
An Analysis of Map-Based Abstraction and Refinement

Nathan Sturtevant and Renee Jansen

Department of Computing Science, University of Alberta, Edmonton, Alberta, T6G 2E8, Canada
{nathanst|maaike}@cs.ualberta.ca

Abstract. A variety of techniques have been introduced over the last decade
for abstracting search graphs and then using these abstractions for search. While
some basic work has been done to predict the value of an abstraction mechanism,
the results have not been validated in practice. In this paper we analyze a variety
of old and new abstraction mechanisms in a pathfinding testbed and show that the
work done in abstraction-based refinement-style search can be predicted by the
diameter and size of abstract nodes.

1 Introduction

Search is a widely studied task in artificial intelligence, due to the fact that many prob-
lems such as pathfinding and scheduling can be solved using search techniques. The
traditional and widely used search algorithm is A* [1], which uses a heuristic func-
tion to guide its search. Unfortunately, this algorithm is computationally expensive: the
amount of work required can be exponential in the length of the solution.

One way to deal with this problem is by abstracting the search space. In particular,
it is possible to create a simpler search graph by representing a number of nodes of the
original search graph by a single node in an abstract search graph. Abstract edges are
then added based on the edges that exist in the original search graph. This can be done
recursively, giving a hierarchy of abstractions. An approximate solution can be found
by a search in the abstract graph, which can then be refined to a solution in the original
search space.

Abstraction methods have been studied in a number of places. For example, Holte
et al. proposed the STAR abstraction, in which a node and all nodes within some pre-
defined radius are abstracted together [2]. Botea et al. developed an abstraction method
specifically designed for gridworlds, which divides the grid into square clusters [3]. An-
other abstraction method, devised by Sturtevant and Buro, takes cliques in the original
search graph and abstracts them into a single node in the abstract graph [4]. Abstraction
has been used in other domains such as robotics [5] and planning [6].

Holte et al.’s STAR abstraction was developed as a result of a theoretical analysis of
the amount of work required to find a solution to a search problem using abstractions of
the search space [2]. The analysis shows that, in order to minimize the total amount of
work done, it is desirable to minimize the maximum length of a path between any two
nodes inside an abstract node, while maximizing the number of nodes that are combined
into a single abstract node.

The goal of this paper is to verify the analysis done by Holte et al. of the amount of
work done during a search which uses search space abstractions. We will first compare

the amount of work done with a variety of both new and old abstraction methods, and
then show that the analysis of Holte et al. holds in practice.

1.1 Problem Definition

A search problem can be formally defined as the tuple (S, A, c, s0, Sg), where S denotes
the set of states in the environment, A denotes the set of actions, c(s, a) is the cost of
taking action a ∈ A in state s ∈ S, s0 ∈ S is the start state, and Sg ⊆ S is the set of
goal states. The search space can be represented as a graph G = (V,E), where V is
the set of vertices (nodes), representing the set of states S, and E is the set of edges,
representing the actions A. The weight of an edge is defined as the cost of performing
action a in state s. In this paper, we will assume that the edges of the search graph are
undirected, implying that the cost of going from state s to state s′ is equal to the cost of
going from state s′ to s.

We look specifically at problems from the pathfinding domain. That is, underlying
the graph representation of the world there is a grid-based map. Cardinal moves on the
map (N, S, E, W) have cost 1 while diagonal moves have cost

√
2. We choose this

focus, because pathfinding is currently a widely studied and well-motivated area, with
applications in areas including robotics and computer games.

2 Abstraction Mechanisms

We first define an abstraction formally, and then present 5 different abstraction mecha-
nisms which we will use experimentally to test the predictions made by Holte et al. [2].
The radius and clique abstractions have been described elsewhere; the other abstraction
mechanisms are presented for the first time here.

2.1 Automatic State Abstraction

Formally, an abstraction is a graph homomorphism φ from a graph G1 to a graph G2

which maps nodes from G1 to nodes in G2. An edge e is added between two abstract
nodes s1 and s2 whenever there is at least one edge e′ between s′1 and s′2 such that
φ(s′1) = s1 and φ(s′2) = s2. We can abstract the search graph recursively, giving an
abstraction hierarchy of α levels, where level 0 is the original search graph and level α
is the topmost abstract level. We will introduce a variety of such homomorphisms.

While edge costs are well-defined in the original problem space, we define the loca-
tion of a node s in abstract space as the average location of all the nodes abstracted by s.
This means that we can use the location of abstract nodes as a heuristic for searching the
abstract graph. This heuristic will be admissible in abstract space, but not in the original
problem space. In domains other than pathfinding, edges can have uniform cost.

2.2 Clique Abstraction

The clique abstraction (CA) was initially introduced by Sturtevant and Buro [4]. The
idea behind this abstraction, as the name suggests, is to abstract cliques in each level of

(a) (b) (c)

Fig. 1. Clique abstraction.

Fig. 2. Uniform (left) and non-uniform (right) abstractions.

the abstraction. Every node in a clique will be no more than one edge away from every
node, which is a desirable property, according to the theoretical evaluation discussed in
the next section. In a two-dimensional, octile-connected map, the maximum clique size
is 4 nodes, which makes the clique-finding problem tractable.

We illustrate the clique-abstraction process in Figure 1. The initial graph is shown
in the portion of this figure labeled (a). Two sample cliques are indicated with a dotted
line. The middle figure, (b), shows one possible way the first graph can be abstracted.
Note that where four-cliques cannot be abstracted, smaller cliques are removed instead.
This abstraction mechanism can be applied once more to (b) to obtain the graph in (c).
In (b), the marked clique is removed first, followed by the only other four-clique. The
remaining pairs of nodes will be abstracted together. Depending on the order in which
nodes are considered and the policy for abstracting nodes with only a single neighbor,
the final graph will either take one or two steps to abstract until it is represented by just
a single node.

In this paper we will use two different approaches for building a clique abstraction.
The first method, CA(n) [normalized], builds the abstract graph in a more uniform
manner by relying on knowledge of the underlying map. CA(n) first abstracts 4-cliques
in a uniform manner across open areas of the map before considering the rest of the
map. The second implementation of the clique abstraction, CA(i) [irregular], does not
rely on knowledge of an underlying map and thus builds less uniform abstractions. We
demonstrate the difference between a uniform and non-uniform abstraction in Figure 2.
The lines in this figure represent edges, with nodes implicit at the ends of edges. In the

(a) (b) (c)

Fig. 3. Sector abstraction.

left portion of the figure, most of the map has been abstracted in uniform squares. Only
the edges of the map are less uniform. Because the underlying topology is not known
in the right portion of this figure, the abstraction is much less uniform.

There will be some cases where the abstraction procedure fails to find a clique
among the remaining unabstracted nodes. In this case, these nodes can be passed through
to the next abstraction level instead of being abstracted with their neighbors. In the case
of nodes with only a single neighbor, we choose to abstract them into their neighbor
regardless of whether they form a non-trivial clique or not.

2.3 Sector Abstraction

The sector abstraction (SA) is inspired by the abstraction used by HPA* [3], and is
limited to grid-based maps. The sector abstraction is parameterized by a fixed sector
size, k. At the first level of abstraction, sectors of size k × k are overlaid onto the map.
Within each sector, a breadth-first search is used to determine connected components,
each of which becomes an abstract node. At the ith level of abstraction, sectors of size
ki × ki are used. Note that with an empty map and a sector size of 2, the clique
abstraction and sector abstraction will be identical.

We demonstrate this abstraction mechanism with a sector size of 2 in Figure 3. In
this example, the clique abstraction and sector abstraction both abstract the initial graph
in the same manner. In graphs (a) and (b), two of the sectors (4×4) used for the building
graph (c) pass are marked by dotted lines. Because only nodes which form a connected
component within a single sector can be abstracted together, the top left sector becomes
two separate nodes when abstracted. This results in one extra node in the most abstract
graph on the right, (c). If we were to apply one more level of abstraction, the entire
graph would be immediately abstracted into a single node, because all nodes in this
graph are connected within an 8× 8 sector.

2.4 Radius Abstraction

Holte et al. suggested an abstraction mechanism they called the STAR abstraction [2].
We use what is essentially the same mechanism, but refer to it as the radius abstraction
(RA), which we feel is a more evocative description. The radius abstraction works by
first selecting an unabstracted node. All neighboring nodes within a fixed radius, r, of

(a) (b) (c)

Fig. 4. Radius one abstraction.

(a) (b) (c)

Fig. 5. Line abstraction.

this node are then abstracted together into the same abstract node. The radius, r, is the
depth limit (in edges) on a breadth-first search which finds the neighbors to abstract. The
radius abstraction procedure is simple and can be applied to any graph. We demonstrate
the radius abstraction in Figure 4.

Our implementation of the radius abstraction chooses the next node to abstract at
random; however, in this example we choose the nodes to be abstracted quite carefully.
In the left part of Figure 4, (a), we mark in gray the nodes which are selected for ab-
straction. The immediate neighbors (r = 1) of these nodes are then abstracted together.
In the first abstract graph, (b), there are only 6 nodes, and again, we mark in gray the
nodes which are selected to drive the abstraction process. The resulting graph, (c), has
two nodes, and will be fully abstracted at the next level of abstraction. The radius ab-
straction will remove more nodes in each step than the clique abstraction. A radius 1
abstraction can be quite similar to a sector abstraction with k = 3.

2.5 Line Abstraction

The line abstraction (LA) finds sequences of nodes length k, and abstracts them to-
gether. In this paper we experiment with two variants of the line abstraction. One variant
abstracts the graph uniformly, as we will do in the example below. The other variant just
selects nodes to abstract at random and is much less uniform. We vary the maximum
length of the abstracted line between 2 and 6.

We demonstrate the line abstraction with k = 2 in Figure 5. First, we attempt to
abstract each node with its neighbor to the right. This takes the original graph, (a) and
transforms it into the graph (b). In the next step we attempt to abstract each node with

its neighbor below. This results in the graph on the far right, (c), which is identical to the
graph produced by clique-abstraction in a single step. When done uniformly, the line
abstraction proceeds in this manner, first abstracting horizontally and then vertically.

2.6 Node-Limit Abstraction

The node limit abstraction (NLA) has a single parameter k, the number of nodes to
abstract together. Given an initial node, a breadth-first search is performed until k unab-
stracted nodes have been visited. These nodes are then abstracted into a single abstract
node. The node-limit abstraction and line abstraction are the same when k = 2. If k is
defined dynamically as the number of neighbors within a radius r, the node-limit ab-
straction will be the same as the radius abstraction. In this paper we use a fixed k for all
nodes.

3 Abstraction Analysis

In this section we analyze the complexity of using an abstraction hierarchy to find a path
through a search graph. For the moment we will consider using an algorithm which first
finds a path at the highest possible level of abstraction, and then successively refines
this path until a path is found in the original graph. This analysis is originally due to
Holte et al. [2] and we follow their derivation closely here.

During the refinement process, a node s at some abstract level i is replaced by a
series of nodes in level i−1. This is done by finding a path p in level i−1 consisting of
nodes which are mapped to s. In particular, if we let the neighbours of s along the path
at level i be t and u, the first and last nodes on path p must have neighbours t′ and u′

such that φ(t′) = t and φ(u′) = u. We say refinement is monotonic if no backtracking
needs to be done across levels. This will be the case throughout this paper.

The total amount of work done in finding a solution consists of the refinement costs
at each level. If we assume that every abstract graph is strictly smaller than the graph it
abstracts, the solution in the abstract graph at level α is trivial since this graph will only
have a single node (one node per connected component in the original graph). In each
refinement step, every node in the solution at level i is replaced by a sequence of nodes
at level i − 1. If we let the length of the path at level i be denoted by λi, and the work
required to replace a node at level i by a sequence of nodes at level i− 1 by ω, then the
total work done in refining from level i to level i− 1 is ωλi. The expansion factor χ is
defined to be λi/λi−1, giving λi = χλi−1 = χα−i.

If we let ω and χ be the worst cases, this gives a bound on the total work done to
find a solution:

Total Work ≤ ω

α∑
i=1

χα−i

This is equivalent to:

Total Work ≤ ω

α−1∑
i=0

χi

Furthermore, we know that χ is upper-bounded by d, the maximum diameter of any
abstract state. The diameter is the maximum distance between any two states in that
abstract state. (This distance is defined as the number of nodes on a path.) This gives:

Total Work ≤ ω

α−1∑
i=0

di

The sum over di can be can be represented by the closed form formula (dα−1)/(d−
1). If the diameter is at least 2, we can replace this with dα. We will assume that n ≥ 2
and n is the same for all states. After replacing α with logn N , where n is the number
of states mapped to a single abstract state and N is the number of states in the original
space, the bound on the total work can then be expressed as:

Total Work ≤ ωn(ln N)/(ln d)

This function is symmetric in n and N , so we can swap them, giving:

Total Work ≤ ωN (ln n)/(ln d)

This shows that if we ignore ω, the total work can be minimized by minimizing d
and maximizing n, i.e.,by making the maximum distance between any two nodes in an
abstract state as small as possible and making the number of states which map to an
abstract state as large as possible.

Consider the case where we choose the d as small as possible, i.e., d = 2. In this
case there is an edge between any pair of nodes that make up the abstract node: the
nodes form a clique. Based on the above analysis we need to maximize the number of
nodes that are abstracted together; we want cliques that are as large as possible.

Whereas Holte et al. were interested in generating an upper bound on the amount
of work required to do refinement, we are also interested in finding a measure that
will be predictive of the actual work performed. We note that measuring the maximum
diameter of the abstraction, d, can be a poor estimate of the cost required to refine a
path through a node in practice. For abstractions that are relatively symmetric, such as
the clique abstraction, d is likely a good estimate of the cost of refinement. On the other
hand, the line abstraction will have d ≈ k, but there are many short paths through an
abstract node, so the average path length through an abstract node will be shorter than
d. (This can be verified by Table 1 later in the paper.)

We therefore propose a different measure of d, which we will call dE . Instead of
measuring the maximum distance between states abstracted within a node, we measure
the expected cost given that we enter the node from a random edge e1 and exit from a
different edge e2. For instance, in Figure 6 there are 11 edges at level i by which we
can enter or exit the node when doing refinement from level i+1 to level i. To enter the
edge marked e1 and exit the edge marked e2 we would have to traverse a single internal
edge. We also add the cost of entering on edge e1, so this path has cost 2. (Assuming
uniform edge costs.) The expected cost to refine the abstract node given that we enter
on edge e1 is 1×2+8×2

10 = 1.8. To compute dE in this example we would perform the
same computation for all edges at level i which are external to the abstract node at level
i + 1.

Abstract
Node

Level i+1Level i

Enter: e1

Exit: e2

Fig. 6. Measuring the expected diameter of an abstract node.

Finally, we note that this discussion has ignored the ω term, which is the work
required to refine a single node. This is directly related to n, so that although we want
to increase n to minimize the total work, this has a secondary effect which increases
work, so increasing n may not be as effective as decreasing d.

4 Experimental Results

One goal of this paper is to experimentally analyze the previous theoretical results. We
begin by measuring properties from the previous section for the different abstractions
over 116 maps extracted from Baldur’s Gate II (a role-playing game) and Warcraft III (a
real-time strategy game). Two examples of these maps can be found in Figure 7. For our
experiments we scaled the maps to 512× 512 so they are all similarly sized. In Table 1
we list the different abstraction types and the parameters used for each. We measured
each of the theoretical properties averaged over all nodes at all levels of the maps.

The values which describe for each abstraction type are not surprising. For instance,
the line abstraction (k = 2) abstracts, on average, just under two nodes at a time. The
uniform abstractions abstract more nodes than the non-uniform abstractions, as seen in
Figure 2. The third column in Table 1, Avg. Diameter, is the maximum length of the
shortest path between any two states abstracted into a node. For the clique, line (k = 2),
and sector (k = 2) abstractions this value can be at most 1, but is 0 in the cases where
a single node cannot be abstracted with its neighbors, resulting in an average value
just below 1. We might expect the abstraction with the most nodes, RA(2), to have a
diameter of 4, twice the radius. However, since this abstraction is not performed in a
uniform manner, its average is lower than the maximum possible.

The final column is the expected number of edges that would be traversed given that
we randomly select an incoming and outgoing edge and then measure the number of
edges needed to traverse through the node, including the incoming edge. Because we
include the incoming edge, we expect this value to be at most 1 larger than the maximum
diameter. This value is more indicative of the cost of traveling through a node than the
maximum diameter of a node.

Consider, for instance, two nodes abstracted by the line abstraction (k = 2). If they
both have the same number of edges, we expect that a random path will pass through
a single node half the time (cost 1), and pass through both nodes half the time (cost
2). Thus, the expected diameter would be 1.5. The expected diameter is slightly higher

Abstraction Type Abbrev. Avg. Nodes (n) Avg. Diameter (d) Expected Diameter (dE)
Clique (Non-uniform) CA(i) 3.60 0.96 1.72
Clique (Uniform) CA(n) 3.71 0.97 1.73
Sector 2 SA(2) 3.70 0.98 1.74
Sector 3 SA(3) 7.51 1.89 2.29
Radius 1 RA(1) 8.15 2.36 2.31
Radius 2 RA(2) 10.17 2.80 2.53
NodeLimited 3 NLA(3) 2.57 1.00 1.61
NodeLimited 5 NLA(5) 3.96 1.65 1.86
NodeLimited 6 NLA(6) 4.78 1.84 2.00
Line 2 (Non-uniform) LA(2, i) 1.86 0.86 1.46
Line 3 (Non-uniform) LA(3, i) 2.59 1.27 1.67
Line 4 (Non-uniform) LA(4, i) 3.18 1.65 1.80
Line 5 (Non-uniform) LA(5, i) 3.58 1.82 1.87
Line 6 (Non-uniform) LA(6, i) 3.78 1.87 1.87
Line 2 (Uniform) LA(2, n) 1.97 0.97 1.52
Line 3 (Uniform) LA(3, n) 2.89 1.86 1.90
Line 4 (Uniform) LA(4, n) 3.78 2.72 2.22
Line 5 (Uniform) LA(5, n) 4.50 3.35 2.45
Line 6 (Uniform) LA(6, n) 5.20 3.97 2.66

Table 1. The abstraction properties for each abstraction type: average nodes abstracted, the aver-
age of the max diameter and the average of the expected diameter of an abstract node.

for the LA(2, n) abstraction because we do not consider the possibility of entering and
exiting from the same edge, as this can never be part of a refined path. So there is a
slightly higher chance of traveling through a node than entering and exiting it directly.

4.1 Abstraction-Based Search Algorithms

In this paper, we use the PRA* algorithm [4] to find paths in each of the abstraction
hierarchies. PRA* stands for Partial-Refinement A*, although we use the PRA*(∞)
variant, which does full refinement of paths. Given start and goal nodes, PRA* succes-
sively maps these nodes into the next higher abstract graph until the abstract start and
goal are connected by a single edge. If this occurs at level ` in the abstraction hierarchy,
PRA* then uses A* at level `/2 to find a path between the abstract start and goal nodes.
A* is used to find paths at successively lower levels of abstraction as well, except that
it is constrained to a corridor. The corridor at level ` includes all nodes which abstract
into either the solution at level ` + 1 or which abstract into a node which neighbors the
solution at level ` + 1. PRA* returns paths that are very close to optimal both because
it begins planning at the middle of the abstraction hierarchy, and because it widens the
corridor used for search.

As a comparison, we use a simple refinement algorithm which follows the theoret-
ical derivation from the last section more closely. This simple refinement algorithm is

Fig. 7. Two of the maps used in the experiments.

like PRA* except that it starts at the top of the abstraction hierarchy, and does not ex-
pand the corridor during the refinement portion of the search. This generally decreases
the work that must be done, but results in lower-quality (i.e., longer) paths.

4.2 Search Costs

Given that we have measured the properties of our abstraction, we are interested in
measuring the cost of pathfinding using these abstractions and comparing them to see
if there is a correlation between the number of abstracted nodes, n, and the diameter of
the abstraction, d or dE .

Our experiments were conducted as follows. We used the same 116 maps as above.
On each map, we chose random paths from length 1 to length 512, and placed 10 paths
in each of 128 buckets. The first bucket has paths length (0, 4], while the 128th bucket
has paths length (508, 512]. In total, we have 114,131 paths over all the maps. We then
computed a path between these nodes using PRA* and the simple refinement variant of
PRA* previously described. We did this for each of the abstractions in Table 1.

In Table 2 we report the average number of nodes expanded in the last bucket (paths
of length 508-512) over all maps as well as the total suboptimality over all paths and all
maps. Suboptimality is measured as 100× (actual path length

optimal path length −1), i.e., the percentage
difference in length. While there is some correlation between the nodes expanded by
simple refinement and by PRA*, there are some differences as well. For instance, the
sector abstraction expands fewer nodes (relative to the other abstractions) with simple
refinement than with PRA*. This is due to the fact that simple refinement tends to
produce paths with less suboptimality in the sector abstraction, and shorter paths are
cheaper to refine. This is compared to the non-uniform line abstraction, which produces
paths which are up to 80% longer than optimal.

Due to space concerns, we cannot reproduce the full graphs of the nodes expanded
for all abstraction mechanisms here. However, we show the 5, 50 and 95th percentile
curves for nodes expanded using PRA* using six of the different abstraction mecha-
nisms in Figure 11. Some abstractions, like SA(3), produce a significantly wider spread
of best-case and worst-case paths than the clique abstraction. These are percentile
curves, so they are different than the average value which we report above. We also
show optimality for several abstraction, comparing PRA* and simple refinement in Fig-

PRA*(∞) Simple Refinement
suboptimality nodes suboptimality nodes

CA(n) 0.04 5301 12.04 1840
CA(i) 0.19 5228 15.81 2062
SA(2) 0.04 5416 6.85 1716
SA(3) 0.02 6232 6.19 1826
RA(1) 0.23 6790 14.76 2540
RA(2) 0.19 6930 11.18 2574
NLA(3) 0.48 5712 40.38 2316
NLA(5) 0.37 5627 27.43 2158
NLA(6) 0.34 5533 23.13 2137
LA(2, n) 0.50 6598 19.05 2378
LA(3, n) 0.95 6092 22.62 2238
LA(4, n) 0.61 6119 22.60 2359
LA(5, n) 0.60 6188 27.62 2473
LA(6, n) 1.07 6764 30.23 2693
LA(2, i) 0.35 7291 81.84 3248
LA(3, i) 0.38 6075 68.33 2261
LA(4, i) 0.39 5914 62.01 2215
LA(5, i) 0.49 5871 60.55 2213
LA(6, i) 0.56 5936 58.42 2269

Table 2. A comparison of suboptimality with PRA*(∞) and simple refinement.

ure 12. These graphs show the worst quality path found, as well as the quality of the
99.5, 98, 95 and 50th percentile. The 50th percentile line is not visible for PRA* and
falls just above the x-axis for simple refinement.

4.3 Predicting Total Work

We can now address the main point of our experimental results, which is to test whether
the average number of nodes expanded, n, and the diameter of an abstraction, d or dE ,
can be used to predict the total work needed to compute a path using an abstraction. For
the moment, we just consider dE .

First, recall that we are trying to minimize dE and maximize n. In order to simplify
our analysis, we look instead at the problem of minimizing both dE and 1

n . We normal-
ize d and 1

n over all abstractions to the range 0 . . . 1 and plot them in Figure 8. The size
of the point for each algorithm scaled by the number of nodes expanded by PRA* on
this abstraction. The figures are the same, the left one just includes labels of the data
points. By looking at sequences of algorithms, one can see the effect of the abstraction
parameters. The algorithms which abstract fewer nodes are found in the bottom right
corner, while the algorithms which abstract more nodes are a time are in the top-left of
the figure.

Because the total work is predicted to be correlated with both measures, we use
the distance from each point in this chart to the origin of the graph (which attempts

LA(4, n)

LA(6, n)

LA(3, n)

LA(2, n)

LA(5, n)

LA(2, i)

RA(2)

RA(1)
SA(3)

NLA(3)
LA(3, i)

LA(4, i)

NLA(6)

NLA(5)
LA(6, i)

LA(5, i)

SA(2), CA(n) CA(i)

Av
er

ag
e

of
 E

xp
ec

te
d

Ra
di

us

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1 / Average Abstracted Nodes
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

LA(n)
LA(i)
CA()
SA()
RA()
NLA()

Av
er

ag
e

of
 E

xp
ec

te
d

Ra
di

us

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1 / Average Abstracted Nodes
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Fig. 8. The trade-off between the size of each abstraction and the diameter.

R = 0.8011No
de

s
Ex

pa
nd

ed

1500

2000

2500

3000

3500

Distance (radius/width cost space)
0.8 0.9 1.0 1.1 1.2

R = 0.7372No
de

s
Ex

pa
nd

ed

1500

2000

2500

3000

3500

Distance (radius/width cost space)
0 0.1 0.2 0.3 0.4 0.5 0.6

Fig. 9. The correlation between abstraction parameters and work done using simple refinement.
The graph on the left measures the distance between the abstraction parameters relative to the
origin, while the graph on the right measures the distance relative to the CA(n) parameters.

to minimize both measures equally) as a measure of the abstraction parameters. Since
the parameters may not be equally weighted, we also considered the distance from the
clique abstraction parameters as a secondary measure.

We plot these distances against the nodes expanded by simple refinement in Fig-
ure 9 and against the nodes expanded by PRA* in Figure 10. If these values are well-
correlated, then the measures of n and d are accurate in predicting total work. The
best-fit line for search by the simple refinement algorithm has a correlation coefficient
0.80 using the distance from origin metric and 0.74 using the distance from the clique
abstraction parameters. The best-fit line for work done by PRA* has a correlation of
0.81 when using the distance from the origin metric, and 0.92 when using the distance
from the clique abstraction parameters.

Returning to the issue of whether it is better to use the maximum diameter, d, or
the expected diameter, dE , we ran the same predictions using both definitions of the
diameter and distance. We found that the correlation between the best-fit line and the
data was more accurate when using the expected diameter instead of the maximum
diameter for both algorithms and distance measures.

R = 0.8137No
de

s
Ex

pa
nd

ed

5000

6000

7000

Distance (radius/width cost space)
0.8 0.9 1.0 1.1 1.2

R = 0.915No
de

s
Ex

pa
nd

ed

5000

6000

7000

Distance (radius/width cost space)
0 0.1 0.2 0.3 0.4 0.5 0.6

Fig. 10. The correlation between abstraction parameters and work done using PRA*. The graph
on the left measures the distance between the abstraction parameters relative to the origin, while
the graph on the right measures the distance relative to the CA(n) parameters.

5 Conclusions

We have shown that the total work done when using a graph abstraction for search and
refinement can be predicted by two parameters, the diameter of abstract nodes, d, and
the total number of nodes abstracted into each abstract node, n. Thus, the theoretical
predictions of Holte et al. [2] are useful in practice as well. We have also shown that the
clique abstraction’s parameters are well suited for minimizing computation, particularly
for PRA*.

Additionally, we have introduced a new method for computing the expected diam-
eter of an abstract node, dE , and have shown that this is more accurate than using the
maximum diameter, d. Our analysis has also highlighted how small changes in how an
abstraction is built can influence the abstraction measures, n and d. This was shown in
the differences between uniform and non-uniform clique and line abstractions.

There are two specific areas for future research. First, we would like to expand these
results beyond the pathfinding domain. Secondly, we would like to better understand
the manner in which suboptimality is affected by the choice of abstraction and how it
influences the predictions of how much work must be done. While we have seen that
there is some influence, we have yet to describe this influence in detail.

References

1. Hart, P., Nilsson, N., Raphael, B.: A formal basis for the heuristic determination of minimum
cost paths. IEEE Transactions on Systems Science and Cybernetics 4(2) (1968) 100–107

2. Holte, R.C., Mkadmi, T., Zimmer, R.M., MacDonald, A.J.: Speeding up problem solving by
abstraction: A graph oriented approach. Artificial Intelligence 85 (1996) 321–361

3. Botea, A., Müller, M., Schaeffer, J.: Near optimal hierarchical path–finding. Journal of Game
Development 1(1) (2004) 7–28

4. Sturtevant, N.R., Buro, M.: Partial pathfinding using map abstraction and refinement. In:
AAAI. (2005) 1392–1397

5. Fernandez., A., Gonzalez, J.: Multi-Hierarchical Representation of Large-Scale Space.
Kluwer (2001)

6. Yang, Q., Tenenberg, J., Woods, S.: On the implementation and evaluation of ABTweak.
Computational Intelligence Journal 12 (1996) 295–318

0 20 40 60 80 100 1200

1000

2000

3000

4000

5000

6000

7000

Bucket

no

de
s

ex
pa

nd
ed

Uniform clique abstraction

95%
50%
5%

0 20 40 60 80 100 120
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Bucket

no

de
s

ex
pa

nd
ed

Non!uniform line abstraction

95%
50%
5%

0 20 40 60 80 100 120
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Bucket

no

de
s

ex
pa

nd
ed

Radius abstraction ! radius size 1

95%
50%
5%

0 20 40 60 80 100 120
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Bucket

no

de
s

ex
pa

nd
ed

 Radius abstraction ! radius size 2

95%
50%
5%

0 20 40 60 80 100 120
0

1000

2000

3000

4000

5000

6000

7000

Bucket

no

de
s

ex
pa

nd
ed

Sector abstraction ! sector size 2

95%
50%
5%

0 20 40 60 80 100 120
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Bucket

no

de
s

ex
pa

nd
ed

Sector abstraction ! sector size 3

95%
50%
5%

Fig. 11. Nodes expanded by 6 of the different abstraction mechanisms.

0 20 40 60 80 100 1201
1.01
1.02
1.03
1.04
1.05
1.06
1.07
1.08
1.09
1.1

1.11
1.12
1.13
1.14

Bucket

PR
A*

 le
ng

th
 /

A*
 le

ng
th

Uniform clique abstraction

Max
99.5%
98%
95%
50%

0 20 40 60 80 100 1201

3

5

7

9

11

13

15

17

Bucket

Si
m

pl
e

re
fin

em
en

t l
en

gt
h

/ A
* l

en
gt

h

Uniform clique abstraction

Max
99.5%
98%
95%
50%

0 20 40 60 80 100 120
1

1.01
1.02
1.03
1.04
1.05
1.06
1.07
1.08
1.09
1.1

1.11
1.12
1.13

Bucket

PR
A*

 le
ng

th
 /

A*
 le

ng
th

Sector abstraction ! sector size 3

Max
99.5%
98%
95%
50%

0 20 40 60 80 100 120
1

2

3

4

5

6

7

8

9

10

11

Bucket

Si
m

pl
e

re
fin

em
en

t l
en

gt
h

/ A
* l

en
gt

h

Sector abstraction ! sector size 3

Max
99.5%
98%
95%
50%

0 20 40 60 80 100 120
1

1.02
1.04
1.06
1.08
1.1

1.12
1.14
1.16
1.18
1.2

1.22

Bucket

PR
A*

 le
ng

th
 /

A*
 le

ng
th

Radius abstraction ! radius size 2

Max
99.5%
98%
95%
50%

0 20 40 60 80 100 120
1

3

5

7

9

11

13

15

17

Bucket

1i
3

4l
e

re
8in

e3
en

t l
en

gt
h

/ A
* l

en
gt

h

Radius abstraction ! radius size 2

Max
99.5%
98%
95%
50%

Fig. 12. Path optimality using 3 of the different abstraction mechanisms and PRA*(∞) [left]
versus simple refinement [right].

