
TCIAIG 1

Benchmarks for Grid-Based Pathfinding
Nathan R. Sturtevant

Abstract—The study of algorithms on grids has been
widespread in a number of research areas. Grids are easy
to implement and offer fast memory access. Because of their
simplicity, they are used even in commercial video games. But,
the evaluation of work on grids has been inconsistent between
different papers. Many research papers use different problem
sets, making it difficult to compare results between papers.
Furthermore, the performance characteristics of each test set
are not necessarily obvious. This has motivated the creation of a
standard test set of maps and problems on the maps that are open
for all researchers to use. In addition to creating these sets, we
use a variety of metrics to analyze the properties of the test sets.
The goal is that these test sets will be useful to many researchers,
making experimental results more comparable across papers, and
improving the quality of research on grid-based domains.

Index Terms—path planning, pathfinding, grid, search, map

I. INTRODUCTION

Grid-based maps have been widely used as test domains
in a number of fields, but until recently there was no pub-
licly available standardized repository of problems for re-
searchers. As a result we have created a pathfinding reposi-
tory (http://www.movingai.com/benchmarks/) for storing both
maps and problem sets that can be run on the maps.

This paper describes the data sets currently available online.
We do not set out to describe a particular scientific advance-
ment here. Instead, the goal is to describe the repository now
available, with the intent that the distribution of these maps
and problem sets will improve the quality and comparison of
work that uses grids as test domains.

We encourage researchers to test algorithms on as many
maps as possible from the test sets, as this will help show the
generality or the limitations of a given approach. Additionally,
if researchers are working on techniques for video games, they
will find several sets of maps taken from commercial games.

In short, our goal is that this will improve the quality of
evaluation in our own and others’ scientific work.

We also describe a number of metrics which help typify the
characteristics of each map. These help distinguish the features
of each map type which might influence performance or the
applicability of a given approach.

When working on these test sets, we initially formed a
number of hypothesis about the properties of these maps. We
state them here with some justification, and then analyze how
strongly these predictions hold in practice.

• Scaling maps does not preserve all of the underlying
properties of a map. Scaling a map will create larger open
spaces and larger openings between distinct areas in the
original map. This isn’t to say that it is ‘wrong’ to scale
a map, but that this change should be understood.

N. Sturtevant is with the Department of Computer Science, University of
Denver, Denver CO, 80208 USA e-mail: sturtevant@cs.du.edu.

• Artificial maps created algorithmically have different
properties than maps created by designers for particular
applications. If an algorithm is being designed for a
particular application, it is important that the maps being
tested are similar to the application under consideration.

• There is a significant difference in the properties of a
game map, depending on what genre of game the map
was designed for. In role-playing games, players tend to
have a linear experience through a map, while real-time
strategy games are more about the strategic use of space,
leading to less linear maps.

The rest of the paper is as follows. We begin by describing
the map format, as well as the types of maps available in the
repository, and the source of these maps. Then we describe
how the problem sets were built and the metrics that we
use for measuring the properties of the maps. Finally, we
show a number of experimental results across the domains
and provide a rough classification of the maps. We conclude
with suggestions on use of these metrics.

II. MAP TYPES

Each of the following maps is available from an online
pathfinding repository at http://movingai.com/benchmarks/.
They are also available for anonymous SVN checkout from
a google code repository:
svn checkout http://hog2.googlecode.com/svn

/trunk/maps/ hog2-maps

All maps online are stored in the following format; some maps
in the repository use a more complex representation.

A. Map File Format Description

The map file format used in the repository was originally
developed by Yngvi Björnsson and Markus Enzenberger at the
University of Alberta. We adapted this format as we began
importing different types of maps from commercial games,
but only the simplest format is described here.

The map format begins with the type, which is always
‘octile’, followed by the dimensions of the map and then
the map data itself. All cells in a map are either blocked or
unblocked. However, to represent the underlying maps in a
more artistic manner, several types of terrain have been added.
Normal ground is represented by a period (‘.’), and shallow
water is represented by the ‘S’ character. These are the only
passable types of terrain. All other terrain is considered to
be impassable, including trees (‘T’), water (‘W’) and out of
bounds (‘@’). This is illustrated in Figure 1. Part (a) of the
figure shows the textual representation of the map, while part
(b) shows the graphical representation. Overlaid on the map is
the graph which represents the movement that can be taken on
the map. In this case, an agent in the map can walk between

TCIAIG 2

type octile
height 5
width 10
map
@@@@@@@@@@
TTWW@....@
TTWW@....@
TTSS@....@
TTSS.....@

(a) (b)
Fig. 1. Sample map text (a) and graphical (b) representation. The lines show
the connectivity between grid cells.

(a) (b)
Fig. 2. Sample map from Baldur’s Gate II (a) and Dragon Age: Origins (b).

open ground and shallow water, but cannot traverse any other
terrain.

As shown in Figure 1, we assume that diagonal moves are
only possible if the related cardinal moves are both possible.
That is, it is not possible to take a diagonal move between two
obstacles, and it is not possible to take a diagonal move to cut
a corner. We make this assumption because in a real game
all creatures occupy some volume of space and are not able
to pass through blocked corners. The movement in the game
Dragon Age: Origins, for instance, works with this assumption.

Following are the maps stored in the repository.

B. Baldur’s Gate II

The set of 120 maps from Baldur’s Gate II (BG) is one of
the more extensively used map sets in previously published
papers. BG is a Role-Playing Game (RPG) by BioWare
Corp. published in 2000. The game uses grids internally for
representing maps. These maps were originally extracted by
Yngvi Björnsson when he was at the University of Alberta.
The largest map in this set, with 51,586 passable states, is
shown in Figure 2(a).

Sturtevant and Buro [1] scaled these maps to 512×512 and
then generated test sets by randomly generating paths within
the maps. Maps where it was difficult to generate paths of
length 512 were thrown out, so the set used for experimenta-
tion only uses 75 maps, instead of the 120 unscaled maps in
the repository.

(a) (b)
Fig. 3. Sample map from Warcraft III (a) and Starcraft (b).

C. Dragon Age: Origins

Dragon Age: Origins (DAO) is another RPG developed by
BioWare Corp. and published in 2009. Like Baldur’s Gate,
DAO uses grids as the internal map format. An automated
abstraction mechanism [2] speeds the pathfinding process. We
extracted this maps with help from BioWare and our student
James Balasalle. BioWare has explicitly given permission to
distribute these files as benchmark problems.

The 156 maps represent the set of maps that shipped with
the original game. This gives an example of the distribution of
maps found in a commercial game, and allows comparisons
across the full set of problems. The largest map has 137,375
walkable states, while some maps only have a few hundred
walkable states. The map in Figure 2(b) has 96,603 states and
paths of length up to 2800.

Note that the data in these maps is walkability data which is
occasionally blocked by invisible physics objects in the world.
So, there are some maps which contain more states than would
actually be traversable in the game.

D. Warcraft III

Warcraft III (WCIII) is a Real-Time Strategy game (RTS)
published in 2002 by Blizzard Corp. Although the map format
in the game is based on grids, there is other meta-data,
such as height information, which makes the representation
more complicated. In the repository we have converted the
format down to a simple grid-based format by adding borders
around cells with height differences. There were originally
43 maps in this set, which were extracted directly from the
game resources. This has been reduced to 36 maps which
are topologically more interesting. The maps have been post-
processed, removing all but the largest connected component
from the map. The maps in the repository are scaled to
512 × 512. Unscaled maps in a different format are in the
svn repository. A sample Warcraft III map can be found in
Figure 3(a).

E. Starcraft

Starcraft (SC) is another RTS published in 1998 by Blizzard.
It has maintained its popularity over the last decade primarily
through competitive play. The repository contains 76 maps
extracted from public internet archives and converted to the

TCIAIG 3

(a) (b)
Fig. 4. Portions of sample room (a) and maze (b) maps.

standard format by Dave Churchill, a graduate student at the
University of Alberta. The maps were then post-processed to
remove all but the largest connected component (other areas
have been marked as trees). All but a few maps are 512×512
or larger. A sample Starcraft map can be found in Figure 3(b).

It should be clear from Figures 2 and 3 that the RTS maps
have different designs than the RPG maps.

F. Room Maps
We originally created the room maps for our work [3] as

an alternative to existing map sets. The original intent was to
create maps with larger local minima that could be scaled to
larger sizes. The room maps are uniformly filled with square
rooms of fixed size. Then, with a probability of 0.8, a random
cell between two adjacent rooms is un-blocked. The original
set of room maps was 8×8. The repository also contains rooms
sizes 16×16, 32×32 and 64×64. This map set differs slightly
from previous sets in three ways. First, the maps are 512 ×
512 instead of 256× 256. Next, all but the largest connected
component were removed from the map. Finally, doors were
adjusted to not appear on the corners between rooms. The
repository contains 10 maps for each room size. A portion of
an example room map can be found in Figure 4(a). In this
map there is one room which had no openings, and thus is
blocked.

Note that a map with 16 × 16 rooms is not identical to a
map with 8× 8 rooms that has been scaled up by a factor of
two. In particular, in the 16×16 map the walls will be thinner
and the passages between rooms will be smaller (1 cell instead
of 2 cells).

G. Mazes
Mazes are another type of artificial map. The mazes are

formed randomly, with a number of parameters influencing the
layout of the map. Initially the whole map is blocked except
for a single square in the center. The algorithm attempts to
extend the current maze corridor, but has a (3%) chance of
randomly selecting a different corridor to extend. All maps in
this set are 512× 512, and are parameterized by the corridor
size in the passages, which can be 1, 2, 4, 8, 16, or 32. A
portion of an example maze with corridor size of 16 can be
found in Figure 4(b).

Similar to the room maps, a scaled maze would have thicker
walls than a map created with a larger corridor size, which
always has walls that are 1 cell thick.

H. Random maps

Random maps are created by randomly blocking grid cells
within a map. The number of blocked cells in each set of
maps varies between 10-40% by 5% increments. Similar to
previous maps, only the largest connected component is left
in the map. Maps which are 45% or more blocked have only
very small connected components and are not interesting. We
block exactly the given percentage of states in any map. The
number of walkable states in a map varies, however, because
unreachable areas are blocked with trees.

III. PROBLEM SET GENERATION

Most problem sets for these maps were selected by ran-
domly picking two points in the world and then finding
the optimal path between them. The optimal path length
is measured with diagonals having cost

√
2, and cardinal

movement having cost 1. Given the optimal solution length,
the problems were categorized into larger ‘buckets’. Reporting
results in buckets reduces the variance and makes it easier to
compare to similar problems across maps. The bucket for a
path of length ` is b`/4c. Each bucket on each map contains
at most 10 problems. The problem sets were built by choosing
100,000 pairs of random points. The largest contiguous set of
full buckets was retained in the problem set, while unfilled
buckets were discarded.

One exception to this is the BG set, which fixed the
maximum path length at 512, corresponding to the 127th
bucket. A few maps in this set do not have 10 problems in
the 127th bucket. We maintain this set as originally built for
historical purposes in order to match published results with
these maps.

The maze sets with corridor width 1 were built with 200,000
sample points, as 100,000 points was insufficient to fill the
buckets with problems.

IV. MAP METRICS

Given the maps defined in the previous section, we use a
number of metrics to characterize each map set, described
here. Full metrics, including per-map results, can be found
on the benchmark web site. These metrics are meant to be
easy to compute, so we use approximate measures where a
full computation would have significant overhead.

A. Number of states

The first metric is simple: the number of unblocked tiles in
the map. Each set of artificially generated maps generally has
the same number of states, however in maps created for a real
game, there can be significant variance in map sizes. In the
DAO set the largest maps have over 100,000 states, while the
smallest just have a few hundred.

B. Estimated maximum length shortest path

Finding the exact longest path in each map via an all-pairs
shortest-path computation is expensive. With over 100,000
states in a map, the all-pairs shortest-path data would require
1010/2 entries. There are cheaper ways to find the longest

TCIAIG 4

path, but a reasonably accurate estimation is sufficient for our
purposes.

For each map we choose a random point and then perform a
Dijkstra search until the last state is found. Then, we measure
the longest path from this state. We do this 5 times for each
map and take the maximum. Results are then averaged over
all maps in a set. Mazes have, by far, the longest paths. We
will discuss other correlations later.

C. Transit Node Count

The notions of transit nodes [4] and highway dimension [5]
are metrics that have been used to describe why recent plan-
ning approaches for road networks have been so successful.
Transit nodes in a graph are the nodes at some small radius
which are on all shortest paths to nodes at a larger radius.
When the number of transit nodes in a road graph is sparse, the
all-pairs shortest-path data can be stored just between transit
nodes, greatly reducing the storage overhead.

This concept has been generalized into the concept of
highway dimension. Abraham et. al. [5] show that low high-
way dimension guarantees efficient pre-processing and shortest
path queries for a number of planning algorithms, including
contraction hierarchies [6] and reach [7].

Highway dimension is difficult to compute directly, because
it requires an expensive optimization. Instead, we measure the
number of transit nodes at radius r given shortest paths to 4r,
for several values of r. This is a lower bound on the highway
dimension, and is measuring the same property – whether a
sparse set of points can be found on all shortest paths.

We randomly sampled 50 points on each map, measuring
the number of transit nodes for each point, and then average
the results over all maps in each set. We report results for
r = 10 and r = 40. If a map was completely explored before
reaching depth 4r the results were excluded from the reported
averages.

A low highway dimension and/or transit node count sug-
gests that memory-efficient heuristics can be built to solve
pathfinding problems quickly.

D. Dimension

In addition to transit node count, we attempt to directly
estimate the dimension of a map. This is related to how the
branching factor might be estimated in an exponential tree.
We do this by choosing a random point in a map and then
performing a Dijkstra search, recording the number of nodes
expanded at each depth. Then we fit the number of states at
each depth to the polynomial a + b · x + c · x2 using linear
regression. (The whole process is also called quadratic or
polynomial regression.) The value for c gives some indication
of the dimension of the map. If c = 0, the map is one
dimensional. If c = 1 the map is two dimensional. If c < 0,
the number of states at each new depth is being reduced. The
number of nodes expanded at the end of the search does tend
to tail off as the ends of the map are reached, so we only
perform the regression on the node counts from the first half
of the search. We repeated this measurement 50 times on each
map. Results are then averaged over all maps.

Originally, our dimension metric was intended to estimate
the dimensions of a Euclidean heuristic [8], but experiments
showed that results from these two approaches did not corre-
late.

E. Heuristic Quality and Nodes Expanded

We use the problem sets to measure the quality of the search
heuristic in two ways. For all problems in bucket 127, which
have length 508-512, we compare the initial heuristic value to
the optimal path cost and report the percentage. Many small
maps do not have paths of this length, so this is biased towards
larger maps. We also measured the number of nodes expanded
by A* when solving these problems and report this as well.

V. EXPERIMENTAL RESULTS

The average metrics for each problem set are in Table I.
The first column is the map set. Results for the BG and WCIII
map sets are provided both for the original sizes and scaled
to 512× 512. The artificial maps are all 512× 512, while the
other maps are at their native resolutions.

The reported metrics are averages of the number of states
in the map, the maximum length shortest path, the dimen-
sionality, the transit node count (TNC), and, for problems
with optimal length 508-512, the heuristic accuracy and nodes
expanded.

As the values reported are averages, there can be significant
variation, especially in the DAO set which contains a number
of small maps. We will look at this broad classification of
values; detailed results are available online.

The following data points are worth noting in the set; further
analysis follows in the next section.

• Increasing the size of the room maps increases the
number of states in the map (because there are fewer
walls) and decreases the heuristic accuracy. The number
of nodes expanded in paths length 508-512 increases
slightly as the rooms get larger.

• Increasing the size of the maze corridors also increases
the number of states in the map. It also increases the
heuristic accuracy and the number of nodes expanded.
Node expansions increase because larger corridors pro-
vide more nodes for A* to expand. Heuristic accuracy
increases because the maximum path length decreases.

• As the random maps are progressively more filled, the
number of states in the map decreases, but the nodes ex-
panded increases. This is mirrored by a drop in heuristic
accuracy, meaning that the problems get harder as more
random obstacles are added. But, when the map is 40%
filled with obstacles, the problems begin to get easier
again.

• The transit node count is significantly higher at r = 10
than at r = 40 on the room-64 and maze-32 maps.
Recall that the transit node count is measured relative to
distances r and 4r. At radius 40, most states will still be
inside a room of size 64, increasing the TNC significantly.
But, once the bulk of a search exits a door to a room, all
optimal paths will go through the same door, decreasing

TCIAIG 5

Average Average Tran. Node Cnt. Tran. Node Cnt. Heuristic Expanded
Map Set Num. States Max Path Dimension radius = 10 radius = 40 Accuracy (512) Nodes (512)
BG 4,507 150.5 0.52 6.12 2.04 - -
BG512 73,930 693.0 0.44 39.67 31.74 0.76 22,375.0
DAO 21,323 427.4 0.31 11.05 3.32 0.59 17,857.6
SC 263,782 1,190.2 0.41 40.11 15.44 0.78 26,993.3
WCIII 10,669 155.5 0.70 6.26 2.06 - -
WCIII512 90,910 674.0 0.75 32.27 13.30 0.84 27,386.4
Rooms-8 206,792 891.7 0.78 5.32 9.15 0.86 40,414.8
Rooms-16 231,263 863.8 0.94 3.94 6.54 0.83 41,776.3
Rooms-32 243,733 881.0 0.97 4.16 4.77 0.83 45,210.7
Rooms-64 249,352 931.0 0.81 30.04 3.20 0.77 50,467.7
Mazes-1 131,071 7,575.6 0.01 1.82 1.82 0.18 4,619.0
Mazes-2 174,517 5,795.1 0.02 1.86 1.73 0.24 8,671.6
Mazes-4 209,268 4,849.1 0.03 1.90 1.81 0.27 14,972.9
Mazes-8 232,928 4,526.0 0.03 2.14 1.85 0.34 19,768.0
Mazes-16 246,042 3,826.5 0.02 5.81 1.93 0.41 27,693.8
Mazes-32 253,819 2,666.4 0.03 22.89 2.77 0.49 39,123.8
Random-10 235,903 766.8 1.13 16.93 22.79 0.99 14,696.4
Random-15 222,689 789.9 1.01 14.34 19.97 0.97 21,728.9
Random-20 209,255 816.6 0.92 11.70 16.80 0.95 28,408.8
Random-25 195,315 851.1 0.79 9.33 13.68 0.91 33,447.2
Random-30 180,209 894.4 0.64 6.81 10.81 0.86 34,956.9
Random-35 161,313 983.5 0.50 4.26 6.86 0.76 35,540.7
Random-40 96,365 1,585.1 0.09 2.42 2.36 0.46 19,555.8

TABLE I
AVERAGE RESULTS FOR EACH MAP SET.

the TNC. A similar effect occurs in mazes with larger
corridor sizes.

• The maze maps are the only set with dimension of
approximately 0. As the search is constrained by the maze
corridors, no matter the size of the corridor, the number
of new states will tend to grow linearly with the depth.

Next we evaluate our three original hypothesis.

A. Evaluating Map Scaling

The first question we look at is the effect of scaling. We
look primarily at the BG maps, but the same trends hold for
the WCIII maps.

The unscaled maps have an average of 4,507 states, versus
73,930 in the scaled maps. This is, of course, the motivation for
initially scaling these maps, as the originally maps were quite
small and didn’t represent the work that might be required
in a modern game. Our original hypothesis was that some
properties of maps are changed by scaling.

Results show that our measure of dimension is relatively
unchanged by scaling, while TNC is significantly changed
by scaling. We plotted the dimension of the unscaled versus
scaled maps, and then fit the resulting point cloud to a line.
The points fit the line y = 0.01 + 0.98x with a correlation
coefficient of 0.96. This confirms that scaling a map leaves
the dimensionality unchanged. Our intuition behind this is that
the relative size of areas stay the same when a map is scaled,
so although more nodes will be expanded, the relative ratios
of nodes expanded at each depth stays the same.

Transit node count, however, changes significantly. The
unscaled BG maps have 6.12 transit nodes at radius 10 and
2.04 transit nodes at radius 40. This is a significant departure
from the result for the scaled maps, which have 39.67 transit

nodes at radius 10 and 31.74 transit nodes at radius 40. Given
normal tie-breaking rules (for expanding states with highest g-
cost first) on an empty map all states at radius r will be on the
shortest path to states at radius 4r. Scaling maps creates larger
open areas, and thus the number of transit nodes increases.
Note, however, that this measurement depends on the radius.
Given measurements at larger radii, we would expect the
number of transit nodes to decrease.

These results suggest that scaling is not necessarily the
wrong thing to do – it depends on how the maps are used.
But the change in transit node count suggests that heuristics
could be less effective on scaled maps than unscaled ones.

B. Algorithmic Versus Designed Maps

Next we look at the maps which were generated algorith-
mically in comparison to the other map sets. We performed
analysis of the metrics both manually and using k-means
clustering. All metrics were normalized (i.e. linearly mapped
to [0, 1]), and then k-means clustering was run 1000 times
with 4 and 7 clusters of maps. We kept track of how many
times any pair of maps was placed in the same cluster with
each approach, and then looked at the top 20 pairings.

As expected, the artificial benchmark problems were very
commonly grouped together, as the metrics for these maps
are very similar. The exceptions to this was the Rooms-64 set,
which is closest to the SC map set, and the Random-40 which
is closest to the DAO map set. With 40% random obstacles
the optimal paths in a map no longer resemble a straight line,
as they do with fewer obstacles. Instead the obstacles form
areas more analogous to the rooms and corridors which are
seen in the DAO maps. The BG512 and WCIII512 map sets
were almost always grouped together and show reasonable

TCIAIG 6

similarity. This shows that in some cases algorithmically
designed maps share metrics with human-designed maps, but
not in the majority of cases.

C. Genre-Specific Differences

Finally, we look at the difference between maps for role-
playing games (RPGs) and real-time strategy games (RTS).
We focus on the DAO and SC sets which are not scaled. We
see that the SC maps have more states and longer paths on
average. They also have much higher TNC. This is partially a
selection bias – the SC maps are being used in competitions
and are not the maps that would be used in a play-through
of a game. But, on the SC maps, a typical problem of length
512 would require 10% of the map states to be expanded,
while the DAO problems would require 50% of the map
states to be expanded. This is computed by looking at the
average number of states in maps with paths length 508-512.
This suggests that the SC maps are more two-dimensional: A
heuristic search across a two-dimensional plane will expand
a smaller fraction of the total states than a heuristic search
along a one-dimensional line. But, this is contradicted by our
measure of dimension, which shows the SC maps with 0.41
versus the DAO maps with 0.31. Further analysis revealed the
difference: the average dimension of maps that contain paths
of length 400 or longer is 0.07. Thus, larger DAO maps have
lower dimension. This reveals that, for larger maps, there is a
clear structural difference between SC and DAO maps.

VI. CONCLUSIONS

This paper describes a new repository that has been placed
online to improve the evaluation of grid-based problems. This
repository will allow researchers to use the same problems and
test sets, increasing the reproducibility of published results.
We introduce the data sets, describe how they were built, and
provide metrics for distinguishing map types.

We provide the following suggestions for researchers using
these problem sets:

• Report exactly which map set was used.
• Report exactly what problems were used. For example, a

given bucket size across all maps in a particular problem
set.

• Use the existing problem sets. This will allow other
researchers to exactly duplicate your results.

• Report any deviation from the testing conditions. These
could include different edge costs (e.g., 1.5 for diago-
nals for more efficient search), a different heuristic, or
allowing agents to cut corners.

• Use a broad set of test maps to clearly illustrate the
strengths and weaknesses of a given approach. For in-
stance, techniques that work particularly well on maps
with axis-aligned obstacles should not be exclusively
tested on artificial benchmarks. If you are unsure of
the limitations of your approach, use the benchmarks
to explore them, and test to see if any of the provided
metrics correlate with performance.

We have made some effort to collect an interesting set of
maps and provide useful metrics to analyze them. But, we

are open to adding more map sets or metrics if they can be
demonstrated to provide useful classification. We are also open
to adding other map formats to the repository.

Authors are encouraged to send us any papers published
using these benchmarks as we are maintaining a list of papers
which use them. Currently over 30 published papers have
used these maps or benchmark problems starting in 2004 [9]
and continuing to the present [10]. We hope that many more
researchers will benefit from their broader public distribution.

ACKNOWLEDGEMENTS

We acknowledge the help of Chris Rayner in helping to measure
the correlation between our dimension metric and the dimension
computed by Euclidean heuristics.

REFERENCES

[1] N. R. Sturtevant and M. Buro, “Partial pathfinding using map abstraction
and refinement,” in AAAI, 2005, pp. 1392–1397.

[2] N. R. Sturtevant, “Memory-efficient abstractions for pathfinding,” in
AIIDE, 2007, pp. 31–36.

[3] N. R. Sturtevant, A. Felner, M. Barrer, J. Schaeffer, and N. Burch,
“Memory-based heuristics for explicit state spaces,” in IJCAI, 2009, pp.
609–614. [Online]. Available: http://ijcai.org/papers09/Papers/IJCAI07-
107.pdf

[4] H. Bast, S. Funke, and D. Matijevic, “Transit ultrafast shortest-
path queries with linear-time preprocessing,” in In 9th DIMACS
Implementation Challenge, 2006.

[5] I. Abraham, A. Fiat, A. V. Goldberg, and R. F. Werneck, “Highway
dimension, shortest paths, and provably efficient algorithms,” in
Proceedings of the Twenty-First Annual ACM-SIAM Symposium on
Discrete Algorithms, ser. SODA ’10. Philadelphia, PA, USA: Society
for Industrial and Applied Mathematics, 2010, pp. 782–793. [Online].
Available: http://portal.acm.org/citation.cfm?id=1873601.1873665

[6] R. Geisberger, P. Sanders, D. Schultes, and D. Delling, “Contraction
hierarchies: Faster and simpler hierarchical routing in road networks,”
in WEA, 2008, pp. 319–333.

[7] A. V. Goldberg, H. Kaplan, and R. F. Werneck, “Reach for a*: Effi-
cient point-to-point shortest path algorithms,” in IN WORKSHOP ON
ALGORITHM ENGINEERING AND EXPERIMENTS, 2006, pp. 129–
143.

[8] D. C. Rayner, M. H. Bowling, and N. R. Sturtevant, “Euclidean
heuristic optimization,” in AAAI, 2011. [Online]. Available:
http://www.aaai.org/ocs/index.php/AAAI/AAAI11/paper/view/3594

[9] A. Botea, M. Müller, and J. Schaeffer, “Near Optimal Hierarchical Path-
Finding,” Journal of Game Development, vol. 1, no. 1, pp. 7–28, 2004.

[10] C. Hernández and J. A. Baier, “Fast subgoaling for pathfinding via real-
time search,” in ICAPS, 2011.

Nathan Sturtevant is Assistant Professor in the
Computer Science Department at the University of
Denver. His scientific research focuses on Artifi-
cial Intelligence and search in single and multi-
agent settings, including applications to real-time
environments, such as games, and more competitive
environments.

