
JPS uses a jumping 
policy to avoid putting 
many states into the 
open list.

JPS only puts the start, 
the goal, and jump 
points into the open list.

JPS continually expands 
states until one of these 
are generated.

Canonical Orderings on Grids

Decomposing Jump Point Search
JPS uses a canoni-
cal ordering to break 
ties between paths of 
equal length. Diagonal 
moves are taken before 
cardinal moves. Special 
rules are used to wrap 
the canonical ordering 
around obstacles (from 
jump points) and guar-
antee that all states are 
reached.

JPS performs best-first search over 
the states in the open list. The search is 
identical to A*, just over a transformed 
search space from the original search 
graph.

Our novel decomposition of JPS allows us 
to create new algorithms that use these 
canonical ordering and other compo-
nents in different ways or in different set-
tings.

Canonical A* just uses the canonical order-
ing from JPS. It expands far more states 
than JPS, because it doesn’t jump. But, 
it generates far fewer states because it 
doesn’t scan in the wrong direction for 
jump points to jump to.

A* has mores states on open (green). Ca-
nonical A* expands slightly more states be-
cause it is forced to follow the canonical or-
dering.

A* CA* JPS
Time (ms) 5.6000 2.566 1.982
Expan. 13,295 13,302 229
Gener. 99,483 13,654 61,282

These results are from Dragon Age maps.

Canonical A* should be used when expan-
sions are cheaper than node generations. 
(e.g. in a robotic domain where testing for 
legal successors is expensive)

Bounded JPS modifies the jumping rule 
from JPS. Instead of jumping to the next 
jump point, it bounds the length of a jump 
to some constant distance. This prevents 
JPS from jumping too far on large maps.

On this map, JPS will generate all the 
marked states no matter where the goal is.

BJPS provides performance that interpo-
lates between JPS and Canonical A*. Exact 
performance depends on the map set.

CA* BJPS(4) JPS
Time (ms) 2.59 1.50 1.98
Expan. 13,301 4,091 229
Gener. 13,654 22,363 61,281

These results are from Dragon Age maps.

Canonical Dijkstra takes advantage of the 
fact that in a single-source shortest-path 
search every state in the state space will be 
visited. Therefore, the jumping policy does 
not hurt performance.

Canonical Dijkstra writes g-costs into the 
closed list while jumping, but must update 
g-costs if lower costs are found later (pur-
ple). It is 2.5x to 4.4x faster than Dijkstra, 
depending on the maps.

Weighted JPS uses a different best-first 
search strategy, replacing A* with weighted 
A*. Weighted JPS trades bounded subopti-
mality for faster performance.

Time Nodes Exp.
Weight CA* JPS CA* JPS
1 2.566 1.982 13,302 229
2 1.471 1.210 8,002 146
5 1.052 0.921 6,003 110
10 0.966 0.862 5,574 103

Path Quality Nodes Gen.
Weight CA* JPS CA* JPS
1 1.00 1.00 13,654 61,282
2 1.01 1.02 8,300 37,575
5 1.03 1.05 6,284 28,888
10 1.04 1.07 5,855 27,714

Nathan R. Sturtevant, University of Denver
Steve Rabin, DigiPen Institute of Technology DANIEL FELIX RITCHIE SCHOOL OF

ENGINEERING & COMPUTER SCIENCE Moving AI Lab

New Algorithms From JPS

SS

A* Canonical A*

SS


