
Evaluating Strategies for Running from the Cops

Carsten Moldenhauer and Nathan R. Sturtevant

Department of Computer Science
University of Alberta

Edmonton, AB, Canada T6G 2E8
moldenha, nathanst@cs.ualberta.ca

Abstract

Moving target search (MTS) or the game of cops
and robbers has a broad field of application reach-
ing from law enforcement to computer games.
Within the recent years research has focused on
computing move policies for one or multiple pur-
suers (cops). The present work motivates to ex-
tend this perspective to both sides, thus developing
algorithms for the target (robber). We investigate
the game with perfect information for both play-
ers and propose two new methods, named TrailMax
and Dynamic Abstract Trailmax, to compute move
policies for the target. Experiments are conducted
by simulating games on 20 maps of the commercial
computer game Baldur’s Gate and measuring sur-
vival time and computational complexity. We test
seven algorithms: Cover, Dynamic Abstract Mini-
max, minimax, hill climbing with distance heuris-
tic, a random beacon algorithm, TrailMax and DA-
TrailMax. Analysis shows that our methods outper-
form all the other algorithms in quality, achieving
up to 98% optimality, while meeting modern com-
puter game computation time constraints.

1 Introduction

Moving target search (MTS), or the game of cops and rob-
bers, has many applications reaching from law enforcement
to video games. The game was introduced into the arti-
ficial intelligence literature by [Ishida and Korf, 1991] as
a new variant of the classical search problem. Following
this study, the question how to catch a moving prey effec-
tively has been studied extensively [Ishida and Korf, 1995;
Koenig et al., 2007; Isaza et al., 2008].

In today’s computer games, the players control robbers be-
ing chased by computer generated police agents. The same
game turned around, i.e. the player controlling a cop and hav-
ing to chase down a computer generated robber, is far from re-
alizable. This is due to the fact that the focus in MTS research
has always been in developing strong pursuit strategies. Very
little is known on how to compute strategies for the target.
This paper presents a systematic study of move policies for
the robber, thus enabling better target modelling and widen-
ing the current focus in MTS.

The game of cops and robber has also been studied in
the mathematical literature (see [Hahn, 2007] for a survey).
Here, cops and robber alternatingly choose their initial posi-
tions at the beginning of the game and then play as in MTS.
The search time of a graph, i.e. the time needed by optimal
playing cops to catch the robber, is therefore a constant. Be-
sides bounds for the one cop and one robber problem, little is
known about this graph property. However, a first algorithm
that runs in polynomial time and which computes the search
time has been developed in [Hahn and MacGillivray, 2006].
Given this algorithm it is possible to determine optimal poli-
cies for both players.

Computer games require tight bounds on resource usage,
especially computation time. Therefore, computing optimal
policies, even though possible in polynomial time with the
above algorithm, is not practical. This gives rise to the ques-
tion of how to quickly compute approximations that yield
near-optimal move policies. In the following, we will in-
troduce a new algorithm called TrailMax and its variant Dy-
namic Abstract TrailMax to respond to this question.

As optimality has only been studied recently, previous
work in MTS has been concerned with approximative solu-
tions and has not, whether for the pursuer or the target, com-
pared methods against optimal policies. Therefore, this paper
is the first to conduct a study of various target algorithms with
respect to their achieved suboptimality.

A precise definition of the cops and robber game consid-
ered in this work will be given in Section 2. We review exist-
ing algorithms, including Cover and Dynamic Abstract Min-
imax, and outline their strengths and weaknesses in Section
3. The new methods, TrailMax and Dynamic Abstract Trail-
Max, are introduced in Section 4. Evaluations of experiments
and extensive comparisons of various target algorithms when
playing against an optimal cop can be found in Section 5. We
wrap up with conclusions in Section 6.

2 Game Definition

The game of cops and robber is played with n cops and one
robber. Cops and robber occupy vertices in a finite undirected
connected graph G and are allowed to move to an adjacent
vertex or remain on their current location in each turn. Turns
are taken alternatingly beginning with the first to last cop fol-
lowed by the robber. The game is played with perfect in-
formation, i.e. the graph and all locations of all agents are

584

Proceedings of the Twenty-First International Joint Conference on Artificial Intelligence (IJCAI-09)



C

R

C R

Figure 1: Map abstraction for DAM.

known. G is called n-cop-win if n cops have a winning strat-
egy on G.

Since our focus is on the target and the cop is potentially
played by a human player, we concentrate on the one cop one
robber problem here. However, all the following methods can
easily be extended to multiple cops. Furthermore, we are in-
terested in playing on typical video game maps that include
obstacles. Hence, one cop cannot catch a robber that plays
optimal when both agents play with same speed. To enable
execution of experiments, i.e. many simulations of the game,
we have to decide between one of the three ways to guarantee
termination: the target moves suboptimally from time to time,
the game is ended after a certain number of steps, or the cop
is faster than the target. The first possibility contradicts our
wish to compute near-optimal policies for the robber. The
second choice is problematic due to the choice of timeout
conditions. Furthermore, it does not measure the full amount
of suboptimality generated by a given strategy because the
game is truncated after the timer runs out. Moreover, it is
easy to construct an algorithm that achieves optimal results in
this game: detect all cycles around obstacles of length greater
or equal to four in the map, run to a cycle where the cop can-
not capture the robber before reaching the cycle, and exploit
the cycle. Therefore, we allow the cop to be faster than the
robber. For simplicity we allow the cop to make d subsequent
moves when the robber only gets one, i.e. to move to any
location within a radius of d of his current position.

3 Related Work

There are only two advanced methods in the literature that
try to compute move policies for the robber quickly. [Bulitko
and Sturtevant, 2006] suggest using Dynamic Abstract Mini-
max (DAM). This algorithm assumes that various resolutions
of abstract maps are available, where an abstract map is cre-
ated by taking sets of states in an original map and merging
them together to form a more abstract map. DAM chooses a
level of abstraction to begin with, and then computes a min-
imax solution to a fixed depth. If the robber cannot avoid
capture at that level of abstraction, computation proceeds to
the next lower level. We illustrate this in Figure 1. In the ab-
stract map two sets of 9 states have been abstracted together
to form a 2-node graph. The cop can catch the robber in one
move in the abstract graph, so DAM will search again on the
lower level of abstraction. Assume there are � levels of ab-

c r

c r c r

u v w u v w

Figure 2: Example of where the original tie breaking of the
cover heuristic computation can cause the robber to remain in
v instead of going to w.

straction and the cop and the robber occupy distinct nodes up
until level m. The original algorithm begins planning at level
m. Running the experiments in Section 5 for multiple frac-
tions of m showed that starting at level m/2 is superior. We
report the experiments for the later case.

If the robber can escape, an abstract goal destination is se-
lected and projected onto the actual map. PRA* [Sturtevant
and Buro, 2005] is used to compute a path to that node which
is subsequently followed for one step. Since only the goal
destination is projected onto the ground level, DAM can make
mistakes when cycles exist in the strategy. For example, con-
sider a cycle with five nodes and an adjacent cop and robber.
The solution is to run around this cycle, but after seven steps
the robber will reach the initial position of the cop. Hence,
when computing with depth seven, the robber will run to-
wards the cop. The solution is to make DAM only refine one
abstract step. However, running the experiments in Section 5
for such a variant showed that the original algorithm, despite
its flaws, achieves slightly better results.

Within the present work, we use the same idea of using
abstractions for speedup. Our algorithm uses the same policy
(m/2) for selecting the first level of abstraction, solves the
problem on this level and proceeds to the next lower level if
the robber cannot survive long enough due to the computed
solution. Otherwise, the abstract solution path is refined into
a ground level path.

The Cover heuristic, as a state-of-the-art algorithm for
moving target search, has been used for both the cop and the
robber [Isaza et al., 2008]. This algorithm computes the num-
ber of nodes in the graph that the respective agent can get to
before any other agent. It then tries to maximize this area
with each move, minimizing the area the opponent can reach.

The original algorithm breaks ties by assigning the nodes
on the border between two covered areas to the cop. This
causes the heuristic to be inaccurate even for simple prob-
lems. They used a notion of risk to increase the pursuer’s
aggressiveness and circumvent this inaccuracy for the cop.
As an example for the robber, consider the graph in Figure
2. There are three vertices, u, v, and w. The cop starts on
u, the robber on v, and it is the robber’s turn. When the rob-
ber remains on v, v and w are considered robber cover. If he
moves to w, u and v are cop cover (due to the tie-breaking
rule) and only w is robber cover. Thus, when maximizing,
the robber prefers to stay in v, which is suboptimal. In this
work, we modify Cover to eliminate this problem. Vertices
are only declared robber cover if he is guaranteed to reach
them no matter what the cop does.

But, we found that no matter how the Cover heuristic is

585



defined, it is easy to construct a simple example where hill
climbing would fail for either of the two players. Using no-
tions of ties and untouchable nodes can solve some of the
issues but subsequently turns the heuristic into a search algo-
rithm instead of a static heuristic. Thus, we seek to develop
a more principled search method instead of trying to patch
cover.

When being used for the pursuer, Cover with Risk and Ab-
straction (CRA) [Isaza et al., 2008] makes use of abstractions
to decrease computation time and to scale to large maps. This
has not been used for robber. Since the heuristic is most ac-
curate with full information, using abstractions only trades
accuracy against speed. Within our experiments, the Cover
heuristic without abstractions already performed poorly in
terms of survival time against an optimal cop. Therefore, we
did not extend the algorithm to incorporate abstractions.

Optimal move policies for both cops and robbers are stud-
ied by [Moldenhauer and Sturtevant, 2009]. They devel-
oped algorithms that solve one problem instance, i.e. com-
pute optimal policies for a given initial position. Unfortu-
nately, although well optimized, optimal algorithms do not
scale to very large maps and cannot meet tight computation
time constraints of modern computer games. An algorithm
that solves a map, i.e. computes a strategy for cop and robber
for every possible initial position was first proposed by [Hahn
and MacGillivray, 2006]. We use an improved version that
has been used as a baseline in [Moldenhauer and Sturtevant,
2009] to compute optimal solutions offline and to generate a
cop that moves optimally within our experiments.

4 TrailMax

We now outline our approach to computing near-optimal
move policies for the robber. We will first motivate the al-
gorithm and then provide more details. For ease of under-
standing the following ideas will be developed for the game
where cop and robber move with same speed. However, all
the definitions and theorems are extendible to different speed
games.

The robber makes the assumption that the cop knows
where he is going to move, i.e. that the cop will play a best
response against him. Under this assumption, the robber tries
to maximize the time to capture. This can also be interpreted
as “running away”, i.e. taking the path that the cop takes
longest to intersect. We will now formalize this idea. Let
N [v] = {w|(v, w) ∈ E(G)} ∪ {v} denote the closed neigh-
borhood of v ∈ G. Let
P (v) = {p : N → V |p(0) = v,∀i ≥ 0 : p(i+1) ∈ N [p(i)]}
be the set of paths starting in v. Given a path pr and pc for
the robber and cop, respectively, that they will follow disre-
garding the opponent’s actions, we can compute the sum of
the numbers of turns both agents take until capture occurs:
T (pr, pc) = min( {2t|t ≥ 0, pc(t) = pr(t)}

∪{2t− 1|t ≥ 1, pc(t) = pr(t− 1)}).
Definition 1 (TrailMax) Let vr ∈ G and vc ∈ G be the po-
sitions of robber and cop in G. We define

TrailMax(vr, vc) = max
pr∈P (vr)

min
pc∈P (vc)

T (pr, pc). (1)

r c

Figure 3: Smallest 1-cop-win graph where the set of moves
according to TrailMax (solid) diverges from the set of optimal
moves (dashed).

We say G is an octile map if its vertices are positions in a
two dimensional grid and each vertex is connected to its up
to eight neighbors via the two horizontals, two verticals and
four diagonals. Within our experiments we use octile maps to
model the environment.

Recall that a graph G is called n-cop-win if n cops have a
winning strategy on G for any initial position of the cops and
the robber and when all agents move with same speed.

Theorem 1 Let G be a 1-cop-win octile map. Let vr

and vc be the initial positions of robber and cop. Then
TrailMax(vr, vc) returns the optimal value of the game where
the cop and robber move at same speed.

This theorem also holds when the cop is faster as described
in Section 2. However, this requires obvious adjustments of
the above definitions and is therefore omitted for readability.
Unfortunately, the theorem does not hold for general 1-cop-
win or n-cop-win graphs (n ≥ 2).

TrailMax can be used to generate move policies for the rob-
ber. For simplicity, the resulting algorithm will be refered to
by the same name. Furthermore, a pair (pr, pc) for which
(1) is maximal will be called a TrailMax pair. The algorithm
computes a TrailMax pair (pr, pc) and then follows the rob-
ber’s path pr for k steps (k ≥ 1) disregarding the cop’s ac-
tions. Afterwards, TrailMax is called again and a new path pr

is computed, hence our notation TrailMax(k). Unfortunately,
the immediate assumption, that TrailMax(1) might yield an
optimal strategy for general n-cop-win graphs is not true. De-
picted in Figure 3 is an example of a 1-cop-win graph where
the robber is to move and the optimal move is to remain on
his current position, marked with a r. This causes the cop
to commit to a direction, after which the robber can run away
more effectively. However, according to TrailMax, the robber
has to move to either of the indicated adjacent positions.

A TrailMax pair is efficiently computed by simultaneously
expanding vertices around the robber’s and cop’s position in
a Dijkstra like fashion. Two priority queues are maintained,
one for the cop and one for the robber. All nodes of a given
cost for the robber are expanded first, because the robber
moves immediately after computing a policy. Node expan-
sions for the robber are checked against the cop’s expanded
nodes to test whether the cop could have already reached that
point and captured the robber. If this is the case, the node is
discarded. Otherwise, the vertex is declared as robber cover
and expanded normally. When taking a node from the queue
for the cop, it is always expanded normally.

A visualization is depicted in Figure 4. The grey area in-
dicates the vertices that are declared robber cover but are not

586



robber

cop

Figure 4: Visualization of TrailMax’s computation. The grey
area is the nodes that have been reached by the robber first,
declared as robber cover but will not be expanded anymore
since they were captured by the cop in a previous turn.

expanded anymore since the expansion around the cop’s po-
sition captured them in a previous turn. Computation ends
when all nodes declared as robber cover have been expanded
by the cop as well. The last node that is explored by the cop
is the goal node the robber will run to. Path generation can be
easily done by maintaining pointers to parents when expand-
ing nodes.

The above computation finds one goal vertex and a shortest
path to it. The path then has to be extended by moves that
make the robber remain on the goal vertex until capture. It is
not hard to show that this extended shortest path is indeed a
solution to (1). Note that there might be many possible goal
vertices the robber could run to and many different paths to
get to them that fulfill (1). Finding all such vertices is possible
by remembering all robber nodes that have not been caught
before the last cop’s turn expansion. This could potentially
be used to take advantage of a suboptimal cop, although we
do not study this issue here.

Within computer game maps, edge costs are often approx-
imated to enable faster computation. Under the assumption
that path costs can only differ by a fixed number of values, i.e.
buckets can be used within the priority queue and queue ac-
cess takes constant time, the above algorithm runs in time lin-
ear in the size of the graph. Although TrailMax already scales
well to large maps (cf. Section 5) our goal is to make com-
putation time as independent of the size of the input graph as
possible. Inspired by DAM we use abstraction to achieve this
goal. Starting at an intermediate level of abstraction of the
hierarchy relative to the cop and robber positions, TrailMax
is computed. If the solution length does not exceed a certain
value q (computed by (1)), then computation proceeds to the
next lower level. If it does, the computed abstract path is re-
fined to a ground level path using PRA*’s refinement, i.e. pro-
gressively computing a path on the next lower level that only
goes through nodes whose parents are either on or adjacent
to the abstract path. In the following, this algorithm is called
Dynamic Abstract TrailMax with threshold q and number of
steps the solution is followed k, hence DATrailMax(q, k).

5 Experiments

To evaluate our algorithms we compare to the algorithms de-
scribed in Section 3 and measure the quality and required
computation time in terms of node expansions. We set d = 2,

Figure 5: One of the maps used in Baldur’s Gate that the ex-
periments were conducted on. The black parts are obstacles,
white is traversable.

i.e. the cop can take two turns before the robber gets one and
can thus move to any location within a radius of 2 around
his current location. First experiments show that greater cop
speeds yield the same trends. In contrast, since capture oc-
curs faster, the game becomes easier and less interesting for
the robber.

To generate meaningful statistics we use 20 maps from the
commercial game Baldur’s Gate as a testbed. The smallest of
these maps has 2638, the largest 22,216 vertices. A plot of
a sample map can be found in Figure 5. Furthermore, 1000
initial positions for each map are generated randomly. We
choose the selection at random because we want to explore
the performances of the algorithms for all scenarios since in
a video game, both agents could potentially be spawned any-
where in the map.

We choose octile connections for the map representation
and subsequent levels of abstraction are generated using
Clique Abstraction [Sturtevant and Buro, 2005]. To enable
effective transposition table lookups in minimax and DAM
we set all edge costs to one in all levels of abstraction. Thus,
the distance heuristic between two positions (on an abstrac-
tion or ground level) becomes the maximum norm of these
positions. Furthermore, equidistant edge costs mean we are
optimizing the number of turns both players take rather than
the distance they travel. All the tested algorithms can be used
for nonequidistant edge costs, only minimax’s and DAM’s
performance is expected to be lower.

Using an improved version of the algorithm in [Hahn and
MacGillivray, 2006] the entire joint state space is solved first,
i.e. we compute the values of an optimal game for each tuple
of positions of the robber and cop. This is done in an offline
computation and is used to generate optimal move policies
for the cop as well as to know the optimal value of the game.
Generation of these offline solutions took up to 2.5 hours per
map.

We study the following target algorithms:
Cover. The target performs hill climbing due to the Cover
heuristic (cf. Section 3). The heuristic has to be computed in
every step and for every possible move.
Greedy. The target performs hill climbing using the distance
heuristic. This is extremly fast since distance evaluation is
very simple.
Minimax. The target runs minimax with α-β pruning, trans-

587



algorithm optim. nE/c nT/c nE/t nT/t
Cover 61.9% 4.687 156.831
RBeacons(1) 64.3% 0.158 1.065
RBeacons(5) 65.9% 0.159 1.070 0.037 0.248
RBeacons(10) 67.4% 0.160 1.075 0.022 0.148
RBeacons(15) 68.6% 0.161 1.083 0.017 0.117
RBeacons(20) 69.5% 0.162 1.091 0.015 0.102
Greedy 76.0% 0.0002 0.001
Minimax(5) 78.7% 0.031 0.216
Minimax(7) 79.2% 0.146 1.027
Minimax(9) 79.8% 0.499 3.546
Minimax(11) 80.3% 1.354 9.709
DAM(5) 88.8% 0.039 0.238
DAM(7) 88.4% 0.123 0.752
DAM(9) 87.8% 0.323 1.985
DAM(11) 87.1% 0.729 4.476
TrailMax(1) 98.3% 0.502 16.682
TrailMax(5) 98.0% 0.520 17.301 0.108 3.598
TrailMax(10) 97.7% 0.543 18.060 0.059 1.970
TrailMax(15) 97.5% 0.565 18.769 0.043 1.433
TrailMax(20) 97.3% 0.585 19.436 0.035 1.169
DATrailMax(1) 97.0% 0.101 2.283
DATrailMax(5) 97.1% 0.104 2.342 0.023 0.515
DATrailMax(10) 97.0% 0.110 2.487 0.014 0.311
DATrailMax(15) 96.8% 0.107 2.395 0.011 0.251
DATrailMax(20) 96.7% 0.106 2.359 0.010 0.225

Table 1: Experimental results.

position tables and distance heuristic as evaluation function.
We experimented with depths from 1 to 11.
DAM. The target runs dynamic abstract minimax with α-β
pruning, transposition tables and distance heuristic as evalu-
ation function (cf. Section 3). We experimented with depths
from 1 to 11. The depth is used for computation on every
level of abstraction.
RandomBeacons(1-20). The target randomly distributes 40
beacons on the map. It then selects the beacon that is heuris-
tically furthest away from the cop’s position and computes
a path to this location. The path is followed k steps before
computing a new path, hence RandomBeacons(k). We tested
RandomBeacons(k) for k = 1, . . . , 20.
TrailMax(1-20). We tested TrailMax(k) for k = 1, . . . , 20.
DATrailMax(10,1-20). We tested DATrailMax(10,k) for k =
1, . . . , 20. q = 10 was chosen by hand. The question whether
there is a better setting remains for future investigation.

To evaluate performance the game is simulated for each
initial position on each map. Within these simulations, the
target algorithm is called whenever a new move has to be gen-
erated. TrailMax, DATrailMax and RandomBeacons are only
called when a new path has to be computed, thus the num-
ber of turns and algorithm calls differ in this case. All other
algorithms are called once per turn and therefore these two
numbers are equal. In fact, it is not possible for TrailMax,
DATrailMax and RandomBeacons to spread their computa-
tion among the turns where the previous computed path is
followed because the future position of the cop is unknown.
Nonetheless, when used in computer games, these algorithms
will only require computation once every k steps and there-
fore make the frames during path execution available to other
tasks. Therefore, we can also analyze the computation time

Minimax(11)

TM(1)

TM(20)

DAM(0.5, 11)

Beacons(1)

Beacons(20)

Greedy/Minimax(1)

Cover

DATM(10, 20)

DAM(0.5, 1)

DATM(10, 1)

N
o

d
es

 E
x

p
an

d
ed

 p
er

 T
u

rn
 (

n
E

/T
)

10-4

10-3

10-2

10-1

100

101

Optimality

0.60.70.80.91.0

Figure 6: Optimality versus node expansions per turn in one
game simulation. Averaged over the number of games played
in the experiments. Left bottom corner is best, right upper
corner is worst.

per turn for these three methods.
We are interested in the following performance measures:
• the expected survival time of the target measured in per-

centage of the optimal survival time (suboptimality),
• the number of node expansions per call to the algorithm

within one game simulation (nE/c) and
• for TrailMax, DATrailMax and RandomBeacons the

amortized number of nodes expanded per turn within
one game simulation (nE/t).

Similar measures are presented for nodes touched per call
(nT/c) and per turn (nT/t). To account for variable sized maps,
the numbers of nodes expanded and touched are further nor-
malized and measured as a percentage of the map size. Nodes
expanded counts how many times the neighbors of a node
were generated, while nodes touched measures how many
times a node is visited in memory.

The results are in Table 1 and are plotted in Figure 6. The
x-axis is reversed so the best algorithms are near the origin,
with high optimality and few expansions per move. Notice
further the logarithmic scale on the number of node expan-
sions. A pareto-optimal boundary is formed by Greedy and
the TrailMax algorithms, meaning that all other algorithms
have both worse optimality and more node expansions per
move, on average.

Cover clearly performs the worst. Having to compute the
heuristic in every step and for every possible move, its com-
putation time is beyond any computer game requirement. Al-
though solutions on abstractions can be computed in less
time, Cover is also the worst algorithm with respect to op-
timality and optimality decreases when using abstract solu-
tions.

Considering quality, RandomBeacons is the second worst
algorithm. This is due to the fact that it does not play very
well in the endgame, i.e. when the target is cornered and is
about to be captured. When distributing the beacons, many
of them lie in parts of the map that are heuristically far away
from the cop. Thus, the robber runs towards these positions.
Since he is cornered, this results in running into the cop.

588



Figure 7: Optimality versus node expansions per move in one
game simulation. Plotted for all games played in the experi-
ments. Left bottom corner is best, right upper corner is worst.

As expected, minimax becomes more optimal when the
depth is increased. However, its computation time increases
exponentially. When using a depth of seven and greater it
already expands more nodes per call then DATrailMax.

Abstract levels have cycles in them and minimax can
find how to exploit such cycles even with shallow searches.
Hence, DAM’s computed strategies on abstract levels are
similar for different search depths. Therefore, DAM does not
significantly increase in optimality when its depth parameter
is increased.

It is surprising that Greedy, i.e. hill climbing with a dis-
tance heuristic, performs extremely well. Due to the fact that
this algorithm requires almost no computation time, we can
conclude that Greedy is the method of choice when optimal-
ity is of minor importance.

TrailMax and DATrailMax perform best with respect to op-
timality. Although DATrailMax uses TrailMax on abstract
levels it experiences only a small reduction in optimality. On
the contrary computation time decreases drastically. (About
5× fewer node expansions per call.) Notice that, although
the computation time per call is fairly high, the amortized
time per move is small and even comparable to RandomBea-
cons. When conducting experiments on relatively small maps
we found that DATrailMax expands and touches a higher per-
centage of nodes. This is because the abstraction is not as
useful and therefore the algorithm degenerates into TrailMax.

While Figure 6 shows the averaged points of all game sim-
ulations, the actual results are clouds of points where each
point represents the performance in one game. We compare
this underlying data for the two best algorithms, TrailMax
and DATrailMax, in Figure 7. The small dark points con-
tain data for DATrailMax, while the larger, light circles are
the data points for TrailMax. The x-axis is reversed and the
y-axis is logarithmic. DATrailMax is clearly faster. Trail-
max has a slight advantage in the number of times it makes
optimal moves, resulting in slightly better optimality. No-
tice that although there are games where both algorithms per-
form poorly with respect to optimality, the majority are above
90%. Furthermore, node expansions for both algorithms are
uniformly bounded at around 7% of the size of the map.

6 Conclusions

Despite research throughout the last two decades, the focus
in moving target search has been on computing move policies
for the pursuers. In the past, very little was known about how
to compute strategies for the target. Due to computer game
requirements on computation time optimal algorithms are no
feasible approach. Therefore, fast approximations of near-
optimal behavior for the target are needed.

The present work conducts a study on such approxima-
tions and evaluates their suboptimality. We find that our new
algorithms, TrailMax and Dynamic Abstract TrailMax pro-
vide the best performance, with near-optimal policies. Sur-
prisingly, we discover that, in our testbed, a greedy strategy
is better than most of the previous algorithms. Thus, the
present work redefines the state-of-the-art in perfect informa-
tion MTS.

Future work will address how computation time can be
further reduced. The performance of the greedy algorithm,
which is the fastest approach, suggests that a greedy algo-
rithm with a better heuristic may perform well. Finally, al-
though we have focused on strategies for the robbers, similar
methodology can also be used to evaluate strategies for the
cops, and a variant of TrailMax could be used to compute
policies for the cops as well.

Acknowledgments

This research was supported by Canada’s NSERC, Alberta’s
iCORE and the German Academic Exchange Service.

References
[Bulitko and Sturtevant, 2006] V. Bulitko and N. Sturtevant.

State abstraction for real-time moving target pursuit: A
pilot study. AAAI Workshop on Learning For Search, 2006.

[Hahn and MacGillivray, 2006] Geňa Hahn and Gary
MacGillivray. A note on k-cop, l-robber games on graphs.
Discrete Mathematics, 306(19-20):2492–2497, 2006.

[Hahn, 2007] G. Hahn. Cops, robbers and graphs. Tatra
Mountains Mathematical Publications, 36(2):163–176,
2007.

[Isaza et al., 2008] A. Isaza, J. Lu, V. Bulitko, and
R. Greiner. A cover-based approach to multi-agent moving
target pursuit. AIIDE, 2008.

[Ishida and Korf, 1991] T. Ishida and R. E. Korf. Moving
target search. IJCAI, pages 204–210, 1991.

[Ishida and Korf, 1995] T. Ishida and R. E. Korf. Moving-
target search: A real-time search for changing goals. IEEE
Transactions on Pattern Analysis and Machine Intelli-
gence, 17(6):609–619, 1995.

[Koenig et al., 2007] S. Koenig, M. Likhachev, and X. Sun.
Speeding up moving-target search. AAMAS, 2007.

[Moldenhauer and Sturtevant, 2009] C. Moldenhauer and
N. Sturtevant. Optimal solutions for moving target search
(extended abstract). AAMAS, 2009.

[Sturtevant and Buro, 2005] N. Sturtevant and M. Buro. Par-
tial pathfinding using map abstraction and refinement.
AAAI, pages 1392–1397, 2005.

589


	IJCAI-09 CD
	Home
	Contents
	Index
	IJCAI Website




