
Necessary and Sufficient Conditions for Avoiding Reopenings in Best First
Suboptimal Search with General Bounding Functions

Jingwei Chen,1 Nathan R. Sturtevant,1
1 Department of Computing Science, Alberta Machine Intelligence Institute (Amii), University of Alberta, Canada

jingwei5@ualberta.ca, nathanst@ualberta.ca

Abstract

Recent work introduced XDP and XUP priority functions for
best-first bounded-suboptimal search that do not need to per-
form state re-expansions as long as the search heuristic is
consistent. However, that work had several limitations that
are rectified here. This paper analyzes the sufficiency and ne-
cessity of the conditions used to formulate XDP and XUP.
The analysis presents a simpler proof and generalizes the re-
sult in three aspects: (1) the priority function no longer has
to be differentiable everywhere, (2) the quality of the solu-
tion does not have to be bounded by a constant factor, and
(3) directed graphs are handled correctly. These results allow
the introduction of more priority functions, such as piecewise
linear functions, and more variants of bounded-suboptimal
search, such as constant suboptimality. Several new priority
functions are presented in this paper that, according to empir-
ical results, can significantly outperform existing approaches
including XDP.

1 Introduction
Heuristic search algorithms such as A* are able to find
optimal paths between a given start and goal state. For
many time-sensitive applications, such as embedded sys-
tems (Benton, Do, and Ruml 2007) or video games (Bulitko
et al. 2011), a quick but suboptimal solution is more favor-
able than a slow but optimal solution. Algorithms aimed at
finding suboptimal solutions are called suboptimal search
algorithms. Research has focused on bounded suboptimal
search (BSS), which guarantees that the solution found has
cost no greater than B(C∗), where B : R → R is a given
bounding function and C∗ is the optimal solution cost. The
most popular bounding function is Bw(x) = wx, which
means when the optimal solution is C∗, the returned solu-
tion is guaranteed to fall in the range of [C∗, wC∗]. Algo-
rithms designed for solving this problem include weighted
A* (WA*) (Pohl 1970), A*ε (Pearl and Kim 1982), Opti-
mistic Search (Thayer and Ruml 2008), EES (Thayer and
Ruml 2011), and DPS (Gilon, Felner, and Stern 2016).

There are other types of bounding functions, such as ad-
ditive bounding function Bγ(x) = x+γ, where γ is a given
constant (Valenzano et al. 2013). Unfortunately, the only al-

Copyright c© 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

gorithm available for additive bounding requires performing
node re-openings, which are expensive in some domains.

Our recent research studied the sufficient conditions for
a Best-First Search (BFS) using a priority function Φ to
find bounded suboptimal solutions without having to reopen
nodes (Chen and Sturtevant 2019). Two example priority
functions (or Φ functions) were introduced, XDP and XUP,
which improve the performance of WA*.

However, there are a few limitations to this work. First
of all, Φ was implicitly required to be differentiable. It
was unclear whether non-differentiable functions, such as
piecewise functions could be used. Secondly, the work only
provided sufficient conditions for avoiding re-expansions.
The conditions can be used to determine whether Φ will
find bounded suboptimal solutions without reexpansions;
however, without necessary conditions, we can not decide
whether a Φ will cause the algorithm to find unbounded so-
lutions. Thirdly, the conditions relied on consistent heuris-
tics and undirected graphs. Thus, it was an open ques-
tion whether some Φ functions will work with inconsistent
heuristics. Fourthly, those results only applied to B = Bw.

In this paper, we resolve those issues in the following
ways: (1) we show that, given a few basic assumptions on
Φ, a consistent heuristic is a necessary condition for avoid-
ing re-openings; (2) we present necessary conditions and the
cases where they apply; (3) we relax previous assumptions
by allowing continuous but not differentiable Φ-functions;
(4) we extend the results to other bounding functions. Our
new priority functions result in significant improvement over
XDP and XUP.

2 Background
A bounded suboptimal search (BSS) problem is defined by a
n-tuple {G, start, goal, h,B}. The state space,G, is a finite
directed graph whose vertices are states and whose edges are
pairs of states. Each edge (u, v) ∈ G has a cost c(u, v). We
assume there is at most one edge between each pair of states,
and the edge costs are non-negative. A path in G is a finite
sequence U = (u0, . . . , un) of states in G where (ui, ui+1)
is an edge in G for 0 ≤ i < n.

Let d(u, v) be the cost of the cheapest path from state u to
state v inG. If there is no path from u to v then d(u, v) =∞.
We let g∗(u) = d(start, u). The shortest path from start to
goal is the optimal solution cost C∗ = d(start, goal). In

!

ℎ

!

ℎ

!

ℎ

!

ℎ

!

ℎ
(a) (b) (c) (d) (e)

Figure 1: The contour plot of (a) ΦWA∗ (b) ΦAB (c) Φz (d) ΦpwXD (e) ΦpwXU . Red lines indicate free parameters.

suboptimal search, the currently explored path to a state is
not necessarily the shortest path. Let the g-cost of a state be
the cost of the current best path from start to that state. Thus,
g(n) ≥ d(start, n)

The heuristic function, h, is an input parameter which
maps a state to a real number. A heuristic is admissible if
∀n, h(n) ≤ d(n, goal). A heuristic is consistent on an undi-
rected graph if ∀m,n, |h(n) − h(m)| ≤ d(n,m). If this
property holds on a directed graph, we say the heuristic is
strongly consistent. A heuristic is then weakly consistent if
∀m,n, h(n) ≤ d(n,m)+h(m). A weakly consistent heuris-
tic only requires that the h-cost does not decrease more than
the edge cost, but can go up along an edge as much as it
wants. A strongly consistent heuristic limits the heuristic
change in both directions, whether increasing or decreas-
ing, to not exceed the edge cost. This paper assumes that
the heuristic is admissible, and will discuss the conditions
of Φ under each consistency case (inconsistent, weakly con-
sistent, and strongly consistent).

The BSS problem is to find a solution path with cost ≤
B(C∗), where B : R→ R is a given bounding function that
satisfies ∀x ≥ 0, B(x) ≥ x.

We assume that search algorithms only have black box
access to the state space. That is, they are only allowed to
explore the state space by node expansions, and they can
only prioritize states based the g-cost and h-cost of a state.

2.1 BFS-NR Guided by Φ

Best-first search is a generic algorithm whose pseudocode is
Algorithm 1. The algorithm keeps expanding the state with
minimum f -cost according to the provided Φ function until
goal state is expanded.

In the following text, we assume Φ(x, y) is a function
R2 → R. We assume Φ(x, y) is continuous, but not neces-
sarily differentiable. Given a state u in OPEN reached with
cost g(u), the priority of u is f(u) = Φ(h(u), g(u)).

Once a state is expanded, it is removed from OPEN list
and put onto the Closed list, while its successors are put on
OPEN or get updates to lower cost. If a shorter path is found
to a state on Closed, it may optionally be reopened.

In heuristic search, reopening, or re-expanding, means
taking a state from the Closed list and placing it back onto
the OPEN list. Reopening is not mandatory for suboptimal
search: suboptimal search algorithms can be complete even
if they do not reopen states (Chen and Sturtevant 2019).

Therefore, one could try different reopening policies, such
as always re-expand (AR) and never re-expand (NR) (Sepet-
nitsky, Felner, and Stern 2016). When we apply the NR pol-
icy to best-first search, we get Best-First Search with the
NR policy (BFS-NR) (Valenzano, Sturtevant, and Schaeffer
2014). In Algorithm 1, by simply setting the parameter RP
to be False, we can get BFS-NR.

However, for bounded suboptiaml search, we not only
want a solution but also care about the solution quality; we
want the algorithm to be bounded. The definition of bounded
algorithm is as following:
Definition 1. If algorithm A is guaranteed to return a so-
lution bounded by B for a set of instances I , then A is a
bounded algorithm on I .

BSS algorithms such as A*ε (Pearl and Kim 1982) and
EES (Thayer and Ruml 2011) are forced to reopen states in
order to be bounded.

In many cases, however, reopening can hurt performance
(Chen et al. 2019). Thus, in the following context, we will
discuss how to find bounded suboptimal solutions using the
NR policy.

This paper defines the necessary and sufficient conditions
on Φ to make BFS-NR a bounded algorithm.

3 Generalized Conditions
In our previous work (Chen and Sturtevant 2019), we pre-
sented 4 properties which are sufficient for BFS-NR to be
bounded when using Φ :

(a) ∂Φ
∂x > 0, ∂Φ

∂y > 0

(b) ∂Φ
∂y ≤

∂Φ
∂x

(c) Φ(0, w · t) = Φ(t, 0) = t

(d) ∂Φ
∂x + ∂Φ

∂y ≤ 2

These properties are limited for these reasons: (1) They
implicitly assume that Φ is differentiable. (2) The bounding
function B(x) is fixed to be Bw(x) = wx. (3) The numeric
value 2 in equation (d) is not justified. It is unclear whether
the bound is tight or necessary.

This paper starts from the beginning, examining the prop-
erties one by one, and then describes precisely the set of Φ
functions under which BFS-NR is a bounded algorithm. We
start with a few intuitive assumption that Φ will satisfy.
Property 1. For any given δ > 0, Φ(x + δ, y) > Φ(x, y),
Φ(x, y + δ) > Φ(x, y).

Algorithm 1 Best-First Search Guided by Φ

Input: start, goal,G,h,Φ,RP
1: Push(start, Open)
2: while Open not empty do
3: Remove state s with minimum Φ(h(s), g(s)) from

Open
4: if s == goal then
5: return success
6: end if
7: Move s to Closed
8: for each successor si of s do
9: if si on Open then

10: Update g(si) of si on Open if shorter
11: else if si not on Closed then
12: Add si to Open
13: else if RP == True then
14: reopen si if shorter
15: end if
16: end for
17: end while
18: return failure

Property 2. For any given δ > 0, Φ(x, y+δ) ≤ Φ(x+δ, y)

Property 1 means that the Φ-value grows monotonically
along each axis. In terms of the behavior of the search al-
gorithm, it is equivalent to say that for two states with same
h-cost, the one with lower g-cost should be preferred; sim-
ilarly, for two states with same g-cost, the one with lower
h-cost should be preferred.

Property 2 means when there are two states with the same
sum of h-cost and g-cost, the one with lower g-cost should
not be preferred over the one with higher g-cost, although
they could be equally preferred.
Property 3. Φ(x, 0) = x.

The return value of the Φ function provides a partial or-
dering over states in OPEN. In this sense, there are many
possible partial orderings that Φ could use. We assume
Φ(x, 0) = x because (1) it gives Φ a semantic meaning:
Φ is a lower bound on the optimal solution cost, not only for
the start state, but also for every state expanded; and (2) it
will simplify our remaining derivations.

With the first 3 assumptions made, now we can say some-
thing interesting about Φ.
Definition 2. Let IAD be all problem instances with admis-
sible heuristics and ICON be all instances with consistent
heuristics. Furthermore, let ICONS stand for instances with
strongly consistent heuristics, while ICONW stands for in-
stances with weakly consistent heuristics. The instances with
inconsistent but admissible heuristics are denoted by IINC .

Theorem 1. If, for a given Φ, there exists an x ≥ 0 such
that Φ(x, 0) > Φ(0, B(x)), where B is the given bounding
function, then BFS-NR using Φ is not guaranteed to be a
bounded algorithm on IAD.

Proof. Suppose Φ(x, 0) > Φ(0, B(x)). Then, according to
Property 1, there exists an ε > 0 such that Φ(x, 0) =

start

cost = B x +
𝜖
2

cost = 0

h = x

goaln
cost = x

h = x h = 0

Figure 2: Illustration for Theorem 1

Φ(0, B(x) + ε). Then, we can create a problem instance
that belongs to IAD with 3 states, start, n, goal, as illus-
trated in Figure 2. In this example h(start) = h(n) = x,
c(start, n) = 0, c(start, goal) = B(x) + ε

2 , c(n, goal) =
x. On this problem BFS-NR will expand the goal and find a
solution of cost B(x) + ε

2 , meaning it is not bounded.
We now introduce two properties, the first of which, Prop-

erty 4, is necessary according to Theorem 1.
Property 4. Φ(x, 0) ≤ Φ(0, B(x)), where B is the given
bounding function.
Property 5. Φ(x, 0) = Φ(0, B(x)), where B is the given
bounding function.

Note that Property 5 is more strict than Property 4. Any Φ
that meets Property 5 will also meet Property 4.

Weighted A*, XDP and XUP meet the stronger Property
5. This seems to be a natural choice, since it makes full use
of the allowable suboptimality. But, some algorithms, such
as Dynamic WA* (Pohl 1973), have Φ(x, 0) < Φ(0, B(x)).
Also, in the next section, the ΦAB we introduce, only meets
Property 4 but not Property 5.

Given properties 1–4, we present an important result, the
Φ-inequality. This inequality is used by Chen and Sturtevant
(2019); we describe it here in a way that is consistent with
our other derivations.
Definition 3. Suppose BFS-NR expands a state n with cost
g(n). The Φ-inequality is Φ(h(n), g(n)) ≤ g∗(n) + h(n)

g∗(n) + h(n) is a lower bound on the optimal cost from
start to goal through n. Thus, Φ can be interpreted as an es-
timate of the optimal path cost through the each state. (Note
that this contrasts with how f is used in algorithms like WA*
– as an estimate of the solution cost that will be found.)

In the following, we will show that BFS-NR is bounded
if and only if the Φ-inequality holds. The Φ function dis-
tributes the potential suboptimality across a path, potentially
allowing more suboptimality at the beginning or end of the
search. Intuitively, the Φ-inequality guarantees that the local
suboptimality is bounded such that a bounded suboptimal
path to the goal always exists.
Theorem 2. Suppose that Φ satisfies Property 1 - 3 and
Property 4. Then, if the Φ-inequality holds for every state
expanded, BFS-NR is a bounded algorithm on IAD.
Proof. Suppose the Φ-inequality holds for every state
expanded, then it also holds for goal. Therefore,
Φ(0, g(goal)) ≤ g∗(goal) + h(goal) = C∗. Accord-
ing to Property 4, C∗ ≤ Φ(0, B(C∗)). According to
Property 1, g(goal) ≤ B(C∗), therefore the solution is
bounded.

n

cost = B h n + g∗ n + ϵ − g n

cost =
𝜖
3

h = hሺnሻ

goalm
cost = h n +

𝜖
3

h = h n +
𝜖
3

h = 0

IŶiƚiaů SƚaƚeƐ

Figure 3: Illustration for Theorem 4

Since Property 5 is stronger than Property 4, then Theo-
rem 2 also holds for Property 5, which we state below, as
Corollary 3.

Corollary 3. Suppose that Φ satisfies Property 1 - 3 and
Property 5. Then, if the Φ-inequality holds for every state
expanded, BFS-NR is a bounded algorithm on IAD.

Theorem 2 suggests that the Φ-inequality is a sufficient
condition for BFS-NR to be bounded. But, is it a neces-
sary condition? The short answer is, yes. The next theorem,
Theorem 4, tells us that this condition must hold for every
single expansion. Otherwise, there could be some instance
I ∈ IAD on which BFS-NR will not return a bounded solu-
tion. This theorem requires Property 5; there is no equivalent
theorem when only Property 4 holds.

Theorem 4. Suppose Φ satisfies Property 1 - 3 and Prop-
erty 5. Then, only if the Φ-inequality holds for every state
expanded will BFS-NR be bounded algorithm on IAD.

Proof. We prove the contrapositive.
Suppose there exists one state n expanded by BFS-NR on

a problem I ∈ IAD that violates the Φ-inequality. That is,
Φ(h(n), g(n)) > h(n) + g∗(n). Then, we can show that
BFS-NR is not bounded on I . Suppose BFS-NR expands
a few initial states and comes to the situation illustrated
in Figure 3, where BFS-NR decides to expand the state n
whose Φ(h(n), g(n)) > h(n) + g∗(n) without knowing
which states are after n. Since Φ is continuous, there must
exist ε > 0 such that Φ(h(n), g(n)) = h(n) + g∗(n) + ε.
Now, we can alter the remaining graph such that there are
only 2 successors of n: m and goal. c(n, goal) satisfies
that Φ(0, g(n) + c(n, goal)) = Φ(h(n), g(n)). h(m) =
h(n) + ε

3 , c(n,m) = ε
3 , c(m, goal) = h(n) + ε

3 .
Since the algorithm just expanded n, we know n was

the state with minimum priority on OPEN. Thus, once we
expand n and put m and goal on OPEN, the goal will
be chosen for expansion immediately, since it will be the
state with minimum Φ value. In this case, Φ(0, g(goal)) =
h(n) + g∗(n) + ε = Φ(0, B(h(n) + g∗(n) + ε)). How-
ever, there exists a path from start-n-m-goal, whose cost is
h(n)+g∗(n)+ 2ε

3 . In this problem,C∗ ≤ h(n)+g∗(n)+ 2ε
3 ,

while the solution we returned has costB(h(n)+g∗(n)+ε),
which is strictly greater than B(C∗).

Hence, the BFS-NR is not bounded on I .
In short, if BFS-NR expands a state that violates the Φ-

inequality, we can construct an new problem instance where
BFS-NR will not be bounded.

Thus, to understand when BFS-NR is guaranteed to find
bounded-suboptimal solutions, we must study the properties
that will cause the Φ-inequality to hold. As we will now

start

cost =
𝜆ଵ + 𝜆ଶ

2

h = h

qr
cost = ϵ

h = h

cost = 0

h = h − 𝑘ϵ

Oƚheƌ SƚaƚeƐ

Figure 4: Illustration for Theorem 5

show, the Φ-inequality holds for each expansion if and only
if we have Properties 1–3, 5–6, and a consistent heuristic.
Theorem 5. Suppose that Φ satisfies Property 1 - 3. Then
there does not exist a Φ that can guarantee that the Φ-
inequality holds for all states expanded on problem in-
stances I ∈ IINC .
Proof. [By construction.]

We create a parametric example where using any Φ func-
tion that meets Property 1 - 3 with an inconsistent heuris-
tic will cause BFS-NR to not be bounded. As is illustrated
in Figure 4, create a I ∈ IINC where start has 2 succes-
sors, q and r. h(start) = h, h(q) = h − kε, h(r) = h,
c(start, r) = 0, c(r, q) = ε. where k > 1. Then we can see
that the heuristic is inconsistent between q and r.

Since Φ is continuous, we can let Φ(h − kε, λ1) = h −
kε + ε and Φ(h − kε, λ2) = h. According to Property 1,
λ1 < λ2. Then set c(start, q) = λ1+λ2

2 . We can compute

f(q) = Φ(h(q), g(q)) = Φ(h− kε, λ1 + λ2

2
)

f(r) = Φ(h(r), g(r)) = Φ(h, 0) = h

Since λ1 < λ2, according to Property 1,

Φ(h− kε, λ1 + λ2

2
) < Φ(h− kε, λ2) = h

, therefore f(q) < f(r). Thus we will expand q instead of r.
On the other hand,

h(q) + g∗(q) = h(q) + c(p, r) + c(r, q) = h− kε+ ε

Φ(h− kε, λ1 + λ2

2
) > Φ(h− kε, λ1) = h− kε+ ε

which breaks the Φ-inequality on state q.
Theorem 6. Suppose that Φ satisfies Property 1 - 3. Then,
there does not exist a Φ that can guarantee that BFS-NR is
a bounded algorithm for instances I ∈ IINC .
Proof. Theorem 4 tells us the Φ-inequality must hold for ev-
ery single expansion. Theorem 5 shows that it will not on
problems in IINC .

If the heuristic is not consistent, then without further as-
sumptions, we cannot guaranteed that the algorithm returns
bounded solution on every instance. It may return bounded
solutions for some instances, but not for all. Thus, Theorem
6 indicates that consistent heuristics are a necessary condi-
tion to guarantee that BFS-NR is a bounded algorithm. This
is not counter-intuitive; A∗ needs to perform re-expansions
to guarantee optimal solutions when the heuristic is incon-
sistent (Martelli 1977; Felner et al. 2011).

Now we will study Φ functions given problems in ICON .

(a) (b)

Figure 5: The successor parallelogram when heuristic is (a)
strongly consistent (b) weakly consistent

Definition 4. Successor Parallelogram.
Figure 5 (a) and (b) illustrate the successor parallelo-

gram for strongly consistent heuristics and weakly consis-
tent heuristics, respectively. Suppose that state q is a descen-
dant of state p. p is an expanded state. The h-cost and g-cost
of p are h(p), g(p), respectively. We put a point P on h-g
plane, whose coordinates are (h(p), g(p)). We put another
point Q, with coordinates (h(q), g(p) + d(p, q)). This point
represents the cost of q if we reach q optimally from p.

After that, we draw out two 45◦ straight line fromP andQ
(45◦ straight lines correspond to consistency). For a directed
graph, we draw out two -45◦ straight line from P andQ; for
undirected graph, we draw out two horizontal lines from P
and Q.

These four lines will give us a parallelogram in every pos-
sible case. Such a parallelogram is called a successor paral-
lelogram.

As the name indicates, we can prove that for any state p1

on the optimal path from p to q, p1 must be in the successor
parallelogram, given that the heuristic is consistent.

Definition 5. We define R as the right most corner of suc-
cessor parallelogram.

Point R is interesting because that is the point with the
maximum Φ value in the parallelogram.

Lemma 7. Point R is the point with maximum Φ value.

Proof. According to Property 1, the maximum Φ value is on
the line segment QR.

For any given point S in line segment QR, Let x = xS ,
y = yR, δ = xR − xS . Finally, According to Property 2, we
know Φ(xR, yR) ≥ Φ(xS , yS).

The next property is the key Property we need for avoid-
ing reexpansions. It is a sufficient condition to guarantee the
Φ-inequality under Property 4. It is necessary when Φ meets
Property 5. This condition is different on directed/undirected
graphs.

Property 6. For a strongly consistent heuristic: for any
given δ > 0, Φ(x+ δ, y + δ) ≤ Φ(x, y) + 2δ

For a weakly consistent heuristic: for any given δ > 0,
Φ(x+ δ, y) ≤ Φ(x, y) + δ

Theorem 8. Assume BFS-NR is using a priority function Φ
with a bounding function B(x) on a problem instance I ∈
ICON . If there exists h0, g0, δ0 such that (1) for a strongly
consistent heuristic Φ(h0 + δ0, g0 + δ0) > Φ(h0, g0) + 2δ0,

start

𝑔଴

h = 𝑓଴

m

h = ℎ଴

goal

a b
𝑒ଵ 𝑒ଵ + 𝑓଴ − ℎ଴

𝐵ሺ𝑓଴ + 2𝑒ଵ + 𝑒ଶ + 𝛿଴ +
𝜖଴
2
ሻ − 𝑔଴

h = 𝑒ଵ + 𝑓଴ h = ℎ଴ + 𝛿଴

𝑒ଶ ℎ଴ + 𝛿଴

h = 0

Figure 6: The examples for Theorem 8

or (2) for a weakly consistent heuristic Φ(h0 + δ0, g0) >
Φ(h0, g0) + δ0, then Φ-inequality is not always guaranteed
to hold.
Proof. [By construction.]

We will construct an example where BFS-NR fails. In the
following proof, e2 = δ0 if the heuristic is strongly consis-
tent, e2 = 0 if the heuristic is weakly consistent.

Let Φ(h0, g0) = f0, Φ(h0 + δ0, g0 + e2) = Φ(h0, g0) +
δ0 + e2 + ε0. Figure 6 shows the instance where this holds
where the h-costs are h(m) = h0, h(a) = f0 + e1,
h(b) = h0 + δ0, and the edge costs are c(start,m) = g0,
c(start, a) = e1, c(a,m) = e1 + f0 − h0, c(m, goal) =
B(f0 +2e1 +e2 +δ0 + ε0

2)−g0, c(m, b) = e2, c(b, goal) =
δ + h0.

Where
e1 ≤

h0 + g0 − f0

2
(1)

and
e1 <

ε0
4

(2)
.

(Note that Φ(h0, g0) = f0 and h0 + g0 = Φ(h0 + g0, 0).
According to Property 2, Φ(h0, g0) ≤ Φ(h0 + g0, 0), which
guarantees h0 + g0 − f0 ≥ 0. Therefore, there must exist a
non-negative e1.)

BFS-NR will expand start first and put m and a on
OPEN. At that point, f(m) = Φ(h0, g0) = f0, f(a) =
Φ(h(a), g(a)) = Φ(f0 + e1, e1), which means we will ex-
pand m before a.

According to Equation 1, the cost of start-a-m is 2e1 +
f0 − h0 ≤ (h0 + g0 − f0) + f0 − h0 = g0, which means
start-a-m is shorter than start-m.

Since we do not re-open nodes, when we reach b, h(b) =
h0 + δ0, g(b) = g(m) + c(m, b) = g0 + e2.

Since f(b) = Φ(h(b), g(b)), we can compute that f(b) =
f0 + δ0 + e2 + ε0.

At the same time,
f(goal) = Φ(0, g(goal))

= Φ(0, B(f0 + 2e1 + δ0 + e2 + ε0
2))

= f0 + 2e1 + δ0 + e2 + ε0
2

According to Equation 2, f0 + 2e1 + δ0 + e2 + ε0
2

< f0 + 2 ε04 + δ0 + e2 + ε0
2

= f0 + δ0 + e2 + ε0
Therefore, f(goal) < f(b) and we will expand goal. In

such a case, the total cost of the path will be B(f0 + 2e1 +
e2 + δ0 + ε0

2).
However, the shortest path from start to goal should be

start-a-m-b-goal, whose cost is f0 + 2e1 + e2 + δ0. We can
see that

B(f0 + 2e1 + e2 + δ0 + ε0
2) > B(f0 + 2e1 + e2 + δ0),

which means the expansion of the goal breaks the Φ-
inequality.

Theorem 9. Assume BFS-NR is using a priority function Φ
which meets Properties 1 to 4 and 6 on an problem instance
I ∈ ICON . Then for all expansions the Φ-inequality holds.

The proof is omitted due to space, but follows from the
same argument as Chen and Sturtevant (2019).

Theorem 10. For BFS-NR, assume that Φ satisfies Prop-
erty 1 to 4. Then if Property 6 holds, the algorithm will be
bounded on ICON .

Proof. Theorem 9 tells us that for all expansions the Φ-
inequality will hold. According to Theorem 2, we can draw
this conclusion.

To summarize the theoretical results: (1) on instances in
IINC , BFS-NR is not bounded. (2) On instances in ICON ,
to make BFS-NR bounded, Φ need to meet a few properties.
We always assume Properties 1 to 3. Then, Property 6 is suf-
ficient and necessary condition for BFS-NR to be a bounded
algorithm on ICON when Φ meets Property 5.

If Φ only meets Property 4, then Property 6 is sufficient
but not necessary for BFS-NR to be bounded algorithm on
ICON .

4 New Φ Functions
In this section, we introduce methods for constructing Φ
functions that have parameter that can be tuned.

4.1 Additive Bounds
First we look at additive suboptimality bounds. For refer-
ence, the Φ function used by WA* with weight w corre-
sponds to straight contour plots with a slope of −w, as
shown in Figure 1(a). We can achieve constant suboptimality
with ΦAB and a parameter K, K ≥ γ that can be tuned.

ΦAB(x, y) =

{
x+ K−γ

K y y < K

x+ y − γ y ≥ K (3)

Figure 1(b) illustrates ΦAB , a priority function that allows
a BFS-NR to find a solution with cost C∗ + γ. The behav-
ior of this algorithm is easy to understand: ΦAB searches
with WA* and then switches to A*. There is one parameter
K, which defines the size of the region where WA* is per-
formed. A larger K performs WA* for longer distances; as
a trade off, the weight of WA*, K

K−γ , must be smaller. We
can verify that all the required properties are satisfied. Note
that when x < K − γ, ΦAB(x, 0) < ΦAB(0, B(x)); when
x ≥ K − γ, ΦAB(x, 0) = ΦAB(0, B(x)).

An interesting fact is that reversing the approach by doing
A* and then switching to WA* won’t work. The following
Φ is not guaranteed to find bounded suboptimal solutions
because when x ≥ b, Φ(x, 0) = Φ(0, B(x)), but Φ(x +
δ, y + δ) > 2δ.

Φ(x, y) =

{
x+ y x < b
γ+b
b x+ y − γ x ≥ b

Suboptimality Bound/ (w)
Domain Φ 1.5 2.0 3.0 10.0

15-Puzzle ΦWA∗ 273,101 40,544 11,600 3,758
ΦXDP 166,447 21,338 7,550 3,586
ΦXUP 373,023 71,014 16,934 3,859
ΦpwXD 70,799 11,230 4,978 4,621
ΦpwXU - 2,792,255 823,029 67,065
Φz1 43,009 12,323 7,397 3,321

Heavy ΦWA∗ 333,320 114,848 57,778 44,207
15-Puzzle ΦXDP 200,318 82,295 48,203 43,141

ΦXUP 702,468 161,126 82,916 34,065
ΦpwXD 101,498 52,386 50,664 30,438
ΦpwXU - 4,335,932 1,970,396 125,473
Φz1 95,674 53,274 54,537 34,315

Heavy ΦWA∗ 8,498,635 973,556 22,732 33
Pancake ΦXDP 2,460,235 93,355 1,123 20
Puzzle ΦXUP - 7,072,634 404,622 318

ΦpwXD 988,899 23,718 367 29
ΦpwXU 51,245,052 - 11,244,399 24,377
Φz1 3,323,705 535,430 98,353 1,087

Table 1: Average state expansions for each priority functions
on different domains

Suboptimality Bound/ (w)
Domain Φ 1.5 2.0 3.0 10.0

15-Puzzle ΦWA∗ 56.37 63.71 77.99 118.87
ΦXDP 56.79 64.35 78.65 121.07
ΦXUP 55.87 63.73 77.69 121.99
ΦpwXD 66.83 75.23 89.33 119.57

Heavy ΦWA∗ 442.34 509.10 619.62 930.06
15-Puzzle ΦXDP 454.28 516.78 620.98 933.08

ΦXUP 438.34 502.56 619.58 988.26
ΦpwXD 519.14 586.26 685.66 1038.12

Heavy ΦWA∗ 81.18 82.78 88.94 105.16
Pancake ΦXDP 81.56 84.34 92.78 106.26

ΦXUP 80.21 82.08 86.70 102.30
ΦpwXD 82.22 86.36 95.74 104.90

Table 2: Average path costs for each priority functions on
different domains

4.2 Piecewise Linear Bounds
A general piecewise function for Bw(x) is:

ΦBw(x, y) =


x+ y y < K1x

A(y +Bx) K1x ≤ y < K2x
1
w (x+ y) y ≥ K2x

(4)

Figures 1(c)-(d) illustrate several possible contour plots
for this priority function, where (c) is the most general form.
The behavior of the most general Φ function will perform
optimally near start and goal with suboptimal search in the
middle region (where K1x ≤ y < K2x). Note that equation
set has 4 parameters, K1,K2, A and B. However, there are
only 2 free variables. Once we choose K1, A is determined.
As for the remaining variables, if we fix one, the other is
determined. We manually choose K1 and B = (2w − 1),
and then compute K2 and A.

Intuitively, there are a few advantages of this approach
over previous XUP and XDP functions. Firstly, XDP and
XUP are quadratic functions and are more complicated to

Suboptimality Bound/ (w)
Domain Φ 2.0 3.0 10.0

Data-network ΦWA∗ 15 14 16
ΦpwXD 16 16 16

Spider ΦWA∗ 13 17 20
ΦpwXD 18 18 18

Termes ΦWA∗ 11 12 16
ΦpwXD 12 13 15

Total of ΦWA∗ 69 72 77
all 8 domians ΦpwXD 74 79 74

Table 3: IPC Problems solved (each domain contains 20
problems)

Suboptimality Bound/ (w)
Domain Φ 2.0 3.0 10.0

Data-network ΦWA∗ 302,558 996,910 827,652
ΦpwXD 328,049 668,416 524,842

Spider ΦWA∗ 44,904 30,017 48,977
ΦpwXD 12,650 37,827 112,482

Termes ΦWA∗ 21,742,548 18,605,174 12,429,415
ΦpwXD 13,941,669 6,327,308 7,023,560

Table 4: Average expansions on commonly solved problems

implement and analyze, involving a square root operation.
The piecewise curves are slightly easier to implement in A*,
although both approaches only require small changes to A*
compared to alternate algorithms. But, these new priority
functions also give us more degrees of freedom to distribute
the suboptimality. When we are near start, we usually need
to expand a few states optimally to validate the final solu-
tion; when we are close to goal, the heuristics are usually
perfect, which means the path we find is typically optimal in
those portions. It is in the middle where we actually have the
freedom to find suboptimal paths - and we can use a higher
degree of suboptimality there, instead of evenly distributing
it across the solution path, as WA* does. Φz1 implements
this approach, as shown in Figure 1(c).

Φz1 =


y + x y < 1

wx
w+1

2w2−w+1 (y + (2w − 1)x) 1
wx ≤ y <

2w2+w+1
w−1 x

1
w (y + x) 2w2+w+1

w−1 x ≤ y
(5)

We can get simpler forms by setting K1 = 0 or K2 =∞
resulting in a 2-case piecewise function. We call these the
piecewise Convex Downward (pwXD) function Figure 1(d)
and piecewise Convex Upward (pwXU) Figure 1(e). Each
function has one free parameter, K. In our experiments, we
always use K = 2w − 1 giving:

ΦpwXD =

{
y + x y < K−w

w−1 x
1
w (y +Kx) K−w

w−1 x ≤ y
(6)

ΦpwXU =

{
1
K y + x y < K(w−1)

K−w x
1
w (y + x) K(w−1)

K−w x ≤ y
(7)

Additive Suboptimality Bound/ (γ)
Algorithm Parameter 0 4 16 64 256

BFSFγ 1,240 1,182 1,219 986 1,078

ΦAB K = γ + 1 1,240 1,237 1,169 711 368
ΦAB K = 2γ 1,240 1,233 1,107 485 481
ΦAB K = h0 1,240 1,137 929 518 368

Table 5: Average state expansions for algorithm on DAO for
additive bound (h0 = max{h(start), γ + 1})

Additive Suboptimality Bound/ (γ)
Algorithm Parameter 0 4 16 64 256

BFSFγ 12,325 7,494 878 356 235

ΦAB K = γ + 1 12,325 12,265 7,186 446 204
ΦAB K = 2γ 12,325 12,010 1,972 399 399
ΦAB K = h0 12,325 6,273 1,160 446 204

Table 6: Average state expansions for algorithm on STP for
additive bound (h0 = max{h(start), γ + 1})

Not that for Equation (6), if K > 2w− 1, then property 6
is violated.

5 Experimental Results
In the following, we run experiments on a server with 16 GB
RAM and 24 processors 6-core Intel Xeon CPU E5-2630
(2.30GHz). We tested on the 15-puzzle with unit edge costs
and the heavy tile setting, where the cost of moving tile X is
X . Manhattan Distance (MD) and PDB heuristics are used
as heuristic for regular tiles, and the modified MD (Thayer
and Ruml 2011) is used for heavy tiles. The instance are
the standard 100 Korf instance (Korf 1985). We also tested
on 1098 problems with solution length [128 − 132) from
the Dragon Age: Origins benchmark set (Sturtevant 2012).
Further experiments evaluated performance on a heavy vari-
ant of pancake puzzle (Gilon, Felner, and Stern 2016),
where the cost of flipping a prefix (V [1] · · ·V [i + 1]) is
the max(V [1];V [i + 1]). We also use their HGAP heuris-
tic. The problem set was provided by (Chen and Sturtevant
2019), which consists of 50 randomly generated 12-pancake
instances. “-” means the algorithm is not able to solve all
instances due to running out of memory.

Results on linear bounds in Table 1 show that ΦpwXD and
Φz1 typically perform well. For instance, on the heavy pan-
cake puzzle with w = 1.5, ΦpwXD is 8x better than WA*
and 2.48x better than ΦXDP . The cost for this improved per-
formance is slightly worse solution quality. However, under
the problem definition the task is to find a solution within
the bound, not to optimize solution quality.

Results on additive suboptimality bounds are presented
in Tables 6 (for sliding tile puzzle) and Table 5 (for grid
maps). In our experiments, we tried 3 different K: γ + 1,
2γ and h0 = max{h(start), γ + 1}, and compared against
BFSFγ (Valenzano et al. 2013). In most cases h0 gives us
the best performance. On grid maps, the poor performance
of BFSFγ is fully due to reopening states.

We also run experiments in FastDownward with the CE-

GAR heuristic (Seipp and Helmert 2014) on planning do-
mains from IPC 2018 problem sets. Table 3 shows the num-
ber of problems WA* and piecewise XD can solve; while
Table 4 demonstrate the average number of node expanded
for solving the common set. These problems were run with a
15 minute timeout on a cluster with 2.1 GhZ Intel Xeon E5-
2683 CPUs where each job was given 4 GB RAM. Finally,
Table 4 shows that the algorithms with fewer node expan-
sions usually find a higher cost solution.

6 Conclusions and Future Work
This work studies the general properties of Φ which guaran-
tee BFS-NR will find bounded suboptimal solutions, provid-
ing necessary and sufficient conditions on Φ. Experimental
results show additional improvements over existing methods
for both linear and constant suboptimality bounds.

Acknowledgments
This work was funded by the Canada CIFAR AI Chairs Pro-
gram. We acknowledge the support of the Natural Sciences
and Engineering Research Council of Canada (NSERC).

References
Benton, J.; Do, M.; and Ruml, W. 2007. A simple testbed for
on-line planning. In ICAPS Workshop on Moving Planning
and Scheduling Systems into the Real World.
Bulitko, V.; Björnsson, Y.; Sturtevant, N. R.; and Lawrence,
R. 2011. Real-time heuristic search for pathfinding in video
games. In Artificial Intelligence for Computer Games, 1–30.
Springer.
Chen, J.; and Sturtevant, N. R. 2019. Conditions for Avoid-
ing Node Re-expansions in Bounded Suboptimal Search. In-
ternational Joint Conference on Artificial Intelligence (IJ-
CAI) .
Chen, J.; Sturtevant, N. R.; Doyle, W.; and Ruml, W. 2019.
Revisiting Suboptimal Search. Symposium on Combinato-
rial Search (SoCS) 18–25.
Felner, A.; Zahavi, U.; Holte, R.; Schaeffer, J.; Sturtevant,
N.; and Zhang, Z. 2011. Inconsistent heuristics in theory
and practice. Artificial Intelligence (AIJ) 175(9-10): 1570–
1603.
Gilon, D.; Felner, A.; and Stern, R. 2016. Dynamic Poten-
tial Search—A New Bounded Suboptimal Search. In Sym-
posium on Combinatorial Search (SoCS), 36–44.
Korf, R. E. 1985. Depth-first Iterative-Deepening: An Opti-
mal Admissible Tree Search. Artificial Intelligence 27: 97–
109.
Martelli, A. 1977. On the complexity of admissible search
algorithms. Artificial Intelligence 8(1): 1–13.
Pearl, J.; and Kim, J. H. 1982. Studies in Semi-Admissible
Heuristics. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence PAMI-4(4): 392–399. ISSN 0162-8828.
doi:10.1109/TPAMI.1982.4767270.
Pohl, I. 1970. Heuristic search viewed as path finding in a
graph. Artificial intelligence 1(3-4): 193–204.

Pohl, I. 1973. The avoidance of (relative) catastrophe,
heuristic competence, genuine dynamic weighting and com-
putational issues in heuristic problem solving. In Proceed-
ings of the 3rd international joint conference on Artificial
intelligence, 12–17. Morgan Kaufmann Publishers Inc.
Seipp, J.; and Helmert, M. 2014. Diverse and additive Carte-
sian abstraction heuristics. In International Conference on
Automated Planning and Scheduling (ICAPS), 289–297.
Sepetnitsky, V.; Felner, A.; and Stern, R. 2016. Repair poli-
cies for not reopening nodes in different search settings. In
Symposium on Combinatorial Search (SoCS), 81–88.
Sturtevant, N. R. 2012. Benchmarks for grid-based pathfind-
ing. IEEE Transactions on Computational Intelligence and
AI in Games 4(2): 144–148.
Thayer, J. T.; and Ruml, W. 2008. Faster than Weighted A*:
An Optimistic Approach to Bounded Suboptimal Search.
In International Conference on Automated Planning and
Scheduling (ICAPS), 355–362.
Thayer, J. T.; and Ruml, W. 2011. Bounded suboptimal
search: A direct approach using inadmissible estimates. In
International Joint Conference on Artifical Intelligence (IJ-
CAI), 674–679.
Valenzano, R.; Arfaee, S. J.; Stern, R.; Thayer, J.; and Sturte-
vant, N. 2013. Using Alternative Suboptimality Bounds in
Heuristic Search. In International Conference on Automated
Planning and Scheduling (ICAPS), 233–241.
Valenzano, R.; Sturtevant, N.; and Schaeffer, J. 2014. Worst-
Case Solution Quality Analysis When Not Re-Expanding
Nodes in Best-First Search. In AAAI Conference on Arti-
ficial Intelligence, 885–892.

