the
game, using TD-learning to update our target output and train our perceptron
to predict the target output at each step. We did not attempt to train using
more complicated methods such as TDLeaf [11].

2.3 Learning To Avoid the Q♠
Our first learning task was to predict whether we would take the Q♠. We trained
the perceptron to return an output between 0 and 13, the value of the Q♠ in
the game. In practice, we cut the output off with a lower bound of 0 + ε and
an upper bound of 13− ε so that the search algorithm could always distinguish
between states where we expected to take the Q♠ versus states where we already
had taken the Q♠, preferring those where we had not yet taken the queen. The
perceptron learning rate was set to 1/(13× number active features).

We used 60 basic features, listed in Appendix A, as the atomic features for
the game. Then, we built pair-wise, three-wise and four-wise combinations of
these atomic features. The pair-wise combinations of these features results in
1,830 total features, three-wise combinations of the atomic features results in
34,280 total features, and four-wise combinations of features results in 523,685
total features. But, many of these features are mutually exclusive and can never
occur. We initialized the feature weights randomly between ±1/numfeatures.

The average score of the learning player during training is shown in Figure 1.
This learning curve is performance relative to the expert program produced in
[2]. Except for the four-wise features, we did five training runs of 200,000 games
against the expert program. Scores were then averaged between each run and
over a 5,000 game window. With 13 points in each hand, evenly matched players
would expect to take 3.25 points per hand. The horizontal line in the figure is
this break-even point between the learned and expert programs.

These results demonstrate that the atomic features alone are insufficient for
learning to avoid taking the Q♠. The pair-wise features are also insufficient, but
are better than the atomic features alone. Both the three-wise and four-wise
combinations of features, however, are sufficient to beat the expert program.
While the four-wise combinations of features are generally better than the three-
wise combinations, each training game with the four-wise features is roughly ten
times slower than with the three-wise features.



0 50000 100000 150000 200000
games

2.5

3

3.5

4

4.5

5

av
er

ag
e 

sc
or

e

QOS Atomic Features
QOS 2X Features
QOS 3X Features
QOS 4X Features

Fig. 1. Learning to not take the Q♠ using various combinations of atomic features.
The break-even point is at 3.25

Table 1. Features predicting we can avoid the Q♠.

Rank Weight Top Features - Predicting we will not take the Q♠
1. -0.103 One of J-2♠ Lead Q♠ player has no other ♠
2. -0.097 One of J-2♠ No ♥ Lead Q♠ player has no other ♠
3. -0.096 Two of J-2♠ We have K♠ Q♠ player has two other ♠.
4. -0.093 One of J-2♠ No ♣ Lead Q♠ player has no other ♠
5. -0.090 One of J-2♠ No ♦ Lead Q♠ player has no other ♠
148. -0.040 One of J-2♠ We have Q♠ Lead player has no ♠

We next analyze the important features learned by the player using four-wise
combinations of features. Table 1 shows some of the features which best predict
avoiding the Q♠. This player actually uses all atomic, pair-wise, three-wise and
four-wise features, so some of the best features in this table only have three
atomic features. Weights are negative because they reduce our expected score in
the game.

There are a few things to note about these features. First, we can see that
the highest weighted feature is also one learned quickly by novice players: If
the player with the Q♠ has no other spades and we can lead spades, we are
guaranteed not to take the Q♠. In this case, leading a spade will force the Q♠
onto another player.

Because we have generated all four-wise combinations of features, and this
feature only requires three atomic features to specify, we end up getting the same
atomic features repeated multiple times with an extra atomic features added.
The features ranked 2, 4 and 5 are copies of the first feature with one extra



Table 2. Features predicting we will take the Q♠.

Rank Weight Top Features - Predicting we will take the Q♠
1. 0.125 We have Q♠ One of J-2♠ Lead
2. 0.123 We have Q♠ One of J-2♠
3. 0.117 We have Q♠ No ♣ No ♥ Lead
4. 0.116 Only A/K/Q♠ Lead
5. 0.112 We have Q♠ No ♣ No ♥ No ♦

atomic feature added. The 148th ranked feature should seem odd, but we will
explain it when looking at the features which predict that we will take the Q♠.

The features that best predict taking the Q♠ are found in table 2. It takes a
bit more work to understand these features. We might expect to find mirrored
versions of the features from table 1 in table 2 (eg. we have a single Q♠ and
the player to lead has spades). This feature is among the top 300 (out of over
500,000) features, but not in the top five features.

What is interesting about table 2 is the interactions between features. Again,
we see that the atomic features which make up the 2nd ranked feature are a
subset of the highest ranked feature. In fact, these two atomic features appear
259 times in the top 20,000 features. 92 times they are part of a feature which
decreases the chance of us taking the Q♠, while 167 times they increase the
likelihood. We can use this to explain what the perceptron has learned: Having
the Q♠ with only one other spade in our hand means we are likely to take the
Q♠ (feature 2 in table 2). If we also have the lead (feature 1 in table 2), we are
even more likely to take the Q♠. But, if someone else has the lead, and they do
not have spades (feature 148 in table 1), we are much less likely to take the Q♠.

In retrospect, the ability to do this analysis is one of the benefits of putting
the complexity into the features instead of the function approximator. If we rely
on a more complicated function approximator to properly learn weights, it is
very difficult to analyze the resulting network. Because we have simple weights
on more complicated features it is not difficult to analyze what has been learned.

2.4 Learning to Avoid Hearts

We used similar methods to predict how many hearts we would take within
a game, and learned this independently of the Q♠. One important difference
between the Q♠ and points taken from hearts is that the Q♠ is taken by one
player all at once, while hearts are gradually taken throughout the course of the
game. To handle this, we removed 14 Q♠ specific features and added 42 new
atomic features to the 60 atomic features used for learning the Q♠. The new
features were the number of points (0-13) taken by ourselves, the number of
points taken (0-13) by all of our opponents combined, and the number of points
(0-13) left to be taken in the game.

Given these atomic features, we then trained with all atomic (88), pair-
wise (3,916) and three-wise (109,824) combinations of features. As before, we



0 50000 100000 150000 200000
games

2.5

3

3.5

4

av
er

ag
e 

sc
or

e

Atomic Hearts Features
2X Hearts Features
3X Hearts Features

Fig. 2. Learning to not take the Hearts using various combinations of atomic features

present the results averaged over five training runs (200,000 games each) and
then smoothed over a window of 5,000 games. The learning graph for this train-
ing is in Figure 2. An interesting feature of these curves is that, unlike when
learning the Q♠, we begin to learn more slowly (per game) when we go from
two-wise to three-wise features. It appears, then, that learning to avoid taking
hearts is a bit easier than avoiding the Q♠. Because of this, we did not try all
four-wise combinations of features.

2.5 Learning Both Hearts and the Q♠

With two programs that separately learned partial components of the full game
of Hearts, the final task is to combine them together. We did this by extracting
the most useful features learned in each separate task, and then combined them
to learn to play the full game. The final learning program had the top 2,000
features from learning to avoid hearts and the top 10,000 features from learning
to avoid the Q♠.

We tried training this program in two ways: first, by playing against our
expert program, and second, by self-play. The first results are in Figure 3. Instead
of plotting the learning curve, which is uninteresting for self-play, we instead plot
the performance of the learned network against the expert program. We did this
by playing games between the networks that were saved during training and the
expert program. So, each data point is the average score per hand of the learned
player after playing 1400 hands against the expert program. The horizontal line
is the break-even point between the programs. Since there are 26 points in the
full game, the break-even point falls at 6.5 points. Since lower scores are better,



0 50000 100000 150000 200000 250000 300000
Rounds

5

6

7

8

9

A
ve

ra
ge

 S
co

re

Expert Trained

Self-Play Trained

Fig. 3. Performance of self-trained player and expert-trained player against expert
program

we see that both the self-trained player and the expert-trained player learn to
beat the expert by the same rate, about 1 point per hand.

Then, in Figure 4 we show the results from taking corresponding networks
trained by self-play and expert-play and playing them in tournaments against
each other. Although both of these programs beat the previous expert program
by the same margin, the program trained by self play managed to beat the
expert-trained program by a large margin; again about 1 point per hand.

While we cannot provide a decisive explanation for why this occurs, we spec-
ulate that the player which only trains against the expert does not sufficiently
explore the state space, and so does not learn to play well in certain situations
of the game where the previous expert always makes mistakes. The program
trained by self-play, then, is able to exploit this weakness.

3 Conclusions and Future Work

The work presented in this paper presents a significant step in learning to play
the game of Hearts and in learning for multi-player games in general. But, there
are many issues which still need to be investigated.

For instance, we did all of our learning in the perfect information variant of
Hearts, relying on our ability to do Monte-Carlo search to handle imperfect infor-
mation. It would be worthwhile to build a similar program that learned to play
the imperfect information game, and then to compare the resulting programs to
see which one was stronger.

Similarly, we used the maxn algorithm for move selection in the game. There
are other algorithms that can be used including the paranoid algorithm [12] or



0 25000 50000 75000 100000 125000
games

5

6

7

8

av
er

ag
e 

sc
or

e

Expert trained player
Self-play trained player

Fig. 4. Performance of self-trained player vs. expert-trained player

soft-maxn [13]. It would be useful to see if there are any advantages or disad-
vantages to using these algorithms during training and/or play.

Finally, we would like to eventually learn to play the full game of Hearts well,
which includes passing cards between players and learning to prevent other play-
ers from shooting the moon. We expect that we can train the current program
to effectively stop other players from shooting the moon, but it will be more of a
challenge to decide when the program should shift its strategy to trying to shoot
the moon.

Acknowledgements

We would like to thank Rich Sutton for his feedback and suggestions regarding
this work. We would also like to thank Mark Ring for many useful discussions on
various learning approaches. This work was supported by Alberta’s Informatics
Circle of Research Excellence (iCORE).

A Atomic Features Used to Learn the Q♠

Unless explicitly stated, all features refer to cards in our hand. The phrase “to start”
refers to the initial cards dealt. “Exit” means we have a card guaranteed not to take
a trick. “Short” means we have no cards in a suit. “Backers” are the J-2♠. “Leader”
and “Q♠ player” refers to another player besides ourself.

we have Q♠ we have A♠ we have K♠
≥5 spades besides AKQ♠ 0 spades besides AKQ♠ 1 spades besides AKQ♠
2 spades besides AKQ♠ 3 spades besides AKQ♠ 4 spades besides AKQ♠
≥ 3 diamonds to start 0 diamonds to start 1 diamonds to start



2 diamonds to start currently short diamonds currently not short diamonds
opponent short diamonds exit in diamonds ≥ 3 clubs to start
0 clubs to start 1 clubs to start 2 clubs to start
currently short clubs currently not short clubs opponent short clubs
exit in clubs ≥ 3 hearts to start 0 hearts to start
1 hearts to start 2 hearts to start currently short hearts
currently not short hearts opponent short hearts exit in hearts
we have single Q♠ we have single A♠ we have single K♠
we have lead Q♠ player has 0 backers Q♠ player has 1 backers
Q♠ player has 2 backers Q♠ player has ≥3 backers Q♠ player has 0 shorts
Q♠ player has 1 shorts Q♠ player has 2 shorts Q♠ player has 3 shorts
Q♠ player has short diamonds Q♠ player has short clubs Q♠ player has short hearts
leader short spades leader short diamonds leader short clubs
leader short hearts leader not short spades leader not short diamonds
leader not short clubs leader not short hearts we have forced high spade
we have forced high diamond we have forced high club we have forced high heart

References

1. Ginsberg, M.: Gib: Imperfect information in a computationally challenging game
(2001)

2. Sturtevant, N.R.: Multi-Player Games: Algorithms and Approaches. PhD thesis,
Computer Science Department, UCLA (2003)

3. Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach. Prentice Hall;
2nd edition, Englewood Cliffs, NJ (2002)

4. Luckhardt, C., Irani, K.: An algorithmic solution of N -person games. In: AAAI-86.
Volume 1. (1986) 158–162

5. Perkins, T.: Two search techniques for imperfect information games and applica-
tion to hearts. University of Massachusetts Technical Report 98-71 (1998)

6. Fujita, H., Ishii, S.: Model-based reinforcement learning for partially observable
games with sampling-based state estimation. In: Advances in Neural Information
Processing Systems, Workshop on Game Theory, Machine Learning and Reasoning
under Uncertainty. (2005)

7. Fürnkranz, J., Pfahringer, B., Kaindl, H., Kramer, S.: Learning to use operational
advice. In: Proceedings of the 14th European Conference on Artificial Intelligence.
(2000)

8. Stone, P., Sutton, R.S.: Scaling reinforcement learning toward RoboCup soccer.
In: Proc. 18th International Conf. on Machine Learning, Morgan Kaufmann, San
Francisco, CA (2001) 537–544

9. Sutton, R., Barto, A.: Reinforcement Learning: An Introduction. MIT Press (1998)
10. Mitchell, T.: Machine Learning. McGtaw-Hill (1997)
11. Baxter, J., Trigdell, A., Weaver, L.: Knightcap: a chess program that learns by

combining TD(λ) with game-tree search. In: Proc. 15th International Conf. on
Machine Learning, Morgan Kaufmann, San Francisco, CA (1998) 28–36

12. Sturtevant, N.R., Korf, R.E.: On pruning techniques for multi-player games. In:
AAAI-2000. (2000)

13. Sturtevant, N.R., Bowling, M.H.: Robust game play against unknown opponents.
In: To Appear, AAMAS-2006. (2006)

14. Tesauro, G.: Temporal difference learning and td-gammon. Communications of
the ACM 38 (3) (1995) 58–68


