
A Comparison of Algorithms for Multi-Player Games

Nathan Sturtevant
UCLA, Computer Science Department

Los Angeles, CA 90024
nathanst@cs.ucla.edu

Abstract. The maxn algorithm (Luckhardt and Irani, 1986) for playing multi-
player games is flexible, but there are only limited techniques for pruning
maxn game trees. This paper presents other theoretical limitations of the maxn
algorithm, namely that tie-breaking strategies are crucial to maxn, and that zero-
window search is not possible in maxn game trees. We also present quantitative
results derived from playing maxn and the paranoid algorithm (Sturtevant and
Korf, 2000) against each other on various multi-player game domains, showing
that paranoid widely outperforms maxn in Chinese Checkers, by a lesser amount
in Hearts and that they are evenly matched in Spades. We also confirm the ex-
pected results for the asymptotic branching factor improvements of the paranoid
algorithm over maxn.

1 Introduction and Overview

Artificial Intelligence researchers have been quite successful in the field of two-player
games, with well-publicized work in Chess (Deep Blue, IBM) and Checkers [1], and
are producing increasingly competitive programs in games such as Bridge [2].
 If we wish to have similar success in multi-player games, there is much research yet
to be done. Many of the issues surrounding two-player games may be solved, but there
are many more unanswered questions in multi-player games. The most basic of these is
the question of which algorithm should be used for playing multi-player games.
 Unfortunately, the question is not as simple as just which algorithm to use. Every
algorithm is associated with other techniques (such as alpha-beta pruning or transposi-
tion tables) by which it can be enhanced. There are too many different techniques to
cover here, but we have chosen a few algorithms and techniques as a starting point.
 This paper considers the maxn [3] and paranoid [4] algorithms. In this paper we
introduce and discuss theoretical limitations with each algorithm, and then present our
results from playing these two algorithms against each other in various domains. Our
results indicate that the paranoid algorithm is worth considering in a multi-player game,
however the additional depth of search offered by the paranoid algorithm may not al-
ways result in better play. These results address games solely from a perfect-informa-
tion standpoint, leaving the question of imperfect information for future research.
 One popular multi-player game we will not address here is poker. Billings, et. al

[5] describe work being done on this domain. However, their focus is almost exclu-
sively directed towards opponent modeling, with almost no search, while our focus is
more on search.

2 Multi-Player Games: Hearts, Spades, and Chinese Checkers

To help make the concepts here more concrete, we chose two card games, Hearts and
Spades, and the board game Chinese Checkers to highlight the various algorithms pre-
sented.
 Hearts and Spades are both trick-based card games. Cards are dealt out to each
player before the game begins1. The first player plays (leads) a card face-up on the
table, and the other players follow in order, playing the same suit as lead if possible.
When all players have played, the player who played the highest card in the suit that
was led “wins” or “takes” the trick. He then places the played cards facedown in his
discard pile, and leads the next trick. This continues until all cards have been played.
 Hearts is usually played with four players, but there are variations for playing
with two or more players. The goal of Hearts is to take as few points as possible. A
player takes points when he takes a trick which contains point cards. Each card in the
suit of hearts is worth one point, and the queen of spades is worth 13. At the end of
the game, the sum of all scores is always 26, and each player can score between 0 and
26. If a player takes all 26 points, or “shoots the moon,” he instead gets 0 points, and
the other players all get 26 points each. These fundamental mechanics of the game are
unchanged regardless of the number of players.
 Spades can be played with 2-4 players. Before the game begins, each player pre-
dicts how many tricks they think they are going to take, and they then get a score based
on how many tricks they actually do take. With 4 players, the players opposite each

Figure 1: A Chinese Checkers board

1 There are rules for trading cards between players, but they have little bearing on the
work presented here.

other play as a team, collectively trying to make their bids, while in the 3-player version
each player plays for themselves. More in-depth descriptions of these and many other
multi-player games can be found in Hoyle et al [6].
 Chinese Checkers is a perfect information game for 2-6 players. A Chinese Check-
ers board is shown in Figure 1. The goal of the game is to get 10 pegs or marbles from
one’s starting position to one’s ending position as quickly as possible. These positions
are always directly across from each other on the board. Pegs move by stepping to an
adjacent position on the board or by jumping over adjacent pegs. One can jump over
any player’s pegs, or chain together several jumps, but pegs are not removed from the
board after a jump.

2.1 Imperfect-Information Games

 The paranoid and maxn algorithms, which we will cover next, are designed for
perfect-information games such as Chinese Checkers. In order to use them with imper-
fect-information games such as Spades or Hearts, we must either modify the algorithms
or modify the nature of the games we want to play. Both approaches have been used
successfully in two-player games, but it remains to be seen how they can be applied
successfully in multi-player games.
 If, in a card game, we could see our opponents’ cards, we would be able to use
standard search algorithm to play the game. While in most games we don’t know the
exact cards our opponent holds, we do know the probability of our opponent holding
any particular hand. Thus, we can create a hand that should be similar to what our op-
ponent holds, and use a perfect-information algorithm to play against it.
 The full expansion of this idea uses Monte-Carlo sampling. Instead of generating
just a single hand, we generate a set of hands that are representative of the actual hand
we expect our opponent to have. We then solve each of these hands using the standard
minimax algorithm. When we have completed the analysis of each hand, we combine
and analyze the results from each hand to produce our next play. As the play continues
we update our models to reflect the plays made by our opponent. This is one of the tech-
niques used to create a strong Bridge program. See [2] for a description of that work.

3 Multi-Player Game Algorithms

We review two multi-player game algorithms and their properties as a background for
the theory and results found in later sections.

3.1 Maxn

The maxn algorithm [3] can be used to play games with any number of players. For two-
player games, maxn simply computes the minimax value of a tree.

 In a maxn tree with n players, the leaves of the tree are n-tuples, where the ith ele-
ment in the tuple is the ith player’s score. At the interior nodes in the game tree, the
maxn value of a node where player i is to move is the child of that node for which the ith
component is maximum. This can be seen in Figure 2. In this tree there are three play-
ers. At node (a), Player 2 is to move. Player 2 can get a score of 3 by moving to the left,
and a score of 1 by moving to the right. So, Player 2 will choose the left branch, and the
maxn value of node (a) is (1, 3, 5). Player 2 acts similarly at node (b) selecting the right
branch, and at node (c) breaks the tie to the left, selecting the left branch. At node (d),
Player 1 chooses the move at node (c), because 6 is greater than the 1 or 3 available at
nodes (a) and (b).
 One form of pruning, shallow pruning, is possible in a maxn tree. Shallow pruning
refers to cases where a bound on a node is used to prune at the child of that node. To
prune, we need at least a lower bound on each player’s score, and an upper bound on
the sum of all players scores. For a full discussion see [4] and [7]. This work shows
that theoretically there are no asymptotic gains due to shallow pruning in maxn. This
contrasts with the large gains available from using alpha-beta pruning with minimax.
Another type of pruning, deep pruning, is not possible in maxn.
 If a monotonic heuristic is present in a game, it can also be used to prune a maxn
tree. The full details of how this occurs is contained in [4]. An example of a monotonic
heuristic is the number of tricks taken in Spades. Once a trick has been taken, it cannot
be lost. This guarantee can provide a lower bound on a player’s score, and an upper
bound on one’s opponents scores.
 In practice, almost no pruning occurs when using maxn to play Chinese Check-
ers. In Hearts, monotonic heuristic bounds on the scores can provide some pruning.
In Spades, both monotonic heuristics and shallow pruning can be combined for more
significant amounts of pruning.

3.2 Paranoid Algorithm

The lack of pruning in maxn has motivated research into other methods which might be

2 2 2

1

3
(1, 3, 5)

3
(6, 1, 3)

3
(6, 4, 0)

3
(3, 5, 2)

3
(6, 4, 0)

3
(1, 4, 5)

(3, 5, 2) (6, 4, 0)

(6, 4, 0)

(c)(b)

Figure 2: A 3-player maxn game tree

(1, 3, 5)
(a)

(d)

able to search faster or deeper into a multi-player game tree. The paranoid algorithm
does this by reducing a n-player game to a 2-player game. It assumes that a coalition
of n-1 players have formed to play against the remaining player. We demonstrate this
in Figure 3. In this tree Players 2 and 3 ignore their own scores, and simply try to
minimize Player 1’s score. At nodes (a) and (b), Player 2 makes the same choice as in
Figure 1, but at node (c), Player 2 chooses the right branch. Then, at the root, (d), Player
1 chooses to move towards node (b) where he can get a score of 3.
 If we search an n-player game tree with branching factor b to depth d, the paranoid
algorithm will, in the best case, expand bd(n-1)/n nodes. [4] This is the general version
of the best case bound for a two-player game, bd/2 [8]. So, making the assumption that
our opponents have formed a coalition against us should allow us to search deeper into
a game tree, and therefore produce better play. Obviously as the number of players
grows, the added efficiency of paranoid will drop. But, most multi-player games are
played with 3-6 players, in which case paranoid can search 20-50% deeper.

4 Theoretical Properties of Maxn

Before we delve into the theoretical properties of multi-player algorithms, we return
briefly to two-player games. For those familiar with game theory, one reason the mini-
max algorithm is so powerful is because it calculates an equilibrium point and strategy
for a given game tree. This strategy guarantees, among other things, some payoff p,
regardless the strategy of the opponent. This statement is quite strong, and it allows us
to, for the most part, ignore our opponents strategy. As we will see, we cannot make
such strong statements about maxn.

4.1 Equilibrium Points in Maxn

 It has been shown that, in a multi-player game, maxn computes an equilibrium point

2 2 2

1

3
(1)

3
(6)

3
(6)

3
(3)

3
(6)

3
(1)

(3) (1)

(3)

(c)(b)

Figure 3: The paranoid version of the game tree in Fig. 2

(1)
(a)

(d)

[3]. But, the concept of an equilibrium point in a multi-player game is much weaker
than that in a two-player game. In a multi-player game there are multiple equilibrium
points that may have completely different equilibrium values and strategies. For those
unfamiliar with game theory, it will suffice to understand that while there is a single
minimax value for a two-player game tree, there are multiple possible maxn values for
a multi-player game tree, which can all be different.
 An example of this can be seen in Figure 2 at node (c). At this node Player 2 can
make any choice, as either will lead to the same score for Player 2. But, if Player 2
chooses (1, 4, 5) as the maxn value of node (c), Player 1 will choose the result from
node (b), (3, 5, 2) to be the maxn value of the tree. These are both valid, but different,
equilibrium points in the tree. In a two-player game, since tie-breaking cannot affect
the minimax value of the tree, ties are broken in favor of the left-most branch, allowing
any additional ties to be pruned. However, in a multi-player game we cannot do this.
Lemma 1. In a multi-player game, changing the tie-breaking rule may arbitrarily affect
the maxn value of the tree.
Proof: Figure 4 contains a generic maxn tree. We have represented Player 2’s possible
scores by x and y. The scores for the other players can obviously be arbitrarily affected
by the way we break the ties for Player 2. By adjusting the tie breaking, we can also
change whether Player 1 moves to the left or right from the root, and so can affect
whether Player 2’s score will be x or y. ®
 This result doesn’t mean that maxn is a worthless algorithm. A game tree with no
ties will have a single maxn value. In addition, each possible maxn value that results
from a particular tie-breaking rule, will play reasonably, given that all players use that
tie-breaking rule.
 The choice of a tie-breaking rule amounts to a strategy for play. In Hearts, for in-
stance, good players will often save the queen of spades to play on the player with the
best score. Thus, we must consider our opponents strategy.
 We illustrate the implications of lemma 1 in Figure 5. Each player holds 2 cards,
as indicated, and three possible outcomes of the play are shown. The winning card of
each trick is underlined. If cards are played from left to right in your hand by default,

1

(, y, …) or
(, x, …)

Figure 4: Tie breaking in a maxn game tree

(c)

2

3
(, y, …)

3
(, y, …)

(, y, …)
(b)

2

3
(, x, …)

3
(, x, …)

(, x, …)
(a)

Player 1 can lead the A♠, and Player 2 will not drop the Q♠, as in play (a). However,
if Player 2 breaks ties differently, this could be a dangerous move, resulting in Player 1
taking the Q♠, as in (b). But, if Player 2 leads the 2♣, as in (c), Player 3 will be forced
to take the Q♠.
 The tie-breaking rule we have found most effective in such situations has been to
assume that our opponents are going to try to minimize our score when they break ties.
This obviously has a flavor of the paranoid algorithm, and it will cause us to try and
avoid situations where one player can arbitrarily change our score. From our own expe-
rience, we believe that this is similar to what humans usually do when playing Hearts.

4.2 Zero-Window Search

 Zero-window search [9] originates from two-player games. The idea behind zero-
window search is to turn a game tree with a range of evaluations into a tree where every
leaf terminates with a win or a loss. This is done by choosing some value v, and treating
a terminal node as a win if its evaluation is > v, and as a loss if it is ≤ v. Combining
this approach with a binary search will suffice to find the minimax value of a game tree
to any precision. This assumption results in highly optimized searches that can prune
away most of the game tree. Zero-window search is one of the techniques that helps
make partition search [10] efficient, and has played a large part in the success of that
domain.
 While there are limitations on pruning during the calculation of the maxn value of
a tree, it is not immediately obvious that we cannot somehow prune more if we just try
to calculate the bound on the maxn value of a tree, instead of the actual maxn value.
 So, we could attempt to search a maxn game tree to determine whether the nth
player will be able to get at least a score of v. Supposing at the root of a tree Player 1
gets v points. We can obviously stop at that point knowing that Player 1 will get ≥ v
points. This is a bound derived from shallow maxn pruning, and at most it will reduce
our search size from bd to bd-1. In addition, this will not combine well with a technique

Figure 5: Tie breaking situation

Possible Plays

(a) A♠ K♠ 8♣ 3♣ Q♠ 5♣
(b) A♠ Q♠ 8♣ 3♣ K♠ 5♣
(c) 3♣ K♠ 8♣ 5♣ A♠ Q♠

Player 1
A♠ 3♣

Player 2
K♠ Q♠

Player 3
8♣ 5♣

like partition search. We would like to know if this idea can be applied to every node
in the tree.
 Suppose we want to consider all scores > 2 as a win. We illustrate this in Figure 6.
Since Player 2 can get a score of 5 by moving to the left at node (a), Player 2 will prune
the right child of (a), and return a maxn value of (w, w, l), where w represents a win and
l represents a loss. However, at node (b), Player 1 would then infer that he could win by
moving towards node (a). But, the exact maxn value of (a) is (1, 8, 1), and so in the real
game tree, Player 1 should prefer node (c) over node (a).
 So, the only bounds we can get on the maxn value of a tree are those that come
from a search with shallow pruning, which, given no additional constraints, is already
optimal.
 [7] shows that “Every directional algorithm that computes the maxn value of a
game tree with more than two players must evaluate every terminal node evaluated by
shallow pruning under the same ordering.” We can now expand this statement:
Theorem 1. Given no additional constraints, every directional algorithm that computes
either the maxn value or a bound on the maxn value of a multi-player game tree must
evaluate every terminal node evaluated by maxn with shallow pruning under the same
ordering.
Proof: [7] has already shown that shallow pruning is optimal in its computation of
the maxn value of a tree. If we replace backed-up maxn values in a game tree with just
bounded maxn values, there may be ties between moves that were not ties in the original
maxn tree, such as at node (a) in Figure 6. By definition, all possible moves when break-
ing ties must lead to equilibrium points for the sub-tree below the node. Since some
of these moves may not have been equilibrium points in the original tree, any bound
computed based on these moves may not be consistent with the possible maxn values
for the original tree. ®

5 Equilibrium Points in the Paranoid Algorithm

Figure 6: Finding bounds in a maxn game tree

1

2

3
(3, 4, 3)

3
(2, 2, 6)

(w, w, w)
(c)

2

3
(3, 5, 2)

3
(1, 8, 1)

(w, w, l)
(a)

(w, w, l)
(b)

pruned

While the paranoid algorithm may be a pessimistic approach to game playing, it is not
entirely unreasonable, and it offers a theoretical guarantee not offered by maxn.
 Equilibrium points calculated by the paranoid algorithm are theoretically equiva-
lent to those calculated by minimax. This means that a paranoid game tree has a single
paranoid value which is the guaranteed lower bound on one’s score.
 This may, however, be lower than the actual score achievable in the game, because
it is unlikely that your opponents have truly formed a coalition against you. This leads
to moves which are suboptimal, because of the unreasonable assumptions being made.
In Hearts, for instance, paranoid may find there is no way to avoid taking a trick with
the queen of spades. But, instead of forcing the opponents to work as hard as possible
to make this happen, the paranoid algorithm may select a line of play that causes this to
happen immediately. This is no different from the problem faced in two-player games.
In [1], for instance, they discuss the difficultly Chinook faced with arbitrating between
two lines of play that both lead to a draw, where on one path a slight mistake by the op-
posing player could lead to a win by Chinook, while the other leads clearly to a draw.

6 Experimental Results

Given these theoretical results, we would like to see what we can do in practice to play
multi-player games well. To this end, we have run a number of experiments on various
games to see how maxn and paranoid perform against each other. We have written a
game engine that contains a number of algorithms and techniques such as the paranoid
algorithm, maxn, zero-window search, transposition tables and monotonic heuristic
pruning. New games can easily be defined and plugged in to the existing architecture
without changing the underlying algorithms.

Player 1 Player 2 Player 3

1 maxn maxn paranoid

2 maxn paranoid maxn

3 maxn paranoid paranoid

4 paranoid maxn maxn

5 paranoid maxn paranoid

6 paranoid paranoid maxn

Table 1. The six possible ways to assign paranoid and maxn player
types to a 3-player game

 We first present the general outline of our experiments applicable to all the games,
and then we will present the more specific details along with the results.
 Our game engine supports an iterative deepening search process, but each particu-
lar game can choose the levels at which the iterations take place. Search can be bounded
by time, nodes expanded, or search depth. In our experiments, we gave the algorithms
a node limit for searching. When the cumulative total of all iterative searches expands
more nodes than the limit, the search is terminated, and the result from the last com-
pleted iteration is returned.
 We are using 3, 4, and 6-player games to compare 2 different algorithms. In a
3-player game, there are 23 = 8 different ways we could assign the algorithm used for
each player. However, we are not interested in games that contain exclusively maxn
or exclusively paranoid players, leaving 6 ways to assign each player to an algorithm.
These options are shown in Table 1. So, we ran most experiments 6 times, one time with
each distribution in Table 1. For card games, that means that the same hand is played 6
times, once with each possible arrangement of cards. For Chinese Checkers, this varies
who goes first, and what player type goes before and after you.
 Similarly, in a 4-player game there are 24 = 16-2 = 14 ways to assign player types,
and in a 6-player game there are 26 = 64-2 = 62 ways to assign player types.
 For maxn, we implemented a tie-breaking rule that assumes our opponents will
break ties to give the player at the root the worst possible score. Without this tie-break-
ing rule, maxn plays much worse.

6.1 Chinese Checkers

To simplify our experiments in Chinese Checkers, we used a slightly smaller board than
is normally used. On the smaller board each player has 6 pieces instead of the normal
10 pieces. Despite this smaller board, a player will have, on average, about 25 possible
moves (in the 3-player game), with over 50 moves available in some cases.
 Besides reducing the branching factor, this smaller board also allowed us to create
a lookup table of all possible combinations of a single players pieces on the board, and
an exact evaluation of how many moves it would take to move from that state to the
goal. The table is the solution to the single-agent problem of how to move your pieces
across the board as quickly as possible. This makes a useful evaluation for the two-
player version of Chinese Checkers. However, as additional players are added to the
game, this information becomes less useful, as it doesn’t take into account the positions
of one’s opponents on the board. It does have other uses, such as measuring the number
of moves a player would need to win at the end of the game.
 Because only one player can win the game, Chinese Checkers is a zero-sum, or
constant-sum game. However, within the game, the heuristic evaluation is not constant-
sum. Our heuristic evaluation was based on the distance of one’s pieces from the goal.
This means that we cannot use any simple techniques to prune the maxn tree. This com-
bined with the large branching factor in the game makes maxn play Chinese Checkers
rather poorly.
 In our 3-player experiments we played 600 games between the maxn and paranoid

algorithms. To avoid having the players repeat the same order of moves in every game,
some ties at the root of the search tree were broken randomly. We searched the game
tree iteratively, searching one level deeper in each successive iteration.
 We report our first results at the top of Table 2. We played 600 games, 100 with
each possible configuration of players. If the two algorithms played evenly, they would
each win 50% of the games, however the paranoid algorithm won over 60% of the
games it played.
 Another way to evaluate the difference between the algorithms is to look at the
state of the board at the end of the game and measure how many moves it would have
taken for each player to finish the game from that state. When tabulating these results,
we’ve removed the player who won the game, who was 0 moves away from winning.
The paranoid player was, on average, 1.4 moves ahead of the maxn player.
 Finally, we can see the effect the paranoid algorithm has on the search depth. The
paranoid player could search ahead 4.9 moves on average, while the maxn player could
only look ahead 3.1 moves. This matches the theoretical predictions made in section
3.2; Paranoid is able to look ahead about 50% farther than maxn.
 We took the same measurements for the 4-player version of Chinese Checkers.
With 4 players, there are 14 configurations of players on the board. We played 50 games
with each configuration, for a total of 700 games. The results are in the middle of Table
2. Paranoid won 59.3% of the games, nearly the same percentage as in the 3-player
game. In a 4-player game, paranoid should be able to search 33% farther than maxn,
which these results confirm, with paranoid searching, on average, 4-ply into the tree,
while maxn was able to search 3.2-ply on average. Finally, the paranoid players that
didn’t win were 4.23 moves away from winning at the end of the game, while the maxn

Paranoid Maxn

3-player
250k nodes

games won 60.6% 39.4%

moves away 3.52 4.92

search depth 4.9 3.1

4-player
250k nodes

games won 59.3% 40.7%

moves away 4.23 4.73

search depth 4.0 3.2

6-player
250k nodes

games won 58.2% 41.8%

moves away 4.93 5.49

search depth 4.6 3.85

Table 2. Chinese Checkers statistics for maxn and paranoid

players were 4.73 moves away. In the 4-player game some players share start and end
sectors, meaning that a player can block another player’s goal area, preventing them
from winning the game. This gave maxn a chance to get closer to the goal state before
the game ended.
 In the 6-player game, we again see similar results. We played 20 rounds on each
of 64 configurations, for 1280 total games. Paranoid won 58.2% of the games, on av-
erage 4.93 moves away from the goal state at the end of the game, while maxn was
5.49 moves away on average. In the 6-player game, we expect paranoid to search 20%
deeper than maxn, and that is the case, with maxn searching 3.85 moves deep on average
and paranoid searching 4.6 moves on average.
 The maxn algorithm has an extremely limited search, often not even enough to look
ahead from its first move to its second. This means that, although maxn can, in theory,
use transposition tables in Chinese Checkers, it is unable to in practice because it can-
not even search deep enough to cause a transposition to occur.
 Because of this, we conducted another experiment with the 3-player games. In this
experiment we again played 600 total games, limiting the branching factor for each
algorithm, so that only the 6 best moves were considered at each branch. We chose to
limit the branching factor to 6 moves because this will allow reasonable depth searches
without an unreasonable limitation on the possible moves. If we limited the branching
factor to just 2 moves, there wouldn’t be enough variation in moves to distinguish the
two algorithms.
 The results from these experiments are found in Table 3. Under these conditions,
we found that paranoid did even better than maxn, winning 71.4% of all the games even
though maxn was able to search much deeper than in previous experiments. The para-
noid algorithm could search 8.2 moves deep as opposed to 5.8 for maxn. At the end of
the game, paranoid was, on average, only 2.47 moves away from finishing, as opposed
to 4.4 for maxn.
 Finally, we played the algorithms against each other with a fixed depth search. In
this experiment, both algorithms were allowed to search 4-ply into the tree, regardless
of node expansions. In these experiments the paranoid algorithm again was able to

Paranoid Maxn

250k
nodes, fixed
branching

factor

games won 71.4% 28.6%

moves away 2.47 4.4

search depth 8.2 5.8

fixed depth
search

games won 56.5% 43.5%

moves away 3.81 4.24

Table 3. 3-Player Chinese Checkers statistics for maxn and paranoid

outperform the maxn algorithm, albeit by lesser margins. Paranoid won 56.5% of the
games played, and was 3.81 moves away at the end of the game, as opposed to 4.24
moves for maxn.
 These results show that the paranoid algorithm is winning in Chinese Checkers
both because it can search deeper, and because its analysis produces better play. We
would expect similar results for similar boards games.

6.2 Perfect Information Card Games

For the card games Hearts and Spades we deal a single hand and then play that same
hand six times in order to vary all combinations of players and cards. If maxn and para-
noid play at equal strength, they will have equal scores after playing the hand 6 times.
For both games we used a node limit of 250,000 nodes per play. These games were
played openly allowing all players to see all cards.
 For the 3-player games of Hearts and Spades we played 100 hands, 6 times each. In
Hearts we also run experiments with the 4-player version of the game. For the 4-player
game we also used 100 hands, played 14 times each for arrangement of players, for
1400 total games. Our search was iterative, as in Chinese Checkers. But, since points
are only awarded when a trick is taken, we didn’t search to depths which ended in the
middle of a trick. We used a hand-crafted heuristic to determine the order that nodes
were considered within the tree. This heuristic considered things like when to drop
trump in Spades, and how to avoid taking the Queen of Spades in Hearts.

Paranoid Maxn

3-player
Hearts,

250k Nodes

average score 8.1 8.9

search depth 15.2 11.0

vs. heuristic 5.6 5.6

4-player
Hearts,

250k Nodes

average score 6.45 6.55

search depth 14.3 11.2

vs. heuristic 4.3 4.2

Spades,
250k Nodes

average score 5.67 5.67

search depth 15.4 10.6

vs. heuristic 6.06 6.12

Table 4. Games won in Spades and Hearts by maxn and paranoid

6.3 Hearts

The top of Table 4 contains the results for Hearts. Over these games, the paranoid
player had an average score of 8.1 points, while the maxn player had an average score
of 8.9 points. The standard deviation of the scores was 1.3, so these results are close,
but paranoid has a definite advantage. There are about 26 points available in the game
(in the 3-player version, one card is taken out of the deck randomly), so if the algo-
rithms played with equal strength, they would have averaged about 8.5 points each. The
paranoid algorithm could search depth 15.2 on average, while the maxn algorithm could
only search to depth 11.0 on average. The paranoid algorithm is searching close to 50%
farther in the tree than maxn, as expected for a 3-player game.
 To compare both algorithms against a different standard, we also set up a different
experiment that pitted each algorithm against a player that did no search, but just used
the node-ordering function to pick the next move. Maxn and paranoid were allowed to
search just 6-ply (2 tricks) into the game tree, but only took 5.6 points in an average
game. This confirms that the search is doing useful computation and discovering inter-
esting lines of play above and beyond what a simple heuristic can do.
 In the 4-player game the algorithms are more closely matched. Paranoid did just
slightly better, averaging 6.45 points per hand as opposed to 6.55 for maxn. The stan-
dard deviation per round was .67 points. Paranoid was able to search depth 14.3 on
average, about 33% farther than maxn, which could search depth 11.2. In this case, it
seems that the extra search depth allowed by paranoid is being offset by the (incorrect)
assumption that our opponents have formed a coalition against us. Both players were
again able to easily outperform the heuristic-based player, scoring, on average, just
over 4 points per game.

6.4 Spades

In the actual game of Spades, players bid on how many tricks they are going to take,
and they then play out the game, attempting to take exactly that number of tricks. We
have experimented with the first phase of that process, attempting to ascertain how
many tricks can be taken in a given hand, and we do this by playing out a game, trying
to take as many tricks as possible.
 The bottom of Table 4 contains the results. Over these games, both players had an
average score of 5.67 points, which is what we expect for algorithms of equal strength,
given the 17 points (tricks) in the 3-player game. However, the paranoid algorithm
is searching 15.4-ply deep, on average, while maxn is only searching 10.6-ply deep.
This means that paranoid can look ahead nearly 2 tricks more than maxn, about 50%
deeper.
 This is an interesting result because the paranoid algorithm is able to search deeper
than maxn by a wider margin than in it can in Hearts, but it is still not able to outper-
form maxn. However, looking at the results from play against a heuristic player makes
this more clear. When maxn and paranoid played a heuristic based player that does no
search, they were barely able to outperform it. This indicates one of two things: Either

the process of estimating how many tricks can be taken in a three-player game is very
simplistic, or neither algorithm is able to use its search to devise good strategies for
play.
 We expect that both are happening. In games like Bridge, a lot of work is spent co-
ordinating between the partners in the game. With no partners in 3-player spades, there
is little coordination to be done, and the tricks are generally won in a greedy fashion.
Our own experience playing against the algorithms ourselves also lead us to this con-
clusion. Often times the only decision that can be made is how to break ties in giving
points to the other players.
 Note that these results are only for the bidding portion of the game. The scoring
of the actual game play is somewhat different, with players trying to make their bid
exactly. This changes the rules significantly, and may give one algorithm an edge.

7 Conclusion and Future Work

Our results show that the paranoid algorithm should be considered as a possible multi-
player algorithm, as it is able to easily outperform the maxn algorithm in Checkers and
slightly less so in Hearts. However, our current results from Hearts and Spades indicate
that the maxn algorithm is more competitive than we expected in these domains.
 As a general classification, we can conclude that in games where maxn is com-
pelled to do a brute-force search, the paranoid algorithm is a better algorithm to use,
while games in which the maxn algorithm can prune result in more comparable perfor-
mance. Another factor that differs between Chinese Checkers and card games is that in
card games your opponents can easily team up and work together. This is more difficult
in Chinese Checkers, because if they block one piece you can simply move another,
and the limited search depth prevents the formation of more complicated schemes. This
makes the paranoid assumption more reasonable.
 There are several areas into which we are directing our current research. First, we
need to consider the development of additional algorithms or pruning techniques that
will result in improved performance. We are also working on optimizing the techniques
and algorithms we have already implemented. Next, and more importantly, the issue
of imperfect information needs to be addressed. Paranoid and maxn played similarly
in card games, which are always games of imperfect information. As there is no clear
edge for either algorithm, the point that will differentiate these algorithms is how well
they can be adapted for games of imperfect information. Finally, we need to concern
ourselves not just with play against different algorithms, but with play against humans.
We are in the beginning stages of attempting to write a Hearts program that is stronger
than any existing program, and one that also plays competitively against humans.

Acknowledgements
We wish to thank Rich Korf for his guidance in developing this work, Haiyun Luo and
Xiaoqiao Meng for the use of their extra CPU time to run many of our experiments, and
the reviewers for their valuable comments and suggestions.

References
1. Schaeffer, J., Culberson, J., Treloar, N., Knight, B., Lu, P., Szafron, D. A world champi-

onship caliber checkers program, Artificial Intelligence, vol.53, (no.2-3), Feb. 1992.
2. Ginsberg, M., GIB: Imperfect Information in a Computationally Challenging Game,

Journal of Artificial Intelligence Research, Volume 14, 2001, 303-358.
3. Luckhardt, C. Irani, K., An algorithmic solution of N-person games, Proceedings AAAI-

86, Philadelphia, PA, 158-162.
4. Sturtevant, N., and Korf, R., On Pruning Techniques for Multi-Player Games, Proceed-

ings AAAI-00, Austin, TX, 201-207.
5. Billings, D., Peña, L., Schaeffer, J., Szafron, D., Using Probabilistic Knowledge and

Simulation to Play Poker, AAAI-99, 697-703.
6. Hoyle, E., and Frey, R.L., Morehead, A.L., and Mott-Smith, G, 1991, The Authoritative

Guide to the Official Rules of All Popular Games of Skill and Chance, Doubleday.
7. Korf, R., Multiplayer Alpha-Beta Pruning. Artificial Intelligence, vol. 48 no. 1, 1991,

99-111.
8. Knuth, D., and Moore, R., An Analysis of Alpha-Beta Pruning, Artificial Intelligence,

vol. 6 no. 4, 1975, 293-326.
9. Pearl, J, Asymptotic properties of minimax trees and game-searching procedures. Artifi-

cial Intelligence vol 14 no 2, 1980, 113-138.
10. Ginsberg, M, Partition search, AAAI-96, Cambridge, MA, 228-33.

