
In external-memory search, the state space
is often split into buckets which can be
loaded into memory for expansions. The
successors of in a bucket may not be in the
same bucket.

External-Memory
Bidirectional Search
What is external-memory search?

How do we combine them?

When main memory is too small, we can
use external memory (e.g. a hard disk) to
store states during a search

External memory has:
	 •	High	latency	for	random	access
	 •	High	throughput
	 •	High	storage	(relative	to	main	mem.)

To use external memory, we must engineer
algorithms	to	avoid	random	access.

Immediately checking successors to see if
they are duplicated in open/closed would
require random access to disk.

External-memory search delays duplicate
detection	until	it	can	be	efficiently	per-
formed on many states at once.

Internal Memory:
 generate →	remove	duplicates	→ write to Open

External Memory:
 generate → write to Open →	remove	duplicates

Bidirectional search aims to be more ef-
ficient	by	searching	simultaneously	from	
the start and the goal. The MM algorithm
(Holte	et.	al.,	2016)	guarantees	the	searches	
meet in the middle.

The	effectiveness	of	bidirectional	search	de-
pends on the heuristic and the state space
distribution.

Bidirectional searches must check the op-
posite search frontier to detect if a goal is
found.
Bidirectional Search
Remove	next from Open

 Generate successors of next

 Look for duplicates in Open/clOsed

 Look for duplicates in opposite frontier
 Add next to closed

We call this step solution detection.

We create a new algorithm, PEMM, which
uses delayed solution detection, delayed du-
plicate detection, and parallel expansions.

We test PEMM on Rubik’s cube using a
variety	of	heuristics.	These	illustrate	the	
trade-offs and need for further work on de-
layed solution detection.

PEMM performs fewer node expansions than IDA*
on hard problems / weak heuristics, although it ex-
pands states more slowly than IDA*.

With	no	heuristic,	PEMM	spends	significant	time	
doing solution detection. Current heuristics don’t
significantly	improve	PEMM’s	performance.

There are many open questions: Bidirec-
tional search requires stronger heuristics
than unidirectional search. Termination and
tie-breaking strategies are not fully under-
stood.	Recent	work	(Holte	et.	al.,	Sharon	et.	
al.)	has	improved	termination	conditions.

Solution detection requires random access
to disk, which doesn’t work with external
memory	search.	To	be	effective,	we	must	
delay solution detection	until	it	can	be	effi-
ciently performed on many states at once
(during expansion).
External-Memory Bidirectional Search
Load best bucket from Open into memory
 Check for duplicates on Open/clOsed

 Look for duplicates in opposite frontier
 For each state in bucket:
 Generate successors
 Add successors to Open

We show that delaying this check is correct;
it	increases	the	efficiency	of	solution	detec-
tion. But, solution detection is still expen-
sive.	Also,	we	cannot	use	recent	improved	
termination rules.

Nathan	R.	Sturtevant	and	Jingwei	Chen,	University	of	Denver

DANIEL FELIX RITCHIE SCHOOL OF
ENGINEERING & COMPUTER SCIENCE

Moving AI Lab Award 1551406

External-Memory
Best-First Search

Closed Open Unseen

What is bidirectional search?
Bidirectional Search
Closed Open Unseen ClosedOpen

External Memory
Bidirectional Search

Closed Open Unseen ClosedOpen

Table 3: Summary node expansion results. M = millions; B = billions.

PEMM0 PEMM IDA* PEMM IDA* PEMM IDA*
Depth 0 1997 1997 888 888 8210 8210
0 16 1.01B 166M 0.24B 0.10B 19.43M 17.7M 4.22M
1 17 2.13B 1.00B 1.51B 0.87B 0.12B 165M 29.76M
2 17 2.78B 1.54B 8.13B 1.14B 0.67B 202M 127M
3 17 2.02B 0.95B 6.56B 0.37B 0.47B 18.1M 85.61M
4 18 5.77B 2.89B 29.69B 2.89B 2.40B 1.22B 0.44B
5 18 3.69B 4.43B 15.37B 2.87B 1.04B 1.34B 0.21B
6 18 3.85B 15.05B 41.57B 3.23B 3.13B 1.63B 0.66B
7 18 3.98B 4.06B 45.88B 3.41B 3.75B 1.42B 0.66B
8 18 2.88B 2.93B 58.35B 2.99B 5.00B 1.55B 1.17B
9 18 12.23B 2.91B 70.31B 2.90B 4.78B 1.07B 1.01B
S 20 38.08B - - 38.08B 116B 35.61B 24.59B

tic with the superflip position because the maximum heuristic value (10) will be
insufficient for performing any pruning in a bidirectional search.

We first look at node expansions in Tables 3. First, note that Rubik’s cube is bi-
friendly, so FD > RN. We would then, according to GR2, expect that A* does more
work than PEMM0, except with a very accurate heuristic. With the 1997 heuristic,
PEMM dominates IDA* and PEMM0 does better than IDA* on all but the first two
problems. With the 888 heuristic PEMM0 does worse than IDA* on most problems,
but does significantly better on the depth 20 problem. PEMM does better than IDA*
on the harder problems, but not on the easier problems.

When we use the 114GB 8210 PDB, which is extremely accurate, IDA* has
better performance than PEMM across all problems. But, digging into the results,
there is significant room for PEMM to improve. On the superflip position IDA*
expanded 24.5 billion states before reaching depth 20 and only 44.5 million states
at depth 20, finding the solution very quickly at depth 20. PEMM0 expanded 445
million states at depth 20, finding the solution in the first bucket. PEMM with the
888 heuristic expanded 2.56 billion states at depth 20, but with the 8210 heuristic it
expanded 23.4 billion states at depth 20. With better tie-breaking in the last layer,
PEMM with the 8210 heuristic would expand fewer states that IDA* with the same
heuristic.

In general, these results confirm GR2 and show the phase transition that occurs
from PEMM0 to PEMM to IDA* as the problems get easier or the heuristic gets more
accurate. PEMM still has room for optimization, as we will see clearly when looking
at timing results.

60

Table 5: PEMM0 results on Rubik’s cube instances from Korf (0-9) and the superflip position (S).

No heuristic: PEMM0

Depth Time(s) % Exp % I/O % DSD # Exp. Disk
0 16 1,063 78.19 21.81 12.28 1.00 133GB
1 17 3,683 45.93 54.07 47.12 2.13 281GB
2 17 6,031 36.47 63.53 58.86 2.78 367GB
3 17 3,362 48.32 51.68 44.03 2.02 266GB
4 18 11,681 49.70 50.30 36.06 5.77 774GB
5 18 8,245 40.33 59.67 49.37 3.69 487GB
6 18 8,031 44.19 55.81 43.57 3.85 506GB
7 18 8,276 45.78 54.22 42.85 3.98 539GB
8 18 6,386 38.42 61.58 55.00 2.88 388GB
9 18 22,643 56.69 43.31 17.33 12.23 1.6TB
S 20 100,816 33.04 66.96 56.97 38.08 5.0TB

Note that the total time reported here is slightly different than in Table 4. This
is because the numbers in Table 4 come from a single timer over the full solution
process, while the numbers in the following tables come from summing individual
timers on pieces of the total computation.

Perhaps the most important columns are the time spent doing expansions and
the time spent doing DSD. We see that as the problems get harder, a decreasing
fraction of time is spent doing node expansions. This time is, instead, being spent
doing DSD. Thus, improved methods of DSD are likely to first improve perfor-
mance. We could, for instance, use bloom filters to reduce the number of states
that must be checked for duplicates. We could also write a custom hash table im-
plementation that would likely be faster than the default implementation provided
in C++.

To summarize the results here, we see that GR2 is descriptive of performance
on Rubik’s cube. While our implementation of PEMM0 set a new milestone by
solving a depth-20 problem without heuristic guidance, there is still room for im-
proving the performance of PEMM and PEMM0 by reducing the overhead from I/O,
and particularly of DSD.

9. Conclusions and future work

In this paper we introduced MM, the first Bi-HS algorithm guaranteed to meet
in the middle. We also introduced a framework that divides the state-space into
disjoint regions and allows a careful analysis of the behavior of the different al-

62

