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Abstract

Real-time agent-centric algorithms have been used for learn-
ing and solving problems since the introduction of the LRTA*
algorithm in 1990. In this time period, numerous variants
have been produced, however, they have generally followed
the same approach in varying parameters to learn a heuristic
which estimates the remaining cost to arrive at a goal state.
This short paper discusses the history and implications of
learning g-costs, both alone and in conjunction with learn-
ing h-costs as an introduction to the new f-LRTA* algorithm
which learns both.

Introduction and Background

Agent-centered real-time heuristic search algorithms
(Koenig 2001) model an agent trying to find a route through
an initially unknown environment. With limited sensing
the agent can only plan and reason in its local vicinity.
With limited computational power, the agent is forced to
record the result of any learning in the environment. In
order to guarantee that an agent will not get permanently
stuck in a local minima, learning rules are used to update
knowledge about the environment. By far the most common
type of learning is heuristic (h-cost) learning, or learning
an estimate of the cost to reach the goal state. In a repeated
learning paradigm or with multiple agents, previous learning
can be re-used for better performance or until an optimal
solution is found.

LRTA* (Korf 1990), is often considered to be the first
agent-centered search algorithm. However, the current for-
mulation of the problem is somewhat removed from the in-
tent of this first work, which was to find suboptimal solutions
to large problems which could not be solved directly. A wide
variety of other researchers have worked on this and simi-
lar problems over many years (eg (Russell and Wefald 1991;
Shimbo and Ishida 2003; Koenig and Sun 2009)), although it
is beyond the scope of this paper to discuss their approaches
in detail.

A reliance on similar heuristic learning approaches and a
lack of standardized test suites has resulted in many algo-
rithms which offer only incremental improvements over ex-
isting approaches. While some work has gone into standard-
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izing the various techniques used, such as in LRTS (Bulitko
and Lee 2006), more could be done in this regard.

A notable feature of the learning by LRTA* and similar
algorithms is a ‘scrubbing’ behavior where agents repeat-
edly cover the same terrain while slowly performing heuris-
tic learning. This behavior can be partially explained as a
result of the learning rule being used. In a particular type
of local minima on grid-maps, it has been shown (Sturte-
vant et al. 2010) that a local minima of IV states requires
O(N!) learning steps to escape. While constant factors
can be tuned to reduce this behavior, fundamentally the size
of a local minima can scale, while it is assumed that the rea-
soning capabilities of an agent are fixed, regardless of the
size of the environment. The analysis of more domains and
local minima is an open research question. An algorithm
would ideally require at most O(N) learning to escape a
local minima of N states, which would mean asymptotic
performance similar to A* (Hart et al. 1968). A¥* is not
agent-centric or real-time, but with a consistent heuristic, it
expands each state only once.

As an aside note that, while the need for planning speed
is correctly attributed to video games, heuristic learning and
the need to act in constant time independent of the problem
size is not. Memory allocation, and thus extensive online
learning, is expensive and avoided when possible. In most
games the maximum map size is also determined a priori
and, if an editor is not provided with the game, planning
only has to work on the maps that ship with the game. As
a general rule, work intended for use in games should be
compared against approaches already used in games, such
as (Sturtevant 2007), in important metrics such as memory
usage, planning speed, and implementation complexity.

Alternate Learning: g-costs

An approach which, in our view, has not received adequate
attention is the learning of distances from the start state, or
g-costs. One might ask why an agent would care where it
came from, because all that matters is reaching the goal. The
question is answered in more detail in (Sturtevant and Bul-
tiko 2011), but from a high-level perspective g-cost learning
provides more potential for an agent to escape a local min-
ima of N states in O(NV) time.

The learning of g-costs is not new. In agent-centered
search this learning was suggested in the FALCOLNS algo-



First Trial All Trials
Algorithm Dist. | States Exp. [ Time Dist. | States Exp. [ Time | Trials
RIBS 2,861,553 1,219,023 4.46 2,861,553 1,219,023 4.46 1
LSS-LRTA*(1) 633,377 2,761,163 | 12.58 | 23,660,293 | 98,619,076 | 266.81 | 12,376
LSS-LRTA*(10) 113,604 952,402 2.18 3,844,178 | 21,970,613 53.30 1951
LSS-LRTA*(100) 18,976 305,518 0.63 559,853 5,920,709 14.74 295
f-LRTA;*(1,10.0) 127,418 389,367 2.44 1,848,413 5,321,043 32.14 890
f-LRTA;*(10,10.0) 52,097 188,144 0.89 663,378 1,808,493 9.18 264
f-LRTA;*(100,10.0) 10,890 82,414 0.35 136,184 624,262 2.96 69

Table 1: Average results on Dragon Age: Origins maps with octile movement.

rithm (Furcy and Koenig 2000), which uses g-costs for tie-
breaking. The RIBS algorithm (Sturtevant et al. 2010) sug-
gested just learning g-costs, and showed that g-costs could
be used for identifying local minima within a map. Work
on merging RIBS and LRTA* resulted in f-LRTA* which
learns both g- and h-costs, and uses g-costs for pruning lo-
cal minima from the state space. f-LRTA* will converge to
the optimal solution

Along any optimal path to a goal, g-costs must increase.
Thus, if a state does not have successors with higher g-cost,
that state cannot be on an optimal path to the goal. Note
that in the simplest implementation, any pruning based on
this insight would require that the g-cost of any given state
be correct, but f-LRTA* prunes even when only estimates
of the g-cost of a state are available. This pruning can be
effective because it eliminates states that could otherwise be
attractive: those with low heuristic values suggesting that
they are close to the goal.

The same property holds in reverse for heuristics. Along
an optimal path, heuristics will be decreasing, so if a state
does not have predecessors with higher heuristic cost it can-
not be on an optimal path between the start and the goal. But,
this is a less useful observation for several reasons. Most
importantly, the rule would prune states that are farther from
the goal than the agent, which an agent would already natu-
rally avoid.

We provide evidence of the effectiveness of combined g-
cost and h-cost learning of f-LRTA* in Table 1. These re-
sults are taken from (Sturtevant and Bultiko 2011) and are
the result of experiments on grid-based maps from the game
Dragon Age: Origins. The first set of columns report aver-
age metrics required for reaching the goal state on the first
exploration of the environment, followed by the metrics re-
quired for convergence to an optimal solution when repeat-
edly solving the same problem. LSS-LRTA* (Koenig and
Sun 2009) is used as a sample algorithm for the purpose of
comparison. f-LRTA* has much better performance on all
metrics.

Even if only the first trial is used in some contexts, we
assert that both first trial and convergence results are inter-
esting and should be compared when possible, because they
give insight into how an algorithm alters the nature of a prob-
lem.

Summary and Conclusions

The purpose of this paper is to introduce and motivate the
use of g-cost learning in real-time agent-centered search.

Results have been provided showing the effectiveness of f-
LRTA*, which learns both g- and h-costs.

While these results are strong, there are many open ques-
tions for future research. f-LRTA* has a number of param-
eters would could be dynamically modified to adapt for the
environment and potentially improve performance. Even
more importantly, we have devised new pruning schemes
which have the potential to further reduce the planning costs
of f-LRTA*.

In order to make it easier for others to compare against
f-LRTA¥*, the implementation is available as open source'.
Additionally, we are in the process of building benchmark
sets for grid-based worlds? with the hope that the standard-
ized sets will provide improved performance comparisons
for algorithms in the future.
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