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Abstract
In the Multi-Agent Meeting problem (MAM), the
task is to find a meeting location for multiple
agents, as well as a path for each agent to that lo-
cation. In this paper, we introduce MM*, a Multi-
Directional Heuristic Search algorithm that finds
the optimal meeting location under different cost
functions. MM* generalizes the Meet in the Mid-
dle (MM) bidirectional search algorithm to the case
of finding an optimal meeting location for multiple
agents. Several admissible heuristics are proposed,
and experiments demonstrate the benefits of MM*.

1 Introduction
MM [Holte et al., 2016] is a bidirectional heuristic search al-
gorithm with a unique priority function; nodes are ordered in
OPEN according to max(2g, g+h). MM is guaranteed to meet
in the middle but the practical meaning of this property is that
the two search frontiers never venture further than C∗/2 from
their start locations (where C∗ is the cost of the shortest path).
Nevertheless, it is important to note that a meeting location is
not returned by MM; a shortest path from a start location to
a goal location is returned. In fact, a meeting location is not
even defined in MM.

In this paper, we deal with the “real” problem of meeting
in the middle, where a meeting location is returned. Further-
more, while MM is designed for a problem that is defined
on start and goal locations, our problem is defined on k ≥ 2
start locations where we search for an optimal meeting lo-
cation with respect to the shortest path from each of these
k start locations to that meeting location. We call this prob-
lem the Multi-Agent Meeting problem (MAM). We focus on
minimizing the following two common cost functions defined
on possible solutions. (1) Sum-Of-Costs (SOC): the sum of
the costs of the paths to the meeting location. (2) Makespan
(MKSP): the cost of the longest path to the meeting location.
SOC may corresponds to the energy (fuel) consumed until the
agents meet, and MKSP corresponds to the time elapsed until
the agents meet. MAM has many real-life applications, such
as choosing a gathering point for multiple traveling agents
(humans, cars, or robots), or suggesting a location that needs
to be close to important surrounding locations.

To find the optimal meeting location, we introduce the
Multi-Directional Meet in the Middle (MM*) algorithm.
MM* is a best-first search algorithm that progresses in k
directions until a meeting location is found. We provide a
unique priority function for each of the SOC and MKSP cost
functions and prove the optimality of MM* for these cases.
MM* is strongly related to MM — its priority function for
MKSP is a generalization of that of MM, although their halt-
ing conditions are different (so as to return the actual meet-
ing location). MM* relies on an admissible heuristic function
and we propose a number of such heuristic functions for SOC
and MKSP. We then provide experimental results that demon-
strate the benefits of MM* with these heuristic functions.

MAM is also known as Optimal Meeting Point [Yan et al.,
2015], Smallest Enclosing Discs [Welzl, 1991], and 1-Center
problem [Megiddo, 1983] in other areas of computer science.
In the field of computational geometry, MAM is known as
the Weber problem [Cooper, 1968]. Many efficient algorithms
exist for MAM in continuous Euclidean spaces [Ostresh Jr,
1977; Chen, 1984; Radó, 1988; Rosing, 1992] that calcu-
late a geometric point that satisfies the relevant constraints.
The problem has also been investigated on general graphs by
applying variants of Dijkstra’s algorithm [Dijkstra, 1959] in
parallel, one for each agent. Once a path from all start loca-
tions to all locations in the graph is known, the best meeting
location can be chosen by iterating over all relevant meet-
ing locations, exhaustively. Many improvements have been
suggested, such as pruning areas of the state space [Lan-
thier et al., 2005; Xu and Jacobsen, 2010; Yan et al., 2015;
Li et al., 2019; Geisberger et al., 2008]. We continue this di-
rection and, to the best of our knowledge, are the first ones to
add admissible heuristics and study MAM in the context of
heuristic search.

2 Problem Definition
The Multi-Agent Meeting problem (MAM) receives as in-
put a weighted, undirected graph G = (V,E) and a set
of k start locations S = {s1, . . . , sk} ⊆ V for k agents
A = {a1, . . . , ak}. The cost of edge (v, v′) ∈ E is denoted
by c(v, v′) > 0. A solution is a target location t ∈ V , indi-
cating a meeting location for the agents, plus a set of shortest
paths from each si to t. Let d(v, u) be the cost of a shortest



path from v to u. The cost functions for SOC and MKSP for
a meeting location t are calculated as follows. For SOC:

CSOC (t) =
∑
ai∈A

d(si, t). (1)

This corresponds to the sum of the costs of the paths to the
meeting location. For MKSP:

CMKSP (t) = max
ai∈A

d(si, t). (2)

This is the cost of the longest path to the meeting location.
An optimal solution has the lowest cost among all possible
solutions. Its cost is denoted by C∗ and its meeting location
by t∗. In this paper, we focus on optimal solutions.

Figure 1(a) illustrates a MAM problem instance with three
agents a1, a2, and a3 with start locations s1, s2, and s3, re-
spectively. Edges are labeled with their costs. Consider loca-
tion t as a meeting location. Since d(s1, t) = 5, d(s2, t) = 5,
and d(s3, t) = 5, CSOC (t) = 15 while CMKSP (t) = 5.
Now, consider v. Since d(s1, v) = 8, d(s2, v) = 2, and
d(s3, v) = 2, CSOC (v) = 12 and CMKSP (v) = 8. v is op-
timal for minimizing SOC and t for MKSP. Next, we present
the MM* algorithm that solves MAM for both cost functions.

3 Multi-Directional MM (MM*)
MM* is a multi-directional best-first search algorithm that
guarantees to return an optimal MAM solution for both SOC
and MKSP. As will be shown below, the only difference in
MM* between SOC and MKSP is the priority function used.

A node in MM* is a pair (ai, v) representing an agent and
its location. MM* organizes nodes in a single open-list (de-
noted OPEN) and a single closed-list (denoted CLOSED).1
OPEN is initialized with k root nodes: (ai, si) representing
each of the k agents and its start location. Each node is as-
sociated with a g-value. Naturally, g(ai, si) = 0. Let N(v)
represent the successors of v. Expanding a node (ai, v) has
two parts: (1) Generating a node (ai, v

′) for each v′ ∈ N(v),
setting g(ai, v

′) = g(ai, v) + c(v, v′), and inserting it into
OPEN. (2) Moving (ai, v) to CLOSED.

Recall that, in heuristic search, given a node n in the search
tree, f∗(n) is defined to be the cost of the optimal solution
that passes through n, and f(n) is defined to be a lower
bound on f∗(n). This terminology is migrated to MM*. Let
f∗(ai, v) be the cost of the optimal MAM solution (for either
SOC or MKSP) such that ai passes through v on its way to
the meeting location. f(ai, v) is a lower bound on f∗(ai, v),
i.e., f(ai, v) ≤ f∗(ai, v). In Section 4, we define f(ai, v) for
either SOC or MKSP by exploiting admissible heuristic func-
tions that estimate the remaining cost of all agents (including
that of ai) that can be added to g(ai, v) (the cost of the path
from si to v along the search tree). Each of these f -values can
be plugged into MM*.

1Bidirectional searches usually maintain two open-lists, one for
each search direction, but the priority function can choose a node
from either one of them. This is logically equivalent to a single open-
list which contains nodes from both directions. MM* uses a single
open-list, which is equivalent to k open-lists, one for each agent, that
use the same priority function.

Algorithm 1: The MM* Algorithm
1 Main(MAM problem instance)
2 Init OPEN, CLOSED; U ←∞
3 foreach ai ∈ A do
4 Insert (ai, si) into OPEN

5 while OPEN is not empty do
6 Extract (ai, v) from OPEN // with lowest f(ai, v)
7 if f(ai, v) ≥ U then
8 return U

9 foreach v′ ∈ N(v) do
10 if CLOSED contains (ai, v

′) then
11 if g(ai, v

′) ≤ g(ai, v) + c(v, v′) then
12 continue

13 Remove (ai, v
′) from CLOSED

14 else if OPEN contains (ai, v
′) then

15 if g(ai, v
′) ≤ g(ai, v) + c(v, v′) then

16 continue

17 Insert (ai, v
′) into OPEN // possibly overwriting

18 Update U

19 Insert (ai, v) into CLOSED

20 return U

There is no notion of a goal node in MM* but instead we
have a goal condition on each location v. We say that v is
a possible goal iff it has been generated from all directions,
i.e., ∀ai ∈ A: (ai, v) ∈ OPEN ∪ CLOSED. To manage this in
practice, for each location v, we keep a k bit-vector, where bit
i is set when node (ai, v) is generated. If v is a possible goal,
its cost C(v) depends on the cost function and is:

CSOC (v) =
∑

ai∈A g(ai, v) and

CMKSP (v) = maxai∈A g(ai, v).2

Let U be the cost of the incumbent solution, i.e., U is the
minimum C(v) among all possible goals (initially U = ∞).
U is an upper bound on C∗. The halting condition for MM*
is to halt if fmin ≥ U , where fmin is the minimum f -value
in OPEN. This guarantees that U cannot be further improved.

Algorithm 1 gives the pseudo-code of MM*. First, MM*
initializes OPEN and CLOSED, and sets U = ∞ (line 2).
Then, the initial nodes (ai, si) are inserted into OPEN (lines
3-4). MM* performs a best-first search as follows. While
OPEN is not empty (line 5), it extracts (ai, v), the best node
(with the lowest f -value) from OPEN (line 6). Then, it checks
the halting condition on location v, i.e., whether fmin =
f(ai, v) ≥ U (lines 7-8). Otherwise, it performs the expan-
sion cycle on (ai, v) (lines 9-18). MM* performs duplicate
detection and pruning on CLOSED (lines 10-13) and OPEN
(lines 14-16). As a result, MM* always keeps the lowest seen
g-value for each generated node (ai, v

′). In general, MM* al-
lows nodes in CLOSED to be re-opened (line 13). But, this
will never happen for consistent heuristics (such as all heuris-
tics that we suggest and experiment with below). If (ai, v

′) is
not a duplicate node, then (ai, v

′) is inserted into OPEN (line

2In Equations 1 and 2, we used d(si, v). Here, we use g(ai, v)
because the path is the path from si to v along the search tree.
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Figure 1: (a,b) fMKSP examples. (c) MM and MM* difference example. (d,e) Heuristics examples.

17). Then, U is updated in case v′ is a possible goal with a
smaller cost (line 18). After its expansion, (ai, v) is inserted
into CLOSED (line 19). When U is returned (lines 8 and 20),
it also includes the meeting location t as well as the paths to
it, that can be constructed by parent-pointers (not included in
the pseudo-code).

4 MM* Priority Functions
We next define the priority function f for MM* for both
SOC and MKSP. In A*, given a node n, a perfect heuris-
tic h∗(n) equals d(n, goal) and a perfect priority function
f∗(n) equals g(n) + h∗(n). If h(n) is a lower bound on
h∗(n) = d(n, goal), then f(n) = g(n) + h(n) is a lower
bound on f∗(n). Next, we generalize this to MM* and define
all these functions for both SOC and MKSP.

4.1 SOC
Consider node (ai, v) in OPEN. f∗SOC (ai, v) is the cost of the
optimal solution such that: (1) ai passes through v (via the
path of cost g(ai, v) along the search tree). (2) ai continues
from v to meet the other agents at some location t. (3) Each of
the other agents aj travels from sj to t. Now, f∗SOC (ai, v) =
g(ai, v) + h∗SOC (ai, v), where h∗SOC (ai, v) is the sum of the
cost of ai to get from v to t along a shortest path (item 2), plus
the cost of the other agents to get from their start locations to
t along shortest paths (item 3):

h∗SOC (ai, v) = min
t∈V
{d(v, t) +

∑
aj∈A\{ai}

d(sj , t)}. (3)

We denote the best meeting location t w.r.t. to node (ai, v)
by t∗(ai, v). hSOC (ai, v) is an admissible estimate (lower
bound) of h∗SOC (ai, v), i.e., hSOC (ai, v) ≤ h∗SOC (ai, v). We
propose a number of admissible h-functions for SOC in Sec-
tion 7. For SOC, naturally,

fSOC (ai, v) = g(ai, v) + hSOC (ai, v). (4)

4.2 MKSP
The MKSP case is more complicated. Since, in MKSP, we
take the maximum among agents (not the sum), we do not
know which agent has the path with the highest cost. We be-
gin by defining f∗MKSP (ai, v), which is the optimal solution
given that ai passes through v, via a path of cost g(ai, v):

f∗MKSP (ai, v) = mint∈V

[
max

{
g(ai, v) + d(v, t)

maxaj∈A\{ai} d(sj , t)

}]
. (5)

For a given possible meeting location t, we want the path of
one of the agents with the highest cost. If this is our current

agent ai, then this is given by g(ai, v) + d(v, t) (top line of
the max term). If it is some other agent aj , then it is given by
d(sj , t) (bottom line).

Next, we need to define fMKSP as a lower bound on
f∗MKSP . Here, we do not define h∗MKSP and hMKSP but de-
fine fMKSP (ai, v) in terms of hSOC (ai, v) as follows:

fMKSP (ai, v) = max
{
g(ai, v), g(ai,v)+hSOC (ai,v)

k

}
, (6)

where k is the number of agents. g(ai, v) is a lower bound on
f∗MKSP (ai, v) because ai has already traveled along a path of
cost g(ai, v). Thus, f∗MKSP (ai, v) ≥ g(ai, v). Now, observe
that f∗SOC (ai,v)

k ≤ f∗MKSP (ai, v) because one of the agents
must travel at least f∗SOC (ai,v)

k . Since fSOC (ai, v) is a lower
bound on f∗SOC (ai, v), dividing it by k will yield a lower
bound on f∗MKSP (ai, v).

Costs of Subsets
f∗MKSP for k agents is determined by the path of one of the
agents with the highest cost. Therefore, f∗MKSP and fMKSP

for any subset of these k agents are also lower bounds on
f∗MKSP for all k agents. Thus, for any subset of k′ < k
agents, we can compute fMKSP and use it as a lower bound
on f∗MKSP for the entire set of k agents. Therefore, while the
right-hand side of the max function in fMKSP (ai, v) (Equa-
tion 6) contains all k agents, it can also contain any subset
of agents. This can be done by calculating hSOC (ai, v) for
the selected subset of k′ < k agents and dividing it by k′ in-
stead of k. Figure 1(a,b) shows examples of MAM problem
instances for MKSP. In both cases, the optimal MKSP is 5
at location t. Assume a perfect heuristic for SOC. For Fig-
ure 1(a), the optimal SOC is 12 at location v. Thus, for each
agent ai, fSOC (ai, si) = 12, and, by computing MKSP for
all agents, we get fMKSP (ai, si) = 12/3 = 4. Now, consider
the subset of agents {a1, a2}. Their SOC is 10, and hence
fMKSP (ai, si) = 10/2 = 5. For Figure 1(b), the optimal
SOC is 15 at location t, and thus fSOC (ai, si) = 15. By com-
puting MKSP for all agents, we get fMKSP (ai, si) = 15/3 =
5 but the SOC of the subset of agents {a1, a2} is 8, and hence
fMKSP (ai, si) = 8/2 = 4. This shows that there is no best
subset for all cases. In our experiments, we used all combina-
tions of pairs of agents, in addition to the set of all agents. It is
future work to investigate additional subset selection policies.

5 MM & MM* - Similarities and Differences
It is very interesting that fMKSP is a generaliza-
tion of the priority function of the MM algorithm:
pr(n) = max(2g(n), g(n) + h(n)) [Holte et al., 2016].



If we divide this expression by two, we get pr(n) =

max(g(n), g(n)+h(n)
2 ). This is a special case of the proposed

fMKSP for k = 2 (h(n) is equivalent to an estimate of the
cost from the start location of the backward agent, the goal in
MM, to the current location of the forward agent). MM prior-
itizes nodes based on MKSP to keep MM restrained [Shaham
et al., 2017], i.e., to never expand nodes with g(n) > C∗

2 .
In Figure 1(c), we illustrate the difference between MM

and MM* (for MKSP with 2 agents) with regard to halt-
ing. Both algorithms start by inserting s1 and s2 into OPEN.
Next, both algorithms expand s1 and generate x and s2. MM
sets pr(x) = 12 and pr(s2) = 10 (from the forward side;
hF (x) = 6 and hF (s2) = 0), and U = 10 because a
path of cost 10 has been found. At this point, MM halts, as
U ≤ fmin = 10, so a path of smaller cost cannot be found.
By contrast, MM* sets fMKSP (a1, x) = g(a1, x) = 6 and
fMKSP (a1, s2) = g(a1, s2) = 10, and U = 10 because a
meeting location with cost 10 has been found. Unlike MM,
MM* continues to search because a better meeting location
might be found as fmin = fMKSP (a1, x) = 6. While U is
similar for both algorithms, the priorities of MM* are half
of the ones of MM. So, MM* continues and returns either x
or y as meeting location. For SOC, it returns s2 as meeting
location with cost 10, as it is on a path of minimal cost.

6 Theoretical Analysis
Lemma 1 (Completeness). MM* is guarantees to return a
solution if one exists, and U =∞ otherwise.

Proof outline. For each agent ai, MM* performs a best-first
search from si. In the worst case, MM* explores every reach-
able location for each agent. If a solution exists, a location
reachable for all agents will be generated from all directions
and U will be updated. At some point, either fmin will reach
U or the entire graph will have been explored for all agents
(OPEN will be empty), and a solution will be returned. If no
solution exists, there is no location that is reachable for all
agents and U will not be updated and thus remains∞. �

Lemma 2 (Optimality). Given an admissible f (i.e., f(n) ≤
f∗(n) for all nodes n), MM* is guaranteed to return the op-
timal location t∗ with cost C∗.

Proof outline. Assume, by contradiction, that MM* returned
a sub-optimal location t 6= t∗ with cost C > C∗. Since MM*
has terminated and returned a solution, fmin ≥ C > C∗.
Since MM* terminated without returning an optimal solution,
there exists a node n′ = (ai, vi) in OPEN s.t. vi is a location
on the optimal path of ai to t∗, and every node before n′ on
the path has already been expanded. Since n′ is the first node
on the optimal path that was not expanded, it was generated
by a node on the optimal path, and thus g(n′) = d(si, vi).
By definition, f∗(n′) is the cost of the optimal solution
that passes through n′. Therefore, since g(n′) = d(si, vi),
f∗(n′) = C∗. f is admissible. Thus, f(n′) ≤ f∗(n′) = C∗.
As n′ ∈ OPEN, fmin ≤ f(n′) ≤ f∗(n′) = C∗, which con-
tradicts the fact that fmin ≥ C > C∗. �

7 Heuristics for MM*
We now introduce a number of heuristics for SOC and
prove their admissibility. They are plugged directly into
fSOC (ai, v) = g(ai, v) + hSOC (ai, v) and used indirectly
for fMKSP as shown in Equation 6. Let t∗(ai, v) be the op-
timal meeting location where ai passes through v. For sim-
plicity, we use t̂∗ to denote t∗(ai, v) and h(ai, v) to denote
hSOC (ai, v). Recall that S is the set of all start locations.
Let Si(v) be the set of all start locations in S, except for
si, which is replaced with v (the current location of ai).
Formally, Si(v) = S \ {si} ∪ {v}. Then, h∗SOC(ai, v) =∑

v′∈Si(v)
d(v′, t̂∗) (from Equation 3), and we want to find a

lower bound on it.3

7.1 h1 : Clique Heuristic
We assume that, for every pair of locations (v1, v2), there
exists a classic admissible heuristic h (e.g., straight-line
distance or Manhattan distance), such that h(v1, v2) ≤
d(v1, v2).

Based on the triangle inequality, for every pair of locations
v1, v2 ∈ Si(v) (with v1 6= v2), we have that:

d(v1, v2) ≤ d(v1, t̂∗) + d(v2, t̂∗). (7)
By summing over all such pairs, we get:∑
{v1,v2}∈2Si(v)

v1 6=v2

d(v1, v2) ≤
∑

{v1,v2}∈2Si(v)

v1 6=v2

[
d(v1, t̂∗) + d(v2, t̂∗)

]
.

(8)
As each v′ ∈ Si(v) is paired with k − 1 other locations in
Si(v), we can rewrite the right-hand side of Equation 8 as
(k − 1) ·

∑
v′∈Si(v)

d(v′, t̂∗). Therefore:∑
{v1,v2}∈2Si(v)

v1 6=v2

d(v1, v2)

k − 1
≤

∑
v′∈Si(v)

d(v′, t̂∗) = h∗(ai, v).

(9)
Now, since h(v1, v2) ≤ d(v1, v2), we get that:

h1(ai, v) =
∑

{v1,v2}∈2Si(v)

v1 6=v2

h(v1, v2)

k − 1
≤ h∗(ai, v). (10)

This heuristic h1 is called the Clique heuristic, as it
combines the heuristic values of every (unordered) pair
of locations in Si(v). Figure 1(d) presents an exam-
ple of the clique heuristic for three agents. For node
(a1, s1), S1(s1) = {s1, s2, s3}. Therefore, h(a1, s1) =
h(s1,s2)+h(s1,s3)+h(s2,s3)

2 = 3+3+6
2 = 6.

For each start location si ∈ S, Si(si) = S and hence h1

can be calculated once for all start locations. For each location
v that is not a start location, all locations in Si(v) except for
v remain the same. So, h1 can be calculated incrementally
in time that is linear in the number of agents. If h(v1, v2) is
consistent, then h1 is also consistent.

3This is a form of a front-to-end heuristic. A front-to-front
heuristic needs to estimate the remaining costs when all other agents
are in their current locations, but these locations thus need to be
specified for a given node (ai, v). This is left for future work.



7.2 h2 : Median Heuristic
For a set of numbers B ⊂ R, the median of B prov-
ably minimizes the sum of the absolute deviations, i.e.,
argminr∈R

∑
b∈B |b − r| = median(B). Inspired by this

property, we design the Median heuristic (h2) for 4-neighbor
2D grids. On such a grid, each location has two coordinates –
x and y. For a set of locations, we can find the median over the
x-coordinates (dimension 1) of all locations and the median
over the y-coordinates (dimension 2) of all locations. Let tmd

be the median of dimension d. This creates a potential meet-
ing location tm = (tm1, tm2), that minimizes the sum of the
absolute deviations over both dimensions. Namely, if there
are no obstacles on the grid, tm will be the optimal meeting
location for minimizing SOC. This is due to the fact that the
distance between any two locations is their L1-distance (also
known as Manhattan distance on 2D grids).

Assume that the input graph G = (V,E) is a 4-neighbor
2D grid where every location v ∈ V is represented by its co-
ordinates ~v = (v1, v2). The L1-distance for any two locations
u, v ∈ V is defined as ||~u − ~v||1 = |u1 − v1| + |u2 − v2|.
Due to the existence of obstacles, for any pair of locations
u, v ∈ V , ||~u− ~v||1 ≤ d(u, v). So, for a given node (ai, v),∑

v′∈Si(v)

||~v′ − ~̂
t∗||1 ≤

∑
v′∈Si(v)

d(v′, t̂∗) = h∗(ai, v). (11)

Therefore, by modeling the problem in an empty 2D L1-space
(i.e., without obstacles), we introduce a new admissible (and
consistent) heuristic, called Median heuristic:

h2(ai, v) = min
~t∈R2
{
∑

v′∈Si(v)

||~v′ − ~t||1} (12)

=
∑

v′∈Si(v)

||~v′ − ~tm||1 (13)

=
∑

v′∈Si(v)

[|v′1 − tm1|+ |v′2 − tm2|] . (14)

It is admissible because the right-hand side of Equation 12 is
no larger than the left-hand side of Equation 11.

We use the Quick-select algorithm for finding medi-
ans [Hoare, 1961], which runs in Θ(k) time, to compute
h2(ai, si) for all root nodes. Then, for every non-root node
(ai, v) (i.e., v 6= si), k − 1 locations have not changed, and
we only need to update the median based on the single loca-
tion that has changed. This can be done in O(1) time.

Figure 1(e) shows an example of a MAM problem in-
stance with three agents (s1, s2, and s3) that are located in
(1, 1), (3, 1), and (1, 2). The x-coordinates are {1,3,1} and
the y-coordinates are {1,1,2}. Thus, the median location is
(1, 1). By computing the Manhattan distances from (1, 1) to
each start location, we get h2(ai, si) = 3 for each agent ai.
h2 can be generalized easily for 6-neighbor 3D grids and

similar graphs of higher dimensions.

7.3 h3 : FastMap Heuristic
The Median heuristic (h2) only works for graphs that have
coordinates. In addition, h2 ignores obstacles, which may in-
troduce inaccuracies to the heuristic. The FastMap heuristic

(h3) handles this. FastMap [Cohen et al., 2018; Li et al.,
2019] is a near-linear preprocessing algorithm that embeds
the locations of a given edge-weighted undirected connected
graph G = (V,E) into a D-dimensional L1-space RD. The
dimension D of the L1-space is user-specified. Each location
vi ∈ V is mapped to a D-dimensional point ~pi ∈ RD. The
length of a shortest path d(vi, vj) between any two locations
vi, vj ∈ V is approximated by the L1-distance ||~pi − ~pj ||1
between the corresponding two points ~pi, ~pj ∈ RD in this
space. FastMap ensures that the L1-distance in RD can be
used as an admissible and consistent heuristic for the short-
est path computation in G. See [Cohen et al., 2018] for more
details on FastMap. To compute h-values for MAM, h3 ap-
plies the Median heuristic on the generated embedding RD.
For any node (ai, v), its FastMap heuristic is defined as:

h3(ai, v) = min
~t∈RD

{
∑

v′∈Si(v)

||~p′ − ~t||1}, (15)

where ~p′ ∈ RD is the point of the embedding of location v′

generated by FastMap. By the same analysis as for h2, we can
show that the FastMap heuristic (h3) is admissible (and con-
sistent), and we can compute it for every root node in Θ(kD)
time and for any non-root node in O(D) time.

There are many other approaches for embedding a graph in
a continuous space, such as [Ng and Zhang, 2002; Shavitt and
Tankel, 2004; Rayner et al., 2011]. However, most of them
use L2-distances, which are not applicable here because the
L2-distance version of Equation 15 is NP-hard to solve opti-
mally [Hoare, 1961].

8 Experimental Results
We experimented with MM* on an Intel R© Xeon E5-2660
v4 @2.00GHz processor with 16GB of RAM. We compared
all new heuristics to the Dijkstra version of MM*, i.e. where
h = 0 (denoted by h0), on different grids while minimizing
both SOC and MKSP. For h1, we used the Manhattan Dis-
tance (MD) as a classic admissible heuristic between any two
locations. The number of dimensions D for h3 was always
set to 10, as suggested by Li et al. [2019].

8.1 SOC
We experimented on a 500× 500 grid with 0% – 30% obsta-
cles. Table 1(left) shows the average over 50 instances of: the
solution cost, the initial h-value, the number of expansions,
and the CPU time for 5 randomly placed agents. h2 had the
best initial h-value, had the lowest number of expansions, and
was the fastest. The initial h-values of h1 (MD) and h2 re-
main constant as more obstacles are added since they both
ignore obstacles. By contrast, h3 increases as more obstacles
are added. So, h2 degrades while h3 improves, in terms of
number of expansions and CPU time. h3 incurred a prepro-
cessing time of ≈ 30s, which is incurred only once per grid
and thus amortized over multiple problem instances.

We also fixed the number of obstacles at 10% while varying
the number of agents from 3 to 9. Table 2(left) shows the CPU
time for SOC. Here, too, h2 was the best heuristic with only
1.27s for 9 agents because h2 is suitable for grids with small
numbers of obstacles.
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Figure 2: (a) Enigma grid. (b) SOC expansions. (c) SOC time. (d) MKSP expansions. (e) MKSP time.

SOC MKSP
#Obs. 0% 10% 20% 30% 0% 10% 20% 30%

Cost
995 1,008 1,033 1,103 292 293 295 305

Initial h-value
h0 0 0 0 0 0 0 0 0
h1 828 828 828 828 166 166 166 166
h2 995 995 995 995 199 199 199 199
h3 643 680 736 778 127 137 140 148

#Expansions (thousands)
h0 1,244 1,120 994 856 542 485 420 341
h1 330 322 320 318 180 159 133 121
h2 34 58 83 143 179 158 132 119
h3 634 561 465 402 308 299 239 197

Time (s)
h0 22.05 19.04 16.10 13.04 7.81 6.69 5.47 4.10
h1 4.50 4.29 4.18 4.01 2.83 2.43 1.94 1.66
h2 0.28 0.54 0.77 1.40 2.79 2.40 1.93 1.64
h3 9.48 8.66 6.81 5.60 6.99 5.44 4.12 4.00

Table 1: Results on 500× 500 grids with varying obstacles.

Finally, we experimented on the 768 × 768 Enigma grid
(presented in Figure 2(a)) from the Starcraft video game,
available in the movingai repository [Sturtevant, 2012].
Figures 2(b) and 2(c) show the average number of expansions
and CPU time, respectively, for 3 to 9 agents for SOC. Here,
h3 was the best heuristic in both expansions and time. Since
this grid has many obstacles (about 57%), h1 and h2 were
less effective than h3, which uses real distances (albeit in the
embedded graph). Nevertheless, h3 required a preprocessing
time of 39s for this grid (done once). h2 was the second best
heuristic but h2 is only suited for grids while h1 can be used
on any graph. For 9 agents, h1 expanded slightly fewer nodes
than h0 but, since it consumes time for computing the heuris-
tic, was a little slower than h0.

8.2 MKSP
As described in Section 4, there are different policies for
choosing subsets for computing MKSP. We compared two of
these policies: (1) selecting all agents and (2) selecting all
agents plus all pairs of agents and taking the maximum over
all of those. Figure 3 shows the number of expansions and

SOC MKSP
#Agents 3 5 7 9 3 5 7 9

h0 6.87 18.98 29.46 44.17 1.91 6.73 11.03 18.07
h1 0.16 4.66 16.15 36.29 0.47 2.62 3.57 6.53
h2 0.16 0.81 0.85 1.27 0.46 2.60 3.52 6.38
h3 1.92 8.50 18.66 33.20 1.48 6.57 9.59 16.46

Table 2: Avg. time (s) on 500× 500 grids with 10% obstacles
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Figure 3: MKSP results for h3 on the Enigma grid.

CPU time averaged over 50 instances for h3 on the Enigma
grid with 3 to 9 agents. As expected, adding all pairs of agents
produces a better heuristic and fewer expansions. It was also
better in terms of the CPU time despite the fact that its com-
putation overhead is larger. Therefore, we used this subset
selection policy for computing MKSP. It is future work to in-
vestigate different policies for choosing subsets.

We repeated the same experiments (reported for SOC) for
MKSP. Table 1(right) presents the results. Here, too, h2 was
the best heuristic but here (unlike SOC) h1 was very close to
h2. This is so probably because the clique heuristic (h1) for
MKSP also guides the agents to the median.

The same trends were observed for different numbers of
agents with 10% obstacles and are presented in Table 2(right).

In the Enigma grid for MKSP (Figures 2(d,e)), h3 was
again the best heuristic. h1 and h2 (curves cover each other)
had fewer numbers of expansion but were slower than h0.

9 Conclusions
We introduced the multi-directional search algorithm MM*
that optimally solves MAM. We proved that MM* is com-
plete and optimal and suggested a few admissible heuristics.
Experimentally, we showed that MM* performs better with
heuristics. For grids with few obstacles, h2 is best. For grids
with many obstacles, h3 is best but requires preprocessing.
The advantage of h1 is that it is applicable to all domains
without the need for preprocessing. Future work will: (1) de-
velop a weighted version of MM* that can find bounded-
suboptimal solutions, (2) extend MM* to a Euclidean space,
and (3) further investigate subset selection for MKSP.
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