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Abstract
Real-time heuristic search methods are used by situated agents in applications that require the

amount of planning per move to be independent of the problem size. Such agents plan only a
few actions at a time in a local search space and avoid getting trapped in local minima by im-
proving their heuristic function over time. We extend a wide class of real-time search algorithms
with automatically-built state abstraction and prove completeness and convergence of the resulting
family of algorithms. We then analyze the impact of abstraction in an extensive empirical study in
real-time pathfinding. Abstraction is found to improve efficiency by providing better trading offs
between planning time, learning speed and other negatively correlated performance measures.
Keywords: learning real-time heuristic search, state abstraction, goal-directed navigation.

1. Introduction and Motivation

In this paper we study the problem of agent-centered real-time heuristic search (Koenig, 2001).
The distinctive property of such search is that an agent must repeatedly plan and execute actions
within a constant time interval that is independent of the size of the problem being solved. This
restriction severely limits the range of applicable algorithms. For instance, static search algorithms
(e.g., A* of Hart, Nilsson, & Raphael, 1968), re-planning algorithms (e.g., D* of Stenz, 1995),
anytime algorithms (e.g., ARA* of Likhachev, Gordon, & Thrun, 2004) and anytime re-planning
algorithms (e.g., AD* of Likhachev, Ferguson, Gordon, Stentz, & Thrun, 2005) cannot guarantee a
constant bound on planning time per action. LRTA* provides such guarantees by planning only a
few actions at a time and updating its heuristic function, but the solution quality can be poor during
a lengthy convergence process (Korf, 1990; Ishida, 1992).

As a motivating example, consider navigation in gridworld maps in commercial computer
games. In such games, an agent can be tasked to go to any location on the map from its current
location. The agent must react quickly to the user’s command regardless of the map’s size and
complexity. Consequently, game companies impose a time-per-action limit on their pathfinding al-
gorithms. As an example, Bioware Corp., a major game company, limits planning time to 1-3 ms
for all pathfinding units (and there can be many units planning simultaneously).

An additional challenge comes in the form of limited sensing in virtual reality trainers where
Artificial Intelligence controlled characters may not have access to the entire map a priori, in order
to avoid unrealistic behavior (Dini, van Lent, Carpenter, & Iyer, 2006). Such agents have to build
an internal map model based on sensing a limited amount of the map around their position.

An efficient search agent would minimize the delay incurred while planning its actions, explore
and learn the environment quickly, and always discover an optimal path to the goal. Unfortunately,
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these measures are negatively correlated (or antagonistic) in that optimizing performance for one
measure results in worse performance for one of the others. For instance, reducing the amount of
planning done before each action improves the agent’s response time, but leads to slower learning
due to lower-quality actions taken by the agent.

We propose to use graph abstraction to improve efficiency of search agents and make the
following four contributions. First, we introduce a new algorithm, Path Refinement Learning
Real-time Search (PR LRTS)1, which enhances existing real-time heuristic search algorithms with
automatically-built graph abstraction. PR LRTS learns its heuristic function in an abstract space
thereby substantially accelerating learning. Actions in the abstract space are then refined to actions
in the environment by the A* algorithm. This approach allows agents to generate actions in constant
time, explore the environment quickly, and converge to near-optimal solutions. In this paper we use
the previously published clique abstraction (Sturtevant & Buro, 2005). Our contributions specific
to abstraction are three-fold. First, we introduce the initial clique building and the repair procedure
in more detail than previously published. Second, we prove a worst-case bound on suboptimality
of the path induced by abstraction. Third, we present the first application of state abstraction to
real-time heuristic search.

The standard practice in the heuristic search literature is to promote new algorithms as trading a
“small” amount of one performance measure for a “large” gain in another performance measure. For
instance, state abstraction in non-real time heuristic search has been shown to trade “little” solution
quality for a “substantial” reduction in running time (e.g., Holte, Mkadmi, Zimmer, & MacDonald,
1996; Botea, Müller, & Schaeffer, 2004). Unfortunately, it is not always clear whether the trade-
offs are made optimally. As the second contribution, we demonstrate that PR LRTS outperforms
a number of other algorithms with respect to two antagonistic measures (e.g., learning speed and
amount of planning per action).

As the third contribution, we analyze effects of abstraction on search with respect to commonly
used performance measures: solution suboptimality, amount of planning per action, total travel,
total planning time, and memory footprint. Knowing the effects deepens our understanding of real-
time heuristic search methods as well as guides a practitioner in selecting the most appropriate
search algorithm configuration for her application. Fourth, we show theoretically that PR LRTS
unifies and extends several well known existing heuristic search algorithms and satisfies the real-
time operation, completeness, and convergence properties. This contribution can be viewed as a
follow-up to previous unification and extension efforts (Bulitko & Lee, 2006).

The rest of the paper is organized as follows. We begin by formulating the problem of real-time
heuristic search in Section 2. The new algorithm, PR LRTS, is described in Section 4. Empirical
results follow in Section 5. Theoretical results are presented in Section 6. We then review existing
agent-centered search algorithms as well as work on automatic graph abstraction in Section 7. The
paper is concluded by a discussion of current limitations and future research.

2. Real-time Heuristic Search

The defining property of real-time heuristic search is that the amount of planning performed by an
agent per action has a constant upper-bound that does not depend on the problem size. Low bounds
are preferred in applications, as they guarantee the agent’s fast response when presented with a new
goal. A real-time search agent plans its next action by considering states in a local search space

1. An early version of this algorithm was published as a conference paper (Bulitko, Sturtevant, & Kazakevich, 2005).
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1 sc ← s0
2 while sc 6= sg do
3 sense the environment, update agent’s model
4 compute partial path p that originates in the current state sc

5 execute p
6 update current state sc

7 end while

Figure 1: Real-time heuristic search (a single trial).

surrounding its current position. A heuristic function (or simply heuristic) estimates the cumulative
cost between a state and the goal, and is used by the agent to rank available actions and select the
most promising one. This process is shown schematically in Figure 1. Agent’s current state sc is
set to the initial state s0 in line 1. As long as the goal sg is not reached (line 2), the agent senses
the environment around it (see Section 3 for details) and updates its model of the search graph it
is operating on in line 3. Then it computes a (partial) path from its current state toward the goal
state in line 4. The real-time property requires that lines 3 and 4 execute in a constant-bounded time
regardless of problem size. This is accomplished by calling a real-time heuristic search algorithm
in line 4. In this paper, we discuss three candidate algorithms: LRTA* in Section 2.1, LRTS in
Section 2.2, and PR LRTS in Section 4. Each of them would be called from line 4. The agent then
executes the path in line 5 and updates its current state in line 6.

A trial is defined as the agent’s problem-solving experience while traveling from its start state
to the goal state. Once the goal state is reached, the agent is teleported to the start state and the next
trial begins. A convergence process is defined as the first sequence of trials until the agent no longer
updates its heuristic function or its model of the search problem. The first trial without such updates
is the final trial and the learning process is said to have converged.

2.1 Learning Real-time A* (LRTA*)

We first review the best known real-time heuristic search algorithm, Learning Real-Time A*
(LRTA*) (Korf, 1990). The algorithm is shown in Figure 2. In line 1, a d-ply breadth-first search
with duplicate detection is used to find frontier states precisely d actions away from the current state
s. The standard path-max (Mero, 1984) technique is used to deal with possible inconsistencies in
the heuristic function when computing g + h-values. The value of each state, ŝ, is the sum of the
cost of a shortest path from sc to ŝ, denoted by g(s, ŝ), and the estimated cost of a shortest path
from ŝ to sg (i.e., the heuristic value h(ŝ, sg)). The state that minimizes the sum is identified as s′

in line 2. The heuristic value of the current state s is updated in line 3. Finally, a path of one action
toward the most promising frontier state s′ is returned in line 4.

path LRTA*(sc, sg, d)

1 generate successor states of sc up to d actions away
2 find state s′ with the lowest g(sc, s

′) + h(s′, sg)
3 update h(sc, sg) to g(sc, s

′) + h(s′, sg) if it is greater than the current h
4 return the first action along an optimal path from sc to s′

Figure 2: The LRTA* algorithm.
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2.2 Learning Real-time Search (LRTS)

LRTS extends LRTA* in three ways: it puts a weight on the heuristic function, it uses the max-
of-min learning rule, and it utilizes backtracking. We review these extensions in more detail in
Section 7.2 and walk through LRTS operation below. LRTS has three control parameters: lookahead
d ∈ N, optimality weight γ ∈ (0, 1], and learning quota T ∈ [0,∞]. It operates as follows. In the
current state sc, the agent running LRTS conducts a full-width d-ply lookahead search (line 1 in
Figure 3). At each ply, it finds the most promising state (line 2). Assuming that the initial heuristic
h is admissible, it can safely increase h(sc) to the maximum among the f -values of promising states
for all levels (line 3). If the total learning amount u (updated in line 4) exceeds the learning quota
T , the agent backtracks to the previous state from which it planned (lines 5, 8). Otherwise, it returns
a path of d moves between the current state sc and the most promising state at level d (line 6). The
learning amount u is reset to 0 when the agent is in the start state (i.e., at the beginning of each trial).

path LRTS(sc, sg, d, γ, T )
1 generate successor states of sc, i actions away, i = 1 . . . d
2 on level i, find the state si with the lowest f(si) = γ · g(sc, si) + h(si, sg)
3 update h(sc, sg) to max

1≤i≤d
f(si) if it is greater than the current h

4 increase the amount of learning u by ∆h
5 if u ≤ T then
6 return a path of d actions from sc to sd

7 else
8 return a path of d actions to backtrack to the previous state, set u = T
9 end if

Figure 3: The LRTS algorithm.

LRTS parameters have been previously studied at length (Bulitko & Lee, 2006). Here we summa-
rize the trends. Higher lookahead d reduces convergence travel, convergence memory, and subop-
timality. However, it increases the first-move lag. A lower heuristic weight γ leads to less optimal
solutions and, generally speaking, reduces convergence travel and convergence memory. First-move
lag is not influenced by γ. A lower learning quota T causes more backtracking and tends to reduce
convergence travel and convergence memory; T does not affect the first-move lag.

2.3 Notation

Definition 2.1 A search problem is defined as a tuple (G, c, s0, sg, h0) where G = (S,E) is a
directed weighted graph (henceforth search graph). S is a finite set of states (or vertices) and
E ⊂ S ×S is a finite set of edges between them. The edge weights are defined by the cost function
c : E → (0,∞) with c(s1, s2) being the travel cost for the edge e = (s1, s2). s0 ∈ S is the start
state, sg ∈ S is the goal state, and h0 : S → [0,∞) is the initial heuristic function. We assume
that h0(sg) = 0. Out-edges of a state are called moves or actions. The number of out-edges (i.e.,
out-degree of a state) is called the branching factor of a state.

Definition 2.2 A solution to a search problem is a path from the start state s0 to the goal state sg.
The path is denoted by (s0, s1, . . . , sg) where each si is a valid state and there is a valid edge for
each pair of states (si, si+1). The travel cost of a path is the sum of travel costs of its edges.
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Definition 2.3 At all times, a search agent resides in a single search state sc ∈ S called the current
state. The agent can change its current state only by executing actions and thus incurring travel
cost. Initially, the current state coincides with the start state s0. An agent is said to succeed when it
makes its current state coincide with the goal state sg.

We assume that the goal state is reachable from any state the agent can get to from its start
state. This is needed for completeness in all real-time heuristic search algorithms. We also follow
the standard practice in real-time heuristic search literature and assume that the environment is
stationary and deterministic. Additionally, to support backtracking (Shue & Zamani, 1993; Shue,
Li, & Zamani, 2001) (i.e., reversing agent’s actions), we require that every action has a reverse
action. This is needed only when backtracking is enabled in our algorithm.

Definition 2.4 The travel cost from state s1 to state s2 denoted by dist(s1, s2) is defined as the cost
of a shortest path from s1 to s2. Throughout the paper, we will assume that dist satisfies the triangle
inequality: ∀s1, s2, s3 ∈ S [dist(s1, s3) ≤ dist(s1, s2) + dist(s2, s3)]. Then, for any state, s, h∗(s)
is defined as the minimal travel cost to the goal: h∗(s) = dist(s, sg). A heuristic function, h, is an
approximation of h∗. It admissible if it does not overestimate h∗: ∀s ∈ S [h(s) ≤ h∗(s)]. The value
of h in state s will be referred to as the heuristic value of state s. We assume that for any heuristic
function h(sg) = 0 which trivially holds for an admissible h.

In our experiments we break all ties between moves in a fixed fashion (e.g., always prefer the
action “north”, then “north east”, then “east”, etc.) which entails that the agent’s behavior will be
identical on all trials after the final trial. It does not necessarily mean that the entire search graph is
explored or the learned heuristic is accurate for all states.

Definition 2.5 Convergence travel is the cumulative cost of all edges traversed by the agent during
the convergence process. Convergence planning is the amount of all planning effort expended by the
agent during the convergence process. The first-move lag is the amount of planning effort expended
by the agent on the first move of its final trial. Convergence memory is measured as the total
number of heuristic values stored during the convergence process. The standard practice in the real-
time heuristic search literature (e.g., Korf, 1990; Shimbo & Ishida, 2003) is to store the heuristic
values in a hash table. Hash table misses are handled by a procedurally specified initial heuristic h0

(e.g., the Manhattan distance in grid-based pathfinding). Then convergence memory is the number
of entries in the hash table after convergence. Finally, suboptimality is defined in percentage points
as the final-trial solution cost excess relative to the shortest-path cost. For instance, if the agent
incurred the travel cost of 120 and the shortest-path cost is 100, the suboptimality is 20%.

We measure planning effort in two ways. First, we report the number of states the algorithm
“touched” (i.e., considered) during planning. This measure is called edges traversed (e.g., Holte
et al., 1996, p. 325). Second, we report physical CPU time, measured on a 2.0GHz PowerPC G5
computer with gcc 4.0 under Mac OS 10.4.8. We measure convergence memory in terms of the
number of heuristic values stored. This is meaningful because each heuristic value stored takes the
same fixed amount of memory (i.e., double type of C++) in our implementation of each algorithm.

Definition 2.6 A search algorithm exhibits real-time performance on a heuristic search problem if
its planning effort per move is constant-bounded and the constant is independent of the problem size
(assuming a fixed maximum branching factor).
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The objectives of a real-time search agent are to be complete (i.e., to arrive at a goal state on
every trial), to converge (i.e., finish the learning process after a finite number of trials), and to
minimize the five performance measures described above. In the rest of the paper we will discuss
how existing and the new algorithms compare in terms of these objectives.

2.4 Application: Goal-directed Navigation

One of the motivating applications of heuristic search is goal-directed navigation, also known as
pathfinding. It is a special case of the heuristic search problem formalized in the previous section
where the search graph (S,E) is defined by a terrain map. Thus, the states/vertices correspond to
geographical positions on a map, the edges describe passability or blocking, and the cost function
represents the difficulty/time of traversing the terrain.

Real-time pathfinding is motivated primarily by time-sensitive robotics (e.g., Koenig & Sim-
mons, 1998; Koenig, 1999; Kitano, Tadokoro, Noda, Matsubara, Takahashi, Shinjou, & Shimada,
1999; Koenig, Tovey, & Smirnov, 2003) and computer games. The latter include real-time strategy
games (e.g., Blizzard Entertainment, 2002), first-person shooters (e.g., id Software, 1993), and role-
playing games (e.g., BioWare Corp., 1998). In all of these, time plays a critical role since a number
of agents can perform pathfinding simultaneously and gamers would like rapid response and fluid
gameplay. As a result, pathfinding has become a major computational expense: in “Age of Empires
II” (Ensemble Studios, 1999) it takes up to 60-70% of the simulation time (Pottinger, 2000).

In this paper, we follow the footsteps of Furcy and Koenig (2000), Shimbo and Ishida (2003),
Koenig (2004), Botea et al. (2004), Hernández and Meseguer (2005a, 2005b), Sigmundarson and
Björnsson (2006), Koenig and Likhachev (2006) and situate our empirical study in navigation on
two-dimensional grid-based maps. The cells are square and each cell is connected to four cardinally
(i.e., west, north, east, south) and four diagonally neighboring cells. Each cell can be occupied by
an agent (i.e., free) or by a wall (i.e., blocked).

Each free grid cell constitutes a vertex/state in the search space S. If the agent can travel between
any two free neighboring cells, s1 and s2, an edge (s1, s2) is added to the set of edges E. In this
paper, we set the edge costs to 1 for cardinal moves and to

√
2 for diagonal moves. The cell initially

occupied by the agent is s0; the target cell is sg. An example of converting a grid-based map to
a search problem defined by (G, c, s0, sg, h0) is shown in Figure 4. Note that we do not allow
diagonal moves that “cut corners” and, thus, the state s6 is not connected to states s1, s5, s7, sg.
This is done because a non-zero size agent will not be able to pass through a zero-width bottleneck
formed by two diagonally adjacent blocked cells. In the case when there is only one corner (e.g.,
between states s5 and s6 in Figure 4), allowing to cut it would lead to the actual travel distance
exceeding

√
2 since a non-zero-width agent will have to walk around the corner.

Video games often feature repeated pathfinding experiences on the same map for two reasons:
(i) there are units that commute between the same source and destination (e.g., resource collectors in
real-time strategy games) and (ii) all ally units can share results of their learning (i.e., the heuristic
function). Since a trial typically improves heuristic values of many states, even a single trial of a
single unit can be of use to other units with different start states as long as they all share a goal
state. This is often the case with state abstraction as an entire region of a map (e.g., a room in a
role-playing game or the player’s home base in a real-time strategy game) can be mapped into a
single abstract state. Thus, single-trial learning experiences of multiple units can be approximated
by multi-trial learning experience of a single unit. The latter is the scenario we study in this paper, in
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Start

Goal

s3s0 s2

s1 s5s4

s6

s8s7 sg

Figure 4: A 3×4 grid-based map (left) converted to a 9-state search graph (right). Thinner cardinal-
direction edges have the cost of 1, thicker diagonal edges have the cost of

√
2.

line with Furcy and Koenig (2000), Shimbo and Ishida (2003), Sigmundarson and Björnsson (2006)
and others.

3. Search Graph Discovery

In this paper, we do not require a search agent to know the problem in its entirety. Instead, a portion
of the search problem in the neighborhood of the current state sc is sensed by the agent at each time
step. We assume that an agent can remember parts of the problem it has sensed so far. In other
words, at all times an agent has an internal representation (model) of what the search space is like.
The model is updated as the agent discovers the search graph (line 3 of Figure 1).

Let us illustrate the exploration process in goal-directed navigation. The terrain map is initially
unknown to the agent. As it moves around the environment, grid cells whose coordinates are within
a fixed visibility radius of the agent’s current position are sensed. Formally, the agent situated in cell
(x, y) can check the status (free/blocked) of any cell (x′, y′) if |x− x′| ≤ r and |y− y′| ≤ r, where
r ∈ N is a visibility radius. Thus, for any two visible cells (x′, y′) and (x′′, y′′) the agent can tell
if there is an edge between them and its cost. This is similar to virtual sensors used by Thalmann,
Noser, and Huang (1997).

One common approach is to assume a regular structure of the unknown part of the search
space (Koenig et al., 2003; Koenig, 2004; Bulitko & Lee, 2006; Koenig & Likhachev, 2006). For
instance, in grid-based pathfinding, the agent can assume that there are no obstacles in the gridworld
until it senses otherwise (this is sometimes called the “free space assumption”). We demonstrate
this in Figure 5, where the agent assumes that the space is obstacle-free (a) and builds its internal
model accordingly (b). Exploration reveals obstacles in the environment (c) which cause the agent
to update its model (d). We impose the restriction that a search agent never needs to add edges to its
model during exploration and the weights of discovered edges never change. In other words, agent’s
initial model is optimistic and contains a superset of edges of the actual search graph. Adding edges
or allowing arbitrary edge weight changes may require the agent to explore the environment explic-
itly. Combining exploration and exploitation effectively is an active research area (for early work,
refer to Sutton, 1990) and is not addressed in this paper.

Map discovery is natural in robotics where sensors have limited ranges. In software domains,
the agent can theoretically have access to an entire environment. Several types of arguments have
been made to justify restricting an agent’s senses in software domains. First, omniscient virtual

57



BULITKO, STURTEVANT, LU, & YAU

Actual search space:

(a)

Agent's model:

(b)

Explored actual search space:

(c)

Updated agent's model:

(d)

Figure 5: (a): initially only the part of the search space shown with solid lines is sensed by an agent
(shown as a stick figure). The agent’s model assumes a regular structure for the unknown
part (b). As the agent moves north-east, it senses an additional part of the search space
(c) and updates its model correspondingly (d).

humans tend to behave unrealistically and, thus, are less suitable for virtual reality trainers (Dini
et al., 2006). Likewise, in commercial games, revealing the entire map to an AI player is viewed
negatively as cheating. Second, it can be computationally expensive to sense (Orkin, 2006) and
reason about an entire environment (Thalmann et al., 1997; Aylett & Luck, 2000). Consequently,
localized sensing is used in large-scale multi-unit systems (Reynolds, 1987).

4. Path Refinement Learning Real-time Search (PR LRTS)

Real-time heuristic search algorithms plan using a small part of the search graph that surrounds
an agent’s current state. In order to avoid getting stuck in infinite loops, they update the heuristic
function over time. This approach guarantees that each action is planned in a constant-bounded
amount of time. The downside is slow convergence.

The central idea of PR LRTS is to address this downside by running real-time search on a
smaller abstract search graph and then refining the produced abstract path into a ground-level path.
The abstract graph is an image of the original graph under an abstraction operator. The operator
maps a region of states in the original graph to a single abstract state in the abstract graph. When
applied multiple times, a hierarchy of abstractions are formed. The hierarchy is a forest (a tree for
each connected component of the search graph) and will be formalized in Section 4.2.

A variety of terminologies have been used in the literature for discussing the relationship be-
tween states at different levels of abstraction. In different contexts the abstract states have been
referred to as clusters (Botea et al., 2004), sectors/regions (Sturtevant, 2007), and images (Holte
et al., 1996). Because the abstraction is a forest, and in line with (Bacchus & Yang, 1994; Bulitko
et al., 2005; Sturtevant & Buro, 2005), we sometimes call an image of an abstraction operator parent
and its pre-image children. These terms are not to be confused with successor states in lookahead
search. We first describe PR LRTS at an intuitive level and illustrate it with an example in Sec-
tion 4.1. Then we give formal details in Section 4.2 and describe the abstraction operator in detail.

4.1 Path Refinement

PR LRTS computes paths at several levels of abstraction. First, a path is found through the most
abstract search space (at level `). Such an abstract path defines a region of the lower-level abstract
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path PR LRTS(sc, sg)

1 if level(sc) > ` then
2 return ∅
3 end if
4 p =PR LRTS(parent(sc),parent(sg))
5 if p 6= ∅ then
6 sg = child(end(p))
7 end if
8 C = {s | parent(s) ∈ p}
9 switch(algorithm[level(sc)])
10 A* : return A*(sc, sg, C)
11 LRTS : return LRTS(sc, sg, C)
12 pass-through : return p
13 end switch

Figure 6: The PR LRTS algorithm.

space that will be searched when refining the abstract path. This refinement proceeds incrementally
until the level-0 (i.e., ground) search space is reached and a ground path is produced. In order to
keep the amount of planning per move constant-bounded regardless of the ground space size, we
need to have a real-time algorithm on the most abstract search graph. In this paper, we use LRTS at
a fixed top level of abstraction (`), and A* for refinement at the lower levels.2 Some abstract levels
can be left as “pass-through” to merely increase the amount of state aggregation; no processing is
carried out at them. This design choice was motivated by experimentation (Section 5).

PR LRTS operates recursively as presented in Figure 6. In line 1 it checks if the states passed
to it are above the top level of abstraction on which pathfinding is to occur. If so, an empty path
is returned (line 2). Otherwise, the function calls itself recursively to compute a path between the
abstract image of sc (denoted by parent(sc) in line 4) and the abstract image of sg. The returned
path (if non-empty as checked in line 5) is used to derive the new destination in line 6. Specifically,
the new destination sg is a child of the end of the abstract path p.3 In line 8, we compute the
corridor C comprised of pre-images of the states on path p. The corridor C will be empty if the
path p computed in line 4 was empty. Finally, we run the algorithm assigned to our current level of
abstraction (i.e., the level of sc and sg) in lines 10 and 11. It will be the A* or the LRTS tasked to
find either a full (in the case of A*) or a partial path (in the case of LRTS) from sc to sg limited to
the set of states C. By convention, an empty corridor (C = ∅) allows A*/LRTS to search its entire
graph. Note that no processing happens at a pass-through level (line 12).4

2. Because an agent explores its environment while moving about, we actually use a Local Repair A* instead of A*. It
is described in Section 7.

3. While any child can be used, some choices may lead to better performance. Intuitively, the child chosen by
child(end(p)) should be the “closest representative” of the abstract state end(p) among children(end(p)). In
pathfinding, we implement child(s) to return the element of children(s) that is geographically closest to the av-
erage coordinates of states in children(s). Also, if the goal state sg happens to be in the pre-image of end(p) then
we pick it as child(end(p)).

4. Also note that the functions child and parent handle pass-through levels. Specifically, in line 6, the state sg will be
computed by child at the first non-pass-through level below the level at which path p is computed. Likewise, in line
8, the states s forming the corridor C are at the first non-pass-through level (level i) below the level of path p (level
j). Thus, parent(s) will apply the abstraction mapping j − i times so that parent(s) and p are both at level j.
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Our implementation of A* is standard (Hart et al., 1968) except it is run (line 10) on a subgraph
defined by the corridor C (line 8). Our implementation of LRTS is taken from the literature (Bulitko
& Lee, 2006) and is described in Section 2.2. Like A*, we run LRTS in the corridor C.

Figure 7: The path refinement process. The original graph (level 0) is shown at the bottom. The
abstract graph (level 1) is shown at the top.

For illustration purposes, consider an example in Figure 7. In the example ` = 1, so only one
level of abstraction (shown at the top) is used in addition to the ground level (shown at the bottom).
sc is the current state while sg is the destination state. LRTS is assigned to level 1 while A* is
assigned to level 0. Subfigure (i) shows the ground state space below and one level of abstraction
above. The agent must plan a path from sc to sg located at the ground level. First, the abstract
parents of sc and sg, parent(sc) = s′c and parent(sg) = s′g, are located. Then LRTS with d = 3
plans three steps in the abstract space (ii). A corridor C at the ground level comprised of children
of the abstract path is then built (iii). A child representing the end of the abstract path is set as the
new destination sg (iv). Finally, A* is run within the corridor to find a path from sc to the new
destination sg (v).

While an agent is executing a path computed by PR LRTS, new areas of the search graph may
be seen. This causes updates to the abstraction hierarchy that the agent maintains. PR LRTS clears
and recomputes its abstract paths upon discovering new areas of the search graph. Also, if a ground
path proves invalid (e.g., runs into a newly discovered obstacle), the execution stops and PR LRTS
replans from the current state using the updated abstraction hierarchy.

Graph discovery can lead to arbitrary updates to the abstract search graphs an agent maintains.
In our implementation, LRTS operating on an abstract graph resets its heuristic function if its ab-
stract search graph is updated in any way. On the other hand, updates to the ground-level graph are
limited to state and edge removals (Section 3). Consequently, the heuristic learned at the ground
level remains admissible and there is no need to reset it upon updates.

4.2 Automatic Graph Abstraction

We use the term abstraction operator (or abstraction, for short) to mean a graph homomorphism in
line with Holte et al. (1996). Namely, abstraction is a many-to-one function that maps (abstracts)
one or more states to a single abstract state. Adjacent vertices are mapped to adjacent or identical
vertices (Property 5 below). Given such a graph homomorphism function and a model of a search
problem, a PR LRTS agent builds ` additional abstract search graphs, collectively called an abstrac-
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tion hierarchy, as follows. It first applies the graph homomorphism to the search graph of the model
(called ground-level graph). The result is an abstract search graph at level 1. The process is then
repeated until an abstract search graph at level ` is computed. Any homomorphic abstraction can be
used as long as the resulting hierarchy of abstract graphs satisfies several key properties. In the fol-
lowing we introduce the properties informally and illustrate them with an example. In Appendix B
we formalize them.

Property 1 Every abstract graph is a search graph in the sense of Definition 2.1 in Section 2.

Property 2 Every state has a unique abstract parent (except states at the top level of abstraction).

Property 3 Every state at any abstract level, has at least one child state below.

Property 4 Given a heuristic search problem, the number of children of any abstract state is upper-
bounded by a constant independent of the number of states in the ground-level graph.

A corollary of this property is that the number of ground-level states that abstract into a single
state at any fixed level of abstraction is also constant-bounded with a constant independent of the
ground-level graph size.

Property 5 (Graph homomorphism) Every edge in the search graph at a level of abstraction has
either a corresponding edge at the level above or the states connected by the edge abstract into a
single abstract state.

Property 6 If an abstract edge exists between two states then there is an edge between at least some
child of one state and some child of the other.

Property 7 Any two children of an abstract state are connected through a path whose states are all
children of the abstract state.

Property 8 The abstraction hierarchy is consistent with agent’s model of its search problem at all
times. That is, properties 1 through 7 are satisfied with respect to the agent’s model.

In this paper, we use a clique-based abstraction mechanism (Sturtevant & Buro, 2005). It op-
erates by finding fully connected components (cliques) in the search graph and mapping each to a
single abstract state. This method of building abstractions is favored in recent analysis by Sturtevant
and Jansen (2007) and earlier analysis by Holte et al. (1996, Section 5.2) who showed that reduction
of search effort due to abstraction is maximized by minimizing edge diameter of the set of children
and maximizing its size. For any clique, its edge diameter (i.e., the maximum number of edges
between any two elements) is one while the number of states in a clique is maximized.

We present the clique-based abstraction mechanism by developing several stages of a hand-
traceable example. We then illustrate how each of the properties introduced above is satisfied in the
example. A formal introduction of the clique abstraction technique complete with pseudocode is
found in Appendix A. We review other ways of building abstraction in Section 7.3. Note that while
general clique computation is NP-complete, finding cliques in two-dimensional grid-based search
graphs can be done efficiently (Appendix A).
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A single application of the abstraction procedure is illustrated in Figure 8. Cliques of size four
are first located in the graph, meaning that states s0, s1, s2 and s4 are abstracted into s′1. There are
no cliques of size three which are not already abstracted in the first step, so cliques of size two will
be abstracted next. This includes s5 and s3 which are abstracted into s′2, and s7 and s8 which are
abstracted into s′3. Because sg has degree 1, we add it to s′3; however s6 has degree two, so it is
abstracted into its own parent, s′4. Adding degree 1 states to their neighbors reduces the number of
resulting abstract states but increases the edge diameter of the set of children (it becomes 2 for the
set {s7, s8, sg}). This is a minor detail of our abstraction that happens to be effective in grid-based
pathfinding. One can use “pure” clique abstraction as well.

s3s0 s2

s1 s5s4

s6

s8s7 sg

s'1 s'2

s'3

s'4

Level 0 (original graph) Level 1 (abstract graph)

Figure 8: Clique abstraction: the original search graph from Figure 4 shown on the left is abstracted
into the search graph on the right.

s3s0 s2

s1 s5s4

s6

s8s7 sg

s'1 s'2

s'3

s'4

s''2

s''1

s'''1

Level 0 (original graph) Level 1 Level 2 Level 3

Figure 9: Three iterations of the clique abstraction procedure.

The abstraction process can be successively applied until a single abstract state for each con-
nected component of the original graph remains (Figure 9, Level 3). We can now illustrate the
abstraction properties with Figure 9. Property 1 requires that each of the four abstraction levels
in Figure 9 is a search graph in the sense of Definition 2.1 in Section 2. Property 2 requires each
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state at levels 0, 1, and 2 to have a unique parent at the level above. Property 3 requires that each
state at levels 1, 2, and 3 has a non-empty set of children at the level below. Property 4 places an
upper bound on the number of children each abstract state can have. In this example the bound is
4. Properties 5 and 6 require that, for any two abstract states connected by a path, their parents and
any of their children are also connected. Consider, for instance, abstract states s′2 and s′3. They are
connected at level 1 as there is an abstract path p = (s′2, s

′
1, s
′
4, s
′
3) between them. Thus, any child

of s′2 is also connected to any child of s′3 at level 0. For instance, s3 is connected to s7. Property 7
requires that all children of node s′1 are connected by an internal path within s′1. (s′0, s

′
1, s
′
2, s
′
4) form

a clique, so this property is satisfied.

The costs of abstract edges (e.g., edge (s′1, s
′
2) in Figure 8) can be defined in an arbitrary way

as long as the resulting search graph satisfies properties in Section 2. However, for better perfor-
mance, a low-cost abstract path should be an abstraction of a low-cost ground path. In this paper we
experiment with grid-based navigation and, correspondingly, define the cost of edge (s′1, s

′
2) as the

Euclidean distance between the average coordinates of children(s′1) and children(s′2) (Figure 10).

Figure 10: Coordinates and edge costs for all levels of the abstraction hierarchy. At the grid level
(leftmost illustration) vertex coordinates are given through column/row labels. Ground
edges cost 1 (cardinal)

√
2 (diagonal). Abstract states are labeled with (x, y). Abstract

edges are labeled with their approximate cost.

In practice, Property 8 is satisfied by repairing an agent’s abstraction hierarchy upon updates
to the agent’s model. To illustrate, imagine an agent just discovered that discrepancies between
the terrain elevation in state s4 and s6 (Figure 8) prevent it from being able to traverse the edge
(s4, s6). It will then update its model by removing the edge. Additionally, degree-one state s6 will
join the clique {s7, s8}. At this point, an agent’s abstraction hierarchy needs to be repaired. This is
accomplished by replacing abstract states s′4 and s′3 with a single abstract state s′5. The edges (s′1, s

′
4)

and (s′4, s
′
3) will be removed. If more than one level of abstraction is used then the repair has to be

propagated to higher levels as well. The repair mechanism is presented in detail in Appendix A.2.
We will prove in Section 6 that the PR LRTS algorithm can operate with any abstraction mechanism
that satisfies the properties listed above.
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Figure 11: Two of the the six maps used in the experiments.

5. Empirical Study

Empirical evaluation of the effects that state abstraction has on learning real-time heuristic search
is presented in four parts. In Section 5.1, we introduce the concept of trading off antagonistic
measures and demonstrate that PR LRTS makes such trade-offs efficiently. This is due to the use
of abstraction and, consequently, we investigate the effects of abstraction independently of LRTS
control parameters in Section 5.2. We then study how PR LRTS performance scales with problem
size (Section 5.3). Finally, we examine the interplay between the effects of abstraction and the LRTS
control parameters. As it is the most domain-specific study we present these details in Appendix F.

The experimental setup is as follows. We used 3000 problems randomly generated over three
maps modeled after environments from a role-playing game (BioWare Corp., 1998) and three maps
modeled after battlefields from a real-time strategy game (Blizzard Entertainment, 2002). The six
maps had 5672, 5852, 6176, 7629, 9749, and 18841 states on grids from 139 × 148 to 193 × 193.
Two maps are in Figure 11. The other four maps are shown in Appendix C. The 3000 problems were
uniformly distributed across five buckets where each bucket represents a range of optimal solution
costs. The first 600 problems had the optimal path cost in the [50, 60) range, the next 600 problems
fell into the [60, 70) bucket and so on until the last 600 problems that were in the [90, 100) bucket.

We experimented with various assignments of algorithms (A*, LRTS, none) to levels of ab-
straction. Through experimentation, we found that keeping LRTS at the top, A* at the bottom level
and leaving intermediate levels pass-through yielded the best results in our testbed. In the follow-
ing, we present results of 160 PR LRTS configurations, denoted as LRTS`(d, γ, T ), where ` is the
level of abstraction at which LRTS with control parameters d, γ, T operates, with A* running at the
bottom level. With ` = 0, we run LRTS at the ground level and do not run A* at all. The LRTS
parameter space was as follows: ` ∈ {0, 1, 2, 3, 4}, lookahead depth d ∈ {1, 3, 5, 9}, optimality
weight γ ∈ {0.2, 0.4, 0.8, 1.0}, and learning quota T ∈ {100.0,∞}. Two visibility radii were used:
10 and 1000. In our analysis, we will focus on the case of visibility radius of 10, in line with the
previous publications in the area (Bulitko et al., 2005; Bulitko & Lee, 2006). Experiments with
the visibility radius of 1000 yielded similar results. As a point of reference, we ran a single non-
real-time algorithm: A*. The algorithms were implemented within the Hierarchical Open Graph
framework (Sturtevant, 2005) in C++ and run on a cluster, with an aggregate of 1.7 years of Intel
Xeon 3.0GHz CPU.
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5.1 Antagonistic Performance Measure Trade-off

From a practitioner’s viewpoint, this section can be viewed as a parameter selection guide. We start
by finding sets of parameters to optimize performance of PR LRTS along a single measure. Then
we will consider optimizing pairs of antagonistic performance measures.

The research on optimizing single performance measures within LRTS was published by Bulitko
and Lee (2006). In Table 1 we extend the results to include A* and PR LRTS. The best algorithms
for a single performance measure are A* and LRTA* and do not use abstraction. The only exception
is convergence planning which is an interplay between planning per move and convergence travel.

Table 1: Optimizing a single performance measure.

Measure The best algorithm
convergence travel A*

first-move lag (states touched) LRTA*
conv. memory A*
suboptimality A* or LRTA*

conv. planning (states touched) LRTS3(d = 1, γ = 0.2 or 0.4,∞) or LRTS2(d = 1, γ = 0.2 or 0.4,∞)

The power of abstraction comes when we attempt to optimize two negatively correlated (or
antagonistic) performance measures simultaneously. Consider, for instance, convergence travel and
first-move lag. In order to lower convergence travel, the agent needs to select better actions. This
is done by increasing the amount of planning per move which, in turn, increases its first-move
lag. As these measures are negatively correlated, performance along one measure can be traded
for performance along the other. Thus, we are interested in algorithms that make such trade-offs
efficiently. In order to make our analysis more specific, we first introduce the concept of dominance
with respect to a set of parameterized algorithms.

Definition 5.1 Algorithm A is said to dominate algorithm B with respect to performance measures
x and y on a set of problems P if A’s average performance measured in both x and y is not worse
than B’s: avgP x(A) is not worse than avgP x(B) and avgP y(A) is not worse than avgP y(B).
Algorithm C is called dominated in a set of algorithms if the set contains another algorithm that
dominates it.

The definition is illustrated in Figure 12 where non-dominated algorithms are shown as solid cir-
cles and dominated algorithms are shown as hollow circles. Intuitively, non-dominated algorithms
make the trade-off between performance measures x and y most efficiently among all algorithms in
a set. They should be considered in practice when one wants to optimize performance in both mea-
sures. Dominated algorithms can be safely excluded from consideration regardless of the relative
importance of measures x and y in a particular application.

Non-dominated algorithms for ten pairs of antagonistic measures are summarized in Table 2.
A* and weighted version of Korf’s LRTA* are extreme cases of the performance measures: A*
minimizes convergence travel and uses no heuristic memory; LRTA* minimizes first-move lag. All
non-dominated algorithms between them are PR LRTS with abstraction. In other words, abstraction
and path-refinement improve efficiency of trading off antagonistic performance measures. Figure 13
shows a dominance plot for convergence planning against first-move lag. PR LRTS forms a frontier
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Figure 12: Left: algorithm A dominates algorithm B (left). Right: all non-dominated algorithms
are shown as solid circles, dominated algorithms are shown as hollow circles.

of non-dominated algorithms (the rightmost non-dominated point is a weighted LRTA* which has
an extremely low first-move lag). Plots for other combinations are in Appendix D.
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Figure 13: Dominance for convergence planning against first-move lag.

The dominance analysis above is done with respect to performance measures averaged over a
benchmark set of problems. Dominance analysis at the level of individual problems is found in
Appendix E and shows similar trends.

5.2 Effects of Abstraction on Individual Performance Measures

In this section we study effects of abstraction on individual performance measures. We arbitrar-
ily choose three diverse LRTS parameter combinations of lookahead d, optimality weight γ, and
learning quota T : (1, 1.0,∞), (3, 0.2, 100), (9, 0.4,∞). The plots are in Figure 14, a qualitative
summary is in Table 3, and an analysis of the trends is below.

Convergence planning decreases with abstraction level. This is because the increase of plan-
ning per move at higher abstraction levels is overcompensated for by the decrease in convergence
travel. The exact shape of the curves is due to an interplay between these two measures.
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Table 2: Trading off antagonistic performance measures.
Measure 1 Measure 2 Non-dominated algorithms (extreme cases are in italic)

first-move lag conv. travel A*, LRTA*(γ = 0.4),
(states touched) LRTS1...4(d ∈ {1, 3, 5, 9}, γ ∈ {0.2, 0.4, 0.8}, T ∈ {100,∞})

first-move lag conv. memory A*, LRTA*(γ = 0.2),
(states touched) LRTS1...4(d ∈ {1, 3, 5, 9}, γ ∈ {0.2, 0.4}, T ∈ {100,∞})

first-move lag conv. plan. LRTS1...3(d = 1, γ = 0.4, T =∞),
(states touched) (states touched) LRTA*(γ = 0.4)

first-move lag conv. travel A*, LRTA*(γ = 0.4),
(time) LRTS1...4(d ∈ {1, 3, 5, 9}, γ ∈ {0.2, 0.4}, T ∈ {100,∞})

first-move lag conv. memory A*, LRTA*(γ ∈ {0.2, 0.4}),
(time) LRTS1...4(d ∈ {1, 3, 5}, γ ∈ {0.2, 0.4}, T ∈ {100,∞})

first-move lag conv. plan. A*, LRTA*(γ = 0.4),
(time) (time) LRTS1...3(d ∈ {1, 3}, γ ∈ {0.2, 0.4}, T ∈ {100,∞})

suboptimality conv. plan. A*,
(states touched) LRTS2...3(d ∈ {1, 3, 5}, γ ∈ {0.2, 0.4, 0.8}, T ∈ {100,∞})

suboptimality conv. plan. A*
(time)

suboptimality conv. travel A*
suboptimality conv. memory A*

First-move lag increases with the abstraction level. This is due to the fact that the corridor at
the ground level induced by the abstract path of length d computed by LRTS at the abstract level
increases with the abstraction level. There are two additional factors affecting shape of the curves.
First, the average out-degree of abstract states varies with abstraction level. Second, boundaries of
abstract graphs can often be seen with lookahead of d = 9 at higher abstraction level.

Convergence memory decreases with abstraction level as the learning algorithm (LRTS) oper-
ates on smaller abstract maps and incurs smaller travel cost. In practice, the amount of learning in
LRTS tends to correlate tightly with its travel. For instance, for LRTS2(3, 0.8,∞) the correlation
between convergence memory and convergence travel is empirically measured at 0.9544 with the
confidence of 99%.

Suboptimality increases with abstraction. The increase is due to the fact that each abstraction
level progressively simplifies the ground graph topology and, while the abstract path is guaranteed to
be refinable into a ground path, it may lead the agent away from the shortest solution. An illustrative
example is given in Appendix B.1 where a refinement of a complete abstract path is 221% longer
than the optimal ground path. Derivation of a theoretical upper bound on suboptimality due to
abstraction is found in Appendix B.2. A second mechanism explains why suboptimality rises faster
with shallower LRTS searches. Specifically, A* at the ground level refines an abstract d-step path
by finding a ground-level solution from the current state to a ground representative of the end of the
abstract path. This solution is guaranteed to be optimal within the corridor and does not necessarily
have to pass geographically closely to intermediate states of the abstract path. Thus, giving A* a
corridor induced by a longer abstract path liberates it from having to plot a path to possibly far-off
intermediate states on the abstract path. This phenomenon is illustrated in Appendix B.1 where
“feeding” A* the abstract path in small fragments results in more suboptimality than giving it the
“big picture” – the abstract path in its entirety. A third factor affecting the suboptimality curves
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Figure 14: Effects of abstraction in PR LRTS. Error bars indicate the standard errors and are too
small to see for most data points.

in the figure is the optimality weight γ. Setting γ to lower values leads to higher suboptimality
independently of abstraction (Bulitko & Lee, 2006).

Convergence travel decreases with abstraction as the bottom level search is constrained within
a narrow corridor induced by an abstract path. The decrease is most noticeable for shallow looka-
head searches (d = 1 and d = 3). Algorithms using lookahead of d = 9 have low convergence
travel even without abstraction, and the convergence travel is lower bounded by double the optimal
solution cost (one optimal solution for the first trial at which the map is discovered and one for the
final trial with no map discovery or heuristic learning). Consequently, abstraction has diminished
gains for deeper lookahead (d = 9), although this effect would disappear on larger maps.

Table 3: Qualitative effects of abstraction: general trends.

measure / parameter 0→ `→∞
first-move lag ↑

convergence planning ↓
convergence memory ↓

suboptimality ↑
convergence travel ↓

Given that higher abstraction reduces convergence travel, one may ask how this compares to
reducing convergence travel of non-abstract algorithms by simply terminating their convergence
process before the final trial. In Figure 15 we compare four algorithms on a single problem: A*,
non-abstract LRTS(3, 0.4,∞) and two abstract versions: LRTS2(3, 0.4,∞) and LRTS4(3, 0.4,∞).

The left plot in the figure demonstrates a well-known fact that convergence of learning heuristic
search algorithms is non-monotinic (e.g. Shimbo & Ishida, 2003). The right plot shows the cost of
the shortest solution as a function of cumulative travel. We prefer algorithms that find shorter solu-
tions after traveling as little as possible. In the plot, the abstract algorithms perform better (lower
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Figure 15: Convergence process at the level of individual trials.

curves) and are preferred. In other words, for this single problem, it is better to run abstract algo-
rithms than non-abstract algorithms regardless of how early the convergence process is terminated.
We observe that this is not the case for all problems and for all assignments of d, γ, T we tried. In
certain cases, prematurely terminating convergence process of a non-abstract algorithm can indeed
be beneficial. Future research will investigate to what extent one can automatically select the best
algorithm and a number of trials to run it for.

5.3 Effects of Abstraction: Scaling up with Problem Size

In this section we investigate the effects of abstraction as the problem size increases. We measure the
size of the problem as the cost of a shortest path between the start and the goal position (henceforth
optimal solution cost).

Figures 16 and 17 show five performance measures plotted as bucket averages. For each data
point, we use the middle of the bucket (e.g., 55, 65, . . . ) as the horizontal coordinate. The error bars
indicate standard errors. Overall, the results demonstrate that abstraction enables PR LRTS to be
applied to larger problems by significantly dampening the increase in convergence travel, conver-
gence planning, and convergence memory. These advantages come at the price of suboptimality and
first-move lag. The former clearly increases with abstraction when lookahead is small (Figure 16)
and is virtually bucket-independent. The lookahead of d = 9 (Figure 17) draws the curves together
as deeper lookahead diminishes effects of abstraction on suboptimality (cf. Figure 36).

First-move lag is virtually bucket-independent except in the case of d = 9 and abstraction levels
of 3 and 4 (Figure 17). There, first-move lag is capped for problems in lower buckets as the goal
is seen from the start state at these higher levels of abstraction. Consequently, LRTS computes an
abstract path that is shorter than nine moves. This leads to a smaller corridor and less work for
A* when refining the path. Consequently, the first-move lag is reduced. As the problems become
larger, LRTS has room to compute a full nine-move abstract path and the first-move lag increases.
For abstraction level 3 this phenomenon takes place up to bucket 85 where seeing the goal state from
the start state is not frequent enough to make an impact. This does not happens with abstraction level
4 as proximity of the abstract goal continues to cut the search short even for the largest problems.

Finally, we observe a minute decrease in first-move lag for larger problems. This appears to be
due to the fact that problems in the higher buckets tend to have their start state located in a cluttered
region of the map (so that the optimal solution cost is necessarily higher). Walls reduce the number
of states touched by the agent on its first move and reduce the first-move lag.
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Figure 16: Scaling up. Each curve shows bucketed means for LRTSL(1, 1.0,∞). Error bars indi-
cate standard errors and are too small to see for most data points.

6. Theoretical Analysis

PR LRTS subsumes several known algorithms when no abstraction is used. Clearly, LRTS (Bu-
litko & Lee, 2006) is a special case of PR LRTS when no abstraction is used. LRTS itself sub-
sumes and generalizes several real-time search algorithms including LRTA* (Korf, 1990), weighted
LRTA* (Shimbo & Ishida, 2003), γ-Trap (Bulitko, 2004) and SLA*/SLA*T (Shue & Zamani, 1993;
Shue et al., 2001).

Theorem 6.1 (real-time operation) For any heuristic search problem, LRTS`(d, γ, T ) the amount
of planning per any action is constant-bounded. The constant depends on the constant control
parameters d ∈ N, γ ∈ (0, 1], T ∈ [0,∞] but is independent of the problem’s number of states.

We first prove an auxiliary lemma.

Lemma 6.1 (downward refinement property) For any abstract path p = (sa, . . . , sb), any two
children of its ends are connected by a path lying entirely in the corridor induced by p. This means
that any abstract path can be refined within the corridor formed by its children. Formally:

∀1 ≤ k ≤ ` ∀p = (sa, . . . , sb) [p ⊂ (S(k), E(k)) =⇒
∀s′a ∈ children(s1) ∀s′b ∈ children(sm)

∃p′ = (s′a, . . . , s
′
b) [p′ ⊂ (S(k − 1), E(k − 1)) & ∀s′ ∈ p′ [s′ ∈ ∪s∈p children(s)]]]. (6.1)

70



GRAPH ABSTRACTION IN REAL-TIME HEURISTIC SEARCH

55 65 75 85 95
0

2000

4000

6000

8000

Optimal Solution Cost

C
on

ve
rg

en
ce

 T
ra

ve
l

 

 

L=0

L=1

L=2

L=3

L=4

55 65 75 85 95
0

2

4

6

8
x 10

5

Optimal Solution Cost

C
on

ve
rg

en
ce

 P
la

nn
in

g

55 65 75 85 95
1000

2000

3000

4000

5000

6000

Optimal Solution Cost

F
irs

t−
M

ov
e 

La
g

55 65 75 85 95
0

50

100

150

200

Optimal Solution Cost

C
on

ve
rg

en
ce

 M
em

or
y

55 65 75 85 95
2

3

4

5

6

Optimal Solution Cost

S
ub

op
tim

al
ity

 (
%

)

Figure 17: Scaling up. Each curve shows bucketed means for LRTSL(9, 0.4,∞). Error bars indi-
cate standard errors and are too small to see for most data points.

Proof. The proof is by induction on the number of edges in the abstract path. The base case is 0.
This means that any two children of a single abstract state are connected by a path that lies entirely
in the set of children of the abstract state. This holds due to Property 7.

Suppose the statement holds for all abstract paths of length j. We will now show that then it
holds for all abstract paths of length j+1. Consider an arbitrary abstract path p ⊂ (S(k), E(k)), k >
0 that has j+ 1 edges. Then we can represent p as (s1, . . . , sj+1, sj+2). Consider arbitrary children
s′1 ∈ children(s1) and s′j+2 ∈ children(sj+2). We need to show that there is path p′ ⊂ (S(k −
1), E(k−1)) between them that lies entirely in the union of children of all states on p (let us denote
it by Cp). Let s′j+1 be an arbitrary child of state sj+1. Since s1 and sj+1 are only j edges apart, by
inductive supposition, there is a path between s′1 and s′j+1 that lies entirely in Cp. All that is left
is to show is that s′j+1 and s′j+2 are connected within Cp. If s′j+1 and s′j+2 have the same parent,
Property 7 guarantees they can be connected. If they have different parents, then Property 6 provides
the same guarantee. Either way, the induction step is completed. �

We can now prove Theorem 6.1.

Proof. At the abstract level `, LRTS(d, γ, T ) considers no more than bd abstract states by the
algorithm design (cf. Section 2.2), here b is maximum degree of any state. As assumed earlier in
the paper, the maximum degree of any state does not depend on the number of states. The resulting
abstract path of no longer than d abstract edges induces a corridor at the ground level. The corridor
consists of all ground-level states that abstract to abstract states on the path. The size of the corridor
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is upper-bounded by the number of edges in the path (at most d) multiplied by the maximum number
of ground-level children of any abstract state at level `. The latter is upper-bounded by a constant
independent of the number of ground-level states due to Property 4. A* running in a corridor of
constant-bounded size takes a constant-bounded time. Finally, abstraction repair is O(`) and ` is
independent of graph size (Appendix A.2). �

Completeness is defined as the ability to reach the goal state on every trial. We prove com-
pleteness for LRTS`(d, γ, T ) based on the following reasoning. Recall that LRTS`(d, γ, T ) uses
the LRTS algorithm to build an abstract path at level `. It then uses a corridor-restricted A* at the
ground level to refine the abstract path into a sequence of ground-level edges. Due to Property 7
of Section 4.2, A* will always be able to find a path between the ground-level states sc and sg that
lie within the corridor C by the time execution gets to line 9 in Figure 6. Due to the exploration
process, the agent’s model of the search graph may be different from what the graph actually is in
reality. Consequently, the path found by A* may contain a ground-level edge that the agent believes
to exist but in reality does not. The following lemma demonstrates that such an execution failure is
possible only a finite number of times for a given search graph:

Lemma 6.2 There are only a finite number of path execution failures on each trial.

Proof. By contradiction: suppose there are an infinite number of such failures. Each failure is due
to a discovery of at least one new blocked edge or vertex in the ground-level graph. Then there will
be infinitely many blocked edges or vertices in a finite graph. �

A direct corollary to this lemma is that for any trial, there will be a moment of time after which
no graph discoveries are made on that trial. Therefore, executing A*’s path will indeed allow the
agent to follow its abstract path on the actual map.

Lemma 6.3 LRTS is complete on an abstract graph.

Proof. First, we show that any abstract graph satisfies the properties under which LRTS is shown to
be complete (Theorem 7.5, Bulitko & Lee, 2006). That is, the abstract graph is finite, each action
is reversible, there are no self-loops, all actions have a positive cost, and the goal state is reachable
from every state. The graph also has to be stationary and deterministically traversible (p.122, Bulitko
& Lee, 2006). Due to abstraction mechanism requirements in Section 4.2, the properties listed above
are satisfied by the clique abstraction mechanism as long as the ground-level graph satisfies these
properties as well (which we require in Section 2). Thus, LRTS running on an abstract graph as if it
were a ground graph is complete.

In PR LRTS, however, LRTS on an abstract graph does not execute its own actions. Instead,
its current (abstract) state is computed as abstract parent of the agent’s current ground-level state.
Therefore, a critical question is whether the agent is able to find a ground-level path from its current
state to the ground-level state corresponding to the end of its abstract path as computed in line 6
of Figure 6. The failure to do so would mean that the corridor computed in line 8 of Figure 6 and
used to refine the path does not contain a ground-level path from sc to sg. Due to the downward
refinement property (Lemma 6.1), this can only be due to graph discovery.

According to Lemma 6.2, after a finite number of failures, the A* algorithm operating at the
ground level is guaranteed to find path to reach the end of the abstract path computed by LRTS.
Thus, LRTS has the effective ability to “execute” its own abstract actions. Putting these results
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together, we conclude that for any valid d, γ, T parameters, LRTS on the abstract graph finds its
goal on every trial. �

The two lemmas lead directly to the following statement.

Theorem 6.2 LRTS`(d, γ, T ) is complete.

Proof. This follows directly from Lemma 6.2 and Lemma 6.3. �

Theorem 6.3 LRTS`(d, γ, T ) with fixed tie-breaking converges to its final solution after a finite
number of trials. On all subsequent trials, it does not update its search graph model or the heuristic
and follows the same path.

Proof. Follows from Lemma 6.2 and Theorem 7.6 of (Bulitko & Lee, 2006) in the same way
Lemma 6.3 and Theorem 6.2 were proved above. �

Theoretical results on suboptimality are found in Appendix B.2

7. Related Research

Existing heuristic search methods for situated methods can be divided into two categories: full
search and real-time search. Full-search algorithms form an entire solution given their current
knowledge of the search graph. In contrast, real-time search plans only a small segment (frequently
just the first action) of their solution and executes it right away. Due to the local nature of planning,
real-time search algorithms need to update the heuristic function to avoid getting stuck in local
minima of their heuristic function.

7.1 Full Search

A common full-search algorithm is a version of A* (Hart et al., 1968) called Local Repair A* (Stout,
1996). In it, a full search is conducted from agent’s current state to the goal state under the free space
assumption. The agent then executes the computed path until either the destination is reached or the
path becomes invalid (e.g., a previously unknown wall blocks the way). In the latter case, the agent
replans from its current position to the goal. Local Repair A* suffers from two problems. First, it
searches for a shortest solution and, for a general search problem, may end up expanding a number
of states exponential in the solution cost due to inaccuracies in the heuristic function (Pearl, 1984).
Second, re-planning episodes do not re-use results of previous search.

The first problem is addressed by suboptimal versions of A* which are frequently implemented
via weighting the heuristic function (Pohl, 1970, 1973). Such a weighted A* (WA*) usually finds
a longer solution in less time. Once a suboptimal solution is found, it can be improved upon by
conducting additional searches. This can be done by re-using the open list between successive
searches (Hansen, Zilberstein, & Danilchenko, 1997; Likhachev et al., 2004; Hansen & Zhou, 2007)
or by re-running A* in a tunnel induced by a suboptimal solution (Furcy, 2006). In the later case,
beam search with backtracking can be used in place of weighted A* (Furcy & Koenig, 2005).

The second problem is addressed by incremental search methods such as D* (Stenz, 1995), D*
Lite (Koenig & Likhachev, 2002a) and LPA* (Koenig & Likhachev, 2002b). These algorithms reuse
some information from the previous search, thus speeding up subsequent replanning episodes.
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In all of these algorithms, a full path has to be computed before the first move can be executed
by the agent. Consequently, the planning time per move is not constant-bounded and increases with
the problem size. Thus, agent-centered full search is not real-time.

7.2 Learning Real-time Search

Since the seminal work on LRTA* (Korf, 1990), research in the field of learning real-time heuristic
search has flourished resulting in over twenty algorithms with numerous variations. Most of them
can be described by the following four attributes:

The local search space is the set of states whose heuristic values are accessed in the planning
stage. The two common choices are full-width limited-depth lookahead (Korf, 1990; Shimbo &
Ishida, 2003; Shue & Zamani, 1993; Shue et al., 2001; Furcy & Koenig, 2000; Hernández &
Meseguer, 2005a, 2005b; Sigmundarson & Björnsson, 2006; Rayner, Davison, Bulitko, Anderson,
& Lu, 2007) and A*-shaped lookahead (Koenig, 2004; Koenig & Likhachev, 2006). Additional
choices are decision-theoretic based shaping (Russell & Wefald, 1991) and dynamic lookahead
depth-selection (Bulitko, 2004; Luštrek & Bulitko, 2006).

The local learning space is the set of states whose heuristic values are updated. Common
choices are: the current state only (Korf, 1990; Shimbo & Ishida, 2003; Shue & Zamani, 1993; Shue
et al., 2001; Furcy & Koenig, 2000; Bulitko, 2004), all states within the local search space (Koenig,
2004; Koenig & Likhachev, 2006) and previously visited states and their neighbors (Hernández &
Meseguer, 2005a, 2005b; Sigmundarson & Björnsson, 2006; Rayner et al., 2007).

A learning rule is used to update the heuristic values of the states in the learning space. The
common choices are dynamic programming or mini-min (Korf, 1990; Shue & Zamani, 1993; Shue
et al., 2001; Hernández & Meseguer, 2005a, 2005b; Sigmundarson & Björnsson, 2006; Rayner
et al., 2007), their weighted versions (Shimbo & Ishida, 2003), max of mins (Bulitko, 2004), mod-
ified Dijkstra’s algorithm (Koenig, 2004), and updates with respect to the shortest path from the
current state to the best-looking state on the frontier of the local search space (Koenig & Likhachev,
2006). Additionally, several algorithms learn more than one heuristic function (Russell & Wefald,
1991; Furcy & Koenig, 2000; Shimbo & Ishida, 2003).

Control strategy decides on the move following the planning and learning phases. Commonly
used strategies include: the first move of an optimal path to the most promising frontier state (Korf,
1990; Furcy & Koenig, 2000; Hernández & Meseguer, 2005a, 2005b), the entire path (Bulitko,
2004), and backtracking moves (Shue & Zamani, 1993; Shue et al., 2001; Bulitko, 2004; Sig-
mundarson & Björnsson, 2006).

Given the multitude of proposed algorithms, unification efforts have been undertaken. In partic-
ular, Bulitko and Lee (2006) suggested a framework, called Learning Real Time Search (LRTS), to
combine and extend LRTA* (Korf, 1990), weighted LRTA* (Shimbo & Ishida, 2003), SLA* (Shue
& Zamani, 1993), SLA*T (Shue et al., 2001), and to a large extent, γ-Trap (Bulitko, 2004). In the
dimensions described above, LRTS operates as follows. It uses a full-width fixed-depth local search
space with transposition tables to prune duplicate states. LRTS uses a max of mins learning rule to
update the heuristic value of the current state (its local learning space). The control strategy moves
the agent to the most promising frontier state if the cumulative volume of heuristic function updates
on a trial is under a user-specified quota or backtracks to its previous state otherwise (Section 2.2).

Within LRTS, the unification of several algorithms was accomplished through implementing
several methods for local search space selection, the learning rule, and the control strategy. Each
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of these methods can be engaged at run-time via user-specified parameters. The resulting param-
eter space contained all the original algorithms plus numerous new combinations, enabling tuning
performance according to a specific problem and objective function of a particular application. As
a demonstration, Bulitko et al. (2005) tuned LRTS for ten maps from the computer game “Baldur’s
Gate” (BioWare Corp., 1998) and achieved a convergence speed that is two orders of magnitude
faster than LRTA*, while finding paths within 3% of optimal. At the same time, LRTS was about
five times faster on the first move than incremental A*. Despite the improvements, LRTS and other
real-time search algorithms converge more slowly than A* and, visually, may behave unintelligently
by repeatedly revisiting dead-ends and corners.

7.3 State Abstraction

The idea of abstraction has been previously applied to full search methods. In particular, HPA* and
PRA* (Botea et al., 2004; Sturtevant & Buro, 2005) use abstraction to speed up A* search: instead
of running A* on the lowest-level graph, they instead run A* on a smaller abstract graph. PRA*
computes an abstract path and then refines it in a similar manner to PR LRTS. However, PRA*
dynamically chooses which abstract level to use, and computes a path at each intermediate level
(i.e., it does not have pass-through levels). PRA* also widens its corridors to decrease suboptimality
at the cost of lower speed.

HPA* abstracts a map using large regions, and selects connection points (gates) between neigh-
boring regions. For all gates of a region, optimal paths between all gates are pre-computed off-line
using A* and are stored in a table. This means that refining an abstract path (i.e., a sequence of
region gates) can be done simply by concatenating stored optimal paths. Smoothing is applied as a
post-processing step to decrease suboptimality of the resulting path.

Both of these algorithms are based on the ideas presented by Holte et al. (1996), who used an
abstraction mechanism in a similar manner to our use of the clique abstraction. Their method, the
STAR abstraction, can also be described as a radius abstraction. That is, a state is selected, and
is aggregated together with all states in a fixed radius of the original state. Holte et al. (1996)’s
work did not initially gain wide acclaim, because, at the time, there was little interest in problems
which were small enough to fit in memory. Motivating applications, such as pathfinding in computer
games, have resulted in a resurgence of interest in such techniques.

This class of algorithms first plan an abstract path, which is then refined into a traversable path.
Another approach is to build an abstraction which can be directly used for planning in the real-
world. This includes methods like framed quad-trees (Yahja, Stentz, Singh, & Brummit, 1998),
which efficiently represent sparse maps. Quad-trees are a multi-resolution representation, as some
areas of the map are represented at high-resolution, and others are represented at lower resolution.
This abstraction differs from abstractions like the clique abstraction in that it can only be applied
once; further applications would not produce lower resolution maps, although the clique abstraction
could be applied to the graph implied by the framed quad-tree representation.

One other common use of abstraction is to provide better heuristics. Holte, Perez, Zimmer, and
MacDonald (1995) used the result of an abstract search to provide a more accurate heuristic for low-
level search and performed no path refinement. Similarly, pattern databases are abstractions which
are built and solved off-line. The abstract solution costs are stored and then used during search as a
heuristic function (Culberson & Schaeffer, 1996; Felner, Zahavi, Schaeffer, & Holte, 2005).
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PR LRTS presented in this paper is the first real-time heuristic search algorithm to use
automatically-built state abstraction. Path-refinement algorithms listed above conduct a full-search
and therefore cannot guarantee constant-bounded planning time for all agent’s moves.

8. Limitations and Future Work

The results presented in this paper open several directions for future research. First, PR LRTS is
able to operate with a wide class of homomorphic graph abstraction techniques. Thus, it would
be of interest to investigate the extent to which effects of graph abstraction on real-time search
presented in this paper are specific to the clique abstraction mechanism and the pathfinding domain.
Recent work has shown that the clique abstraction has parameters that are well-tuned to minimize
work done in traditional path planning (Sturtevant & Jansen, 2007). Our experiments in pathfinding
have suggested that the clique abstraction is well-suited to map abstraction because it represents key
properties of the underlying space well. In particular, the branching factor stays roughly constant
at higher levels of abstraction. On an empty map, for instance, the number of nodes at each level
of abstraction will be reduced by a factor of four by the clique abstraction, but the branching factor
of every state will stay the same. (Corner states will have 3 neighbors, edge states will have 5
neighbors, and middle states will have 8 neighbors.) This may not be the case in other domains. For
instance, in the sliding tile puzzle the maximum branching factor of abstract states quickly increases
with abstraction level. As a result, the corridor derived from an abstract path in PR LRTS becomes
excessively wide and does not effectively constrain A* search at the ground level. We conjecture that
algorithms which use homomorphic abstractions will only be effective in a domain if the abstraction
preserves the average, minimum, and maximum branching factor from the original problem at each
level of abstraction. Clique abstraction, then is likely to work well in three-dimensional pathfinding,
while problem-specific mechanisms would be needed for permutation-type puzzles. It is an area of
open research to provide such an abstraction.

Second, PR LRTS uses an abstract solution to restrict its search in the original ground-level
graph. It is interesting to combine this with a complementary approach of using the cost of an
optimal solution to an abstract problem as a heuristic estimate for the original search graph in the
context of real-time search. In particular, we are looking at effective ways of propagating heuristic
values from higher to lower levels of the abstraction hierarchy.

Third, state aggregation is just one way of generalizing learning. Future research will consider
combining it with function approximation for the heuristic function, as is commonly practiced in
large-scale applications of reinforcement learning.

Fourth, we are presently investigating applications of PR LRTS to dynamic environments. In
particular, we are studying the extent to which savings in memory gained by learning at a higher
abstraction level will afford application of PR LRTS to moving target search. An existing algo-
rithm (Ishida & Korf, 1991) requires learning a number of heuristic values quadratic in the size of
the map. This is prohibitive in the case of commercial game maps.

Finally, we are presently extending the graph abstraction method presented in this paper to
stochastic environments formulated as Markov Decision Processes.
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9. Conclusions

Situated agents in real-time environments are expected to act quickly while efficiently learning an
initially unknown environment. Response time and learning speed are antagonistic performance
measures as more planning leads to better actions and, consequently, faster convergence but longer
response time. Full search algorithms, such as local repair A*, converge quickly but do not have
a constant-bounded planning time per move. Real-time heuristic search algorithms have constant-
bounded planning times per move, but learn slowly.

In this paper, we attempted to combine the best of both approaches and suggest a hybrid al-
gorithm, PR LRTS, that learns a heuristic function in a smaller abstract space and uses corridor-
restricted A* to generate a partial ground-level path. In a large-scale empirical study, PR LRTS
was found to dominate virtually all tested algorithms that do not use abstraction with respect to
several performance measure pairs. The combination of learning and planning brings real-time per-
formance to much larger search spaces, substantially benefiting applications such as pathfinding in
robotics and video games.
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Appendix A. Clique Abstraction

Below we will describe the clique abstraction mechanism in several stages. First, we present the
algorithm for building an initial abstraction hierarchy using the free space assumption. Then we
describe the repair procedure that updates the abstract graphs as an agent explores the environment.
Finally, we consider suboptimality of solution caused by abstraction on examples and derive a worst-
case upper bound.

A.1 Building Initial Abstraction Hierarchy

The pseudo-code for building an initial clique abstraction is in Figure 18. The abstract procedure
(lines 5 and 14) takes a set of states at some level i and maps them to a single abstract state at level
i + 1. This involves creating a new abstract state and storing parent and child links. If, in line 20,
a new abstract edge is added where one already exists, we do not add an extra edge but increase a
count associated with the edge. Such counts are used to facilitate abstraction repair as described in
the next section.

In general, clique-finding is an NP-complete problem (Garey & Johnson, 1990). However,
in eight-connected two-dimensional grid-based search graphs the largest possible clique size is 4.
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graph CliqueAbstraction(graph g)
1 initialize graph g′ ← ∅
2 for i = 4...2
3 for each unabstracted state s in g
4 if s is part of some i-clique c
5 g′ ← g′ ∪ {abstract(c)}
6 end if
7 end for each
8 end for
9
10 for each unabstracted state s in g
11 if degree(s) = 1
12 set parent(s) to parent(neighbor(s))
13 else
14 g′ ← g′ ∪ {abstract(n)}
15 end if
16 end for each
17
18 for each edge e = (v1, v2)
19 if parent(v1) 6= parent(v2)
20 g′ ← g′ ∪ {(parent(v1),parent(v2))}
21 end if
22 end for each
23 return g′

Figure 18: Building the initial clique abstraction.

Because the degree of each state is also constant-bounded (as required in Section 2) the time per
clique constant (i.e.,

(
8
3

)
state accesses to check eight neighbors and find 3 which form a 4-clique

together with the current state). Thus, the total running time for doing a single clique abstraction is
O(|S|), where |S| is the number of states in the original search graph. If the abstraction procedure
reduces the graph size by at least a constant factor greater than one, the total cost of abstracting a
graph will also be O(|S|) as the cost of each additional abstraction step is reduced exponentially.

A.2 Repairing Abstraction Hierarchy

As the agent explores its environment, it may find some edges or states blocked. In such cases, it will
remove the corresponding states and edges from its model and will need to propagate the changes
to all abstract graphs in the abstraction hierarchy. We will demonstrate the repair code in Figure 19
with an example that also shows how the repair procedure can have amortized constant-time cost.

In Figure 20 we remove edges from the Level 0 graph at the bottom left of the figure. The right
side of the figure shows the full abstract graph after all edges have been removed. At each level we
show a portion of the abstract graph and assume that there are more states and edges in the graph.
They are shown schematically in Level 0 in gray.

At Level 0 there are four states marked A which form an abstract state at level 1. This is also
true for the states marked A’. A and A’ are joined by an edge at level 1, which is abstracted from
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RemoveEdge(edge e, level l, graph g)
1 decrease edge count of e
2 if child edge count of e 6= 0 return end if
3 e = (v1, v2)
4 remove e from g[l]
5 if parent(v1) = parent(v2)
6 AddToRepairQ(parent(v1))
7 else
8 RemoveEdge((parent(v1), parent(v2)), l + 1, g)
9 end if

RemoveState(state s, level l, graph g)
10 for each edge e incident to s
11 RemoveEdge(e, l, g)
12 end if
13 remove s from g[l]
14 AddToRepairQ(parent(s))

HandleRepairQ()
15 while RepairQ not empty
16 remove state s at lowest level l of g
17 if abstraction properties do not hold in s
18 AddToRepairQ(parent(s))
19 split state s into s1 . . . sn so that abstraction properties holds in si

20 for i = 1 . . . n either:
21 1. Merge si into existing abstract state
22 2. Extract si into new abstract state
23 end for
24 end if
25 end while

Figure 19: Repairing abstraction hierarchy.

four edges at level 0. When we remove these edges from the level 0 graph using the RemoveEdge()
procedure from Figure 19, the first three removals simply decrement the count associated with the
abstract edge between A and A’ (line 1-2). The fourth removal, however, will result in removing
the edge between A and A’ (line 4). This removal will be recursively propagated (line 8) into the
abstraction hierarchy, but will not change the abstract graph at level 2, because the edge count will
again be decremented.

There are 22 edges which must be removed to perform the full split between the top and bottom
states at level 0 in Figure 20. Removing the first edge between E and E’ at level 2 requires the
removal of 10 underlying edges at level 0 which correspond to 4 edges from level 1 (all edges
between A, B, A’ and B’).

State repair first occurs when we remove the edge from E to E’. In this case E and E’ have the
same parent, so G is added to the repair queue (line 5 and 6). The repair queue is processed after
each set of removal operations. Once the edge from E to E’ is removed, children of G at level 3
no longer form a clique. Thus, G must be split into two states H and H’. Initially these states will
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Figure 20: An example of repairing the clique abstraction.

have an edge between them, but this edge will be removed when the last of the edges from level
0 are removed. The repair code can work with many abstraction mechanisms. Specifically, the
check that an abstract state’s children still form a clique (line 17) can be changed to check for the
corresponding property of a non-clique abstraction.

For this example, the amortized cost of abstraction repair is constant. Imagine an agent travers-
ing the graph at level 0 from left to right and discovering a wall splitting the top and bottom rows of
the states (as shown by “To split” label in the figure). At each step more of the graph is sensed by
the agent and edges will be removed from level 0 graph. Removing the three edges (A, A’), (A, B’),
and (B, A’) at level 1 requires removing six edges at level 0. Similarly, removing the three edges
(E, E’), (E, F’), and (F, E’) requires removing 12 edges at level 0. In general, an agent traveling
at level 0 must move twice as far (or remove twice as many states) before repair is required at an
additional level of abstraction. Thus, the number of abstraction levels repaired when traversing n
ground edges, is:

n

2
1 +

n

4
2 +

n

8
3 +

n

16
4 + · · ·+ n

n
log2(n) = O(n).

Consequently, in this example, the amortized repair cost per edge traveled is O(1). In general, the
worst-case complexity of repair is O(`) and, in PR LRTS, ` is a constant independent of graph size.
This is because repairs are propagated only up the abstraction hierarchy (line 18 in Figure 19).
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Appendix B. Abstraction Properties

Abstraction properties were informally introduced and illustrated with an example in Section 4.2.
The appendix makes the presentation mathematically precise. In this section, variables i, k,m run
natural numbers including 0.

Property 1. An agent using abstraction maintains a hierarchy of ` abstract search graphs in addi-
tion to its model of the environment. Each of the abstract graphs is a search graph in the sense
of Section 2. In the following we denote the abstract search graph at level i, 1 ≤ i ≤ ` by
(G(i), c(i), s0(i), sg(i), h0(i)). As before, G(i) = (S(i), E(i)).

Property 2. Each state s in the search graph at level n < ` has a unique “parent” state s′ in level
n+ 1 abstract search graph. More formally:

∀s ∈ S(k), k < ` ∃!s′ ∈ S(k + 1)
[
parent(s) = s′

]
. (B.1)

Property 3. Each state s in search graph at level m, for 0 < m ≤ `, has at least one “child”
state s′ at level m − 1. The notation children(s) represents the set of children of state s. Thus,
s′ ∈ children(s):

∀s ∈ S(k), k > 0 ∃s′ ∈ S(k − 1)
[
s′ ∈ children(s)

]
. (B.2)

Property 4. Given a heuristic search problem S, for any instance of that problem, the number of
children of any abstract state is upper-bounded by a constant independent of the number of states:

∀S,S is a search problem ∃m ∀((S,E), c, s0, sg, h0) ∈ S ∀i, 0 < i ≤ ` ∀s ∈ S(i)
[| children(s)| < m] . (B.3)

Property 5. (Graph homomorphism) Every edge (s1, s2) ∈ E(k), k < n has either a correspond-
ing abstract edge at level k + 1 or s1 and s2 abstract into the same state:

∀s1, s2 ∈ S(k), k < `

[(s1, s2) ∈ E(k) =⇒ (parent(s1), parent(s2)) ∈ E(k + 1) ∨ parent(s1) = parent(s2))] .(B.4)

Property 6. If an edge exists between abstract states s1 and s2 then there is an edge between some
child of s1 and some child of s2:

∀s1, s2 ∈ S(k), k > 0[
(s1, s2) ∈ E(k) =⇒ ∃s′1 ∈ children(s1) ∃s′2 ∈ children(s2) (s′1, s

′
2) ∈ E(k − 1)

]
. (B.5)

For the last property, we need the following definition.
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Definition B.1 A path p in space (S(k), E(k)), 0 ≤ k ≤ ` is defined as an ordered sequence of
states from S(k) whose any two sequential states constitute a valid edge in E(k). Formally, p is a
path in (S(k), E(k)) if and only if:

∃s1, . . . , sm ∈ S(k) [p = (s1, . . . , sm) & ∀i, 1 ≤ i ≤ m [(si, si+1) ∈ E(k)]] . (B.6)

We use the notation p ⊂ (S(k), E(k)) to indicate that both the vertices and the edges of the path p
are in the sets S(k), E(k) respectively. The notation s ∈ p indicates that state s is on the path p.

Property 7 Any two children of an abstract state are connected through a path whose states are all
children of the abstract state:

∀s ∈ S(k), 0 < k ≤ ` ∀s′1, s′2 ∈ children(s) ∃p = (s′1, . . . , s
′
2) ⊂ (S(k − 1), E(k − 1)). (B.7)

B.1 Abstraction-induced Suboptimality: Examples

Abstraction can cause suboptimality. In Figure 21 left, we are refining an abstract path. Solid
arrows indicate the abstract path. Ground-level path is shown with thinner dashed arrows. The
agent’s position is shown with “A” and the goal’s position is “G”. The white cells form the corridor
induced by the abstract path. An optimal path is shown on the right.

Figure 21: Abstraction causes suboptimality.

Partial path refinement can increase suboptimality. Refining an entire abstract path (Figure 22,
left) can yield shorter paths than refining a segment of an abstract path (Figure 22, right). Solid
arrows indicate the abstract path. The ground-level path is shown with thinner dashed arrows. The
agent’s position is shown with “A” and the goal’s position is “G”.

B.2 Abstraction-induced Suboptimality: An Upper Bound

There are two factors that contribute to the suboptimality of paths returned by PR LRTS. The first
factor is the parameters chosen for LRTS, which can be weighted to allow suboptimality. This effect
has been analyzed in the literature (Bulitko & Lee, 2006). Here we analyze the suboptimality that
can be introduced by the abstraction. For simplicity of analysis we consider a uniform abstraction
where at each level k states are abstracted into a parent at the next level of abstraction. This assump-
tion simplifies our analysis and also enables application of this analysis to non-clique abstraction
mechanism that maintain this property. Before proving our result, we introduce two simple lemmas:
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Figure 22: Partial path refinement increases suboptimality.
Lemma B.1 Suppose all abstract edges have the same cost. If a lowest-cost path p between states
A and B has j edges then a lowest-cost abstract path between their abstract parents A′ and B′ has
at most j abstract edges.

Proof. We prove this by contradiction. Suppose the lowest-cost abstract path q between A′ and B′

has m > j edges. Then consider the abstract images of all states on p. They either have an abstract
edge between them or coincide due to Property 5. Thus they form an abstract path p′ between A′

and B′ and due to Property 2 it has no more than j edges. Since by the assumption of our theorem
all abstract edges have the same cost, the lowest-cost path q between A′ and B′ must have a higher
cost than path p′ between A′ and B′ (Figure 23, right). This results in a contradiction. �

Lemma B.2 Any path created by refining an abstract edge at level ` cannot be longer than O(k`)
at level 0.

Proof. This is demonstrated in the right portion of Figure 24. We assume that every abstract state
has exactly k children. So, at level ` of the abstraction any state A cannot have more than k`

children. Assuming that a path cannot visit a single node more than once, the refined path through
A can therefore have no more than O(k`) edges. �

We can now present our main result:

Theorem B.1 Assume that every abstract state has k children and the ground level edge costs are
in [1, e]. At level ` of an abstraction, the cost of a path created by refining an abstract path from
level ` to level 0 (the original space) is at most O(ek`) times more costly than the optimal path if all
abstract edges happen to have uniform cost and O(e2k2`) if all abstract edges have costs in [1, ek`]
(from Lemma B.2).

Proof. First, we deal with the case where all edges in the abstract graph have uniform cost. Consider
two level-0 statesA andB that abstract into level-` statesA′,B′ (left side of Figure 23). If a lowest-
cost path p between A and B has j edges then a lowest-cost abstract path between A′ and B′ has at
most j abstract edges by Lemma B.1.
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A

A'

B

B'

path p, j edges

path p', at most j edges

A' B'

path p', at most j edges

path q, m > j edges

Figure 23: Proving that any lowest-cost abstract path will have no more than j edges.

Suppose the agent is in state A and is seeking to go to state B. The agent first computes a
lowest-cost abstract path between A′ and B′. In the worst case, the abstract path will have j edges.
Suppose there are two abstract paths between A′ and B′: t′1 and t′2 as shown in Figure 24, left. They
both have j edges and, due to the uniform abstract edge cost assumption, the same cost. In the worst
case scenario, t′1 is refined into a lowest-cost path t1 between A and B while t′2 is refined into the
highest-cost path t2 between A and B. By analyzing the cost ratio of t1 and t2 we will arrive at the
upper bound of the theorem.

A' B'

path t'1 : j edges

path t'2 : j edges

k
! edges

1 edge

level 0

level !

Figure 24: Paths t′1, t
′
2 are the same cost yet refine into the shortest and longest paths.

Due to Lemma B.2, one abstract edge at level ` can be refined into at most k` level-0 edges. In
the worst case, t1 has j edges while t2 has jk` − 1 edges (the result of abstracting ` levels of k`

states into a single state). Furthermore, all edges on t1 have a cost of 1 leading to the total cost of t1
being j. All edges on t2 have cost e leading to the total cost of t2 being e(jk` − 1). Thus, the ratio
of t2 and t1 costs is no higher than ek` which proves the first statement of the theorem.

In the case when abstract edges have non-uniform costs in [1, ek`], we again consider two ab-
stract paths t′1 and t′2 fromA′ toB′. Now they can both have cost ejk`, which is the highest possible
cost of a level-` image of a cost-j ground path. On path t′1, the abstract cost might be overestimated
so that there are j abstract edges, each of cost ek` which refine into the level-0 path t1 of j edges
of cost 1 each. Thus, the total cost of t1 is j which is the lowest possible cost between A and B.
Path t′2 has the same cost as t′1 but with ejk` abstract edges, each of cost 1. Since each of these
abstract edges can be refined into at most k` edges at level 0, path t′2 is refined into the path t2
of no more than ejk` · k` edges, each of which has cost e. Consequently, the total cost of t2 is
e · ejk` · k` = je2k2`. Thus, the ratio between the costs of t1 and t2 is e2k2`. �
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Figure 25: A grid-based example achieving the worst case suboptimality.

The worst-case upper bound is tight, and occurs when we both severely underestimate the cost
of a suboptimal path and overestimate the cost of the optimal path. In Figure 25 we show how this
can happen in practice; the level-0 map is shown on the left. The lowest-cost path (t1) between states
A and B is a straight line and has the cost j. All corridors have width 1. The length of the corridors,
w, is chosen so that at level ` of the abstraction, all states in a corridor will abstract together into a
single state. In this map there are only cliques of size two (i.e., k = 2 in Theorem B.1).

The right part of Figure 25 shows level-` abstract graph in thick lines and the original map
in light gray. In this abstraction, the path t′2 between A′ and B′ (the abstract parents of A and
B) goes through the lower part of the map. The path t′2 has the abstract cost 2c + j + w but its
abstract edges refine to w ground-level edges each. Thus, the total cost of its refined path t2 is
w × (2c + j) = 2cw + jw. Path t′1 is an abstract image of t1 and has the abstract cost w = k` for
each of its j edges, leading to the total abstract cost of jk` = jw. It is shown in the right side of the
figure as a highly zigzagged path.

We can now choose c so that t′2 costs just as much as t′1. Then the agent can have the bad luck
of choosing to refine t′2. To make this a certainty, we can make the cost of t′1 slightly higher than
the cost of t′2. This is accomplished by setting 2c + j + w ≈ jw. From here, 2c ≈ jw − j − w
and c ≈ jw = jk` = j2`. As a result, the agent chooses to refine t′2 into t2, which has cost
2cw + jw = 2j2`2` + j2` = O(j22`). The ratio between this and the cost of t1 is 22`, which
corresponds to the bound of the theorem for k = 2, e = 1.

Our experimental results demonstrate that such large suboptimality does not occur in prac-
tice. As an illustration, consider a histogram of suboptimality values for the 3000 problems and
all parametrizations of PR LRTS in Figure 26.

If suboptimality does become a practical concern, one can use ideas from HPA* (Botea
et al., 2004), where optimal path costs within regions were pre-computed and cached. Such pre-
computation will help prevent the severe over- and under-estimation of abstract path costs which
was assumed by the worst-case analysis in Theorem B.1.

Appendix C. Maps Used in the Empirical Study

The four additional maps are shown in Figure 27.
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Figure 26: Histogram of suboptimality in our experiments.

Figure 27: The four additional maps used in the experiments.

Appendix D. Dominance on Average: Plots

Six plots corresponding to entries in Table 2 are shown in Figures 28, 29.
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Figure 28: Dominance for several pairs of performance measures. Part 1.

Appendix E. Dominance on Individual Problems

In Section 5.1 we introduced the concept of dominance and demonstrated that PR LRTS with ab-
straction dominates all but extreme of the search algorithms that do not use abstraction. This anal-
ysis was done using cost values averaged over the 3000 problems. In this section we consider
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Figure 29: Dominance for several pairs of performance measures. Part 2.

dominance on individual problems. Due to high variance in the problems and their difficulty, we
report percentages of problems on which dominance is achieved. For every pair of algorithms, we
measure the percentage of problems on which the first algorithm dominates the second. We then
measure the percentage of problems on which the second algorithm dominates the first. The ratio
between these two percentages we call the dominance ratio.
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Figure 30: Top: LRTS3(1, 1.0,∞) is shown as a filled star; LRTS(5, 0.8,∞) is shown as a hollow
star. Bottom left: convergence travel. Bottom right: first-move lag.

Table 4: Statistics for the two algorithms from Figure 30.

Algorithm Convergence travel First-move lag Both Dominance ratio

LRTS3(1,1.0,!) 72.83% 97.27% 70.97%
81.89

LRTS(5,0.8,!) 27.17% 2.67% 0.87%

At the top of Figure 30 we see a reproduction of the corresponding plot from Figure 28 where
two particular algorithms are marked with stars. The filled star is LRTS3(1, 1.0,∞) that uses three
levels of abstraction. The hollow star is LRTS(5, 0.8,∞) that operates entirely at the ground level.
Statistics are reported in Table 4. The bottom left of the figure shows advantages of the PR LRTS
with respect to convergence travel. On approximately 73% of the 3000 problems, the PR LRTS
travels less than the LRTS before convergence (points below the 45-degree line). With respect to
the first-move lag, the PR LRTS is superior to the LRTS on 97% of the problems (bottom right in the
figure). Finally, on 71% of the problems the PR LRTS dominates the LRTS (i.e., outperforms it with
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Figure 31: Top: LRTS3(5, 0.8,∞) is shown as a filled star; LRTS(3, 0.2,∞) is shown as a hollow
star. Bottom left: convergence planning. Bottom right: suboptimality.

respect to both measures). On the other hand, the LRTS dominates the PR LRTS on approximately
1% of the problems. This leads to the dominance ratio of 81.89.

Table 5: Statistics for the two algorithms from Figure 31.

Algorithm Convergence planning Suboptimality Both Dominance ratio

LRTS3(5,0.8,!) 80.03% 55.80% 48.97%
4.01

LRTS(3,0.2,!) 19.93% 40.97% 12.2%

Similarly, Figure 31 compares two algorithms with respect to convergence planning and subop-
timality of the final solution. At the top of the figure, we have the corresponding plot from Figure 29
with LRTS3(5, 0.8,∞) shown as a filled star and LRTS(3, 0.2,∞) shown as a hollow star. Percent
points for domination on individual problems are found in Table 5. The plot at the bottom left of
the figure shows that PR LRTS has lower convergence planning cost than the LRTS on 80% of
the problems. The plot at the bottom right shows suboptimality of the solutions these algorithms
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produced. The PR LRTS is more optimal than the LRTS 56% of the time. Finally, the PR LRTS
dominates the LRTS on 49% of the problems. Domination the other way (i.e., the LRTS dominates
the PR LRTS) happens only on 12.2% of the problems. This leads to the dominance ratio of 4.01.

There are several factors that influence the results. First, there is a high variance in the difficulty
of individual problems due to their distribution over five buckets by optimal path distance. Conse-
quently, there is high variance in how the algorithms trade off antagonistic performance measures
on these problems. In the case when there is a large difference between mean values, such as in
Figure 30, dominance on average is supported by dominance on the majority of individual prob-
lems. Conversely, a small difference in mean values (e.g., 2.3% in suboptimality for the algorithms
in Figure 31) does not lead to overwhelming dominance at the level of individual problems.

We extended this analysis to all pairs of algorithms displayed in Figures 28, 29. For conver-
gence travel and first-move lag, the dominance ratio varies between 5.48 and ∞ with the values
below infinity averaging 534.32 with the standard error of 123.47. For convergence planning and
suboptimality, the dominance ratio varies between 0.79 and ∞ with the values below infinity av-
eraging 5.16 with the standard error of 1.51. Finally, only a set of 181 algorithms was tested in
our study. Therefore, the results should be viewed as an approximation to the actual dominance
relationship among the algorithms.

Appendix F. Interaction Between Abstraction and LRTS Parameters

In Section 5.2 we observed general trends in influence of abstraction on the five performance mea-
sures. As the abstraction level adds another dimension to the parameter space of LRTS, previously
defined by d, γ, T , the natural question is how the four parameters interact. In order to facilitate a
comprehensible visualization in this paper, we will reduce the LRTS parameter space from d, γ, T to
d, γ by setting T =∞ (i.e., disabling backtracking in LRTS). This is justified for two reasons. First,
recent studies (Bulitko & Lee, 2006; Sigmundarson & Björnsson, 2006) have shown that effects of
backtracking are highly domain-specific.

Table 6 gives an overview of the influence of abstraction on the parameters of LRTS at a qual-
itative level. A more detailed analysis for each of the five performance measures follows. It is
important to note that these experiments were performed on a set of fixed cost paths and fixed size
maps. Consequently, map boundary effects are observed at higher levels of abstraction. We will
detail their contribution below.

Table 6: Influence of LRTS parameters on the impact of abstraction. Each cell in the table repre-
sents the impact of abstraction either amplified (“A”) or diminished (“D”) by increase in d
or γ. Lower-case “a” and “d” indicate minor effect, “-” indicates no effect.

measure / control parameter increase in d increase in γ
convergence travel d A

first-move lag A -
convergence planning a A
convergence memory D A

suboptimality D a

Convergence travel: increasing the abstraction level generally decreases convergence travel as
LRTS learns on smaller abstract maps. Independently, increasing the lookahead depth in LRTS has a

91



BULITKO, STURTEVANT, LU, & YAU

1
3

5

9

0.2
0.4

0.8
1
0

1

2

3

4

x 10
4  

Lookahead Depth d

Convergence Travel

Optimality Weight γ
 

Lookahead Depth d

O
pt

im
al

ity
 W

ei
gh

t γ

Difference in Convergence Travel

 

 

1 3 5 9
0.2

0.4

0.8

1

0.5

1

1.5

2

x 10
4

Level 2
Level 0

1
3

5

9

0.2
0.4

0.8
1
0

2000

4000

6000

 

Lookahead Depth d

Convergence Travel

Optimality Weight γ
 

Lookahead Depth d

O
pt

im
al

ity
 W

ei
gh

t γ

Difference in Convergence Travel

 

 

1 3 5 9
0.2

0.4

0.8

1

500

1000

1500

2000

2500
Level 4
Level 2

Figure 32: Convergence travel: impact of abstraction as a function of d, γ. Top two graphs:
LRTS(d, γ) vs. LRTS2(d, γ). Bottom two graphs: LRTS2(d, γ) vs. LRTS4(d, γ).

similar effect (Bulitko & Lee, 2006). Convergence travel is lower-bounded by the doubled optimal
cost from the start to the goal (as the first trial has to reveal parts of the map and, consequently,
cannot be final). Therefore, decreasing convergence travel via either of two mechanisms diminishes
the gains from the other mechanism. This effect can be seen in Figure 32 where there is a noticeable
gap in convergence travel between abstractions levels 0 and 2. But with a lookahead of 9, there is
only a small difference between using abstraction levels 2 and 4. Thus, increasing the lookahead
slightly diminishes the effect of abstraction (hence the “d” in the table). Increasing γ increases the
convergence travel. The higher the value of γ, the more there is to be gained from using abstraction.
An increase in γ amplifies the advantage of abstraction.

First-move lag generally increases with both the abstraction level and with lookahead depth.
As lookahead depth increases, the size of the corridor used for A* search increases as well. Thus,
increasing d amplifies the first-move lag due to abstraction, because PR LRTS must plan once within
the lookahead space (within LRTS) and once inside the corridor (within A*) (Figure 33).

Deeper lookahead amplifies the impact of abstraction. In the simplified analysis below, we
assume that the map is obstacle free which leads to all levels of abstraction being regular grids
(ignoring boundary effects). The length of a path between two points (expressed in the number of
actions) is, thus, decreased by a factor of two with each abstraction level. Under these assumptions,
the total number of states PR LRTS touches on the first move is Ω(d2) at the abstract graph and
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Figure 33: First-move lag: impact of abstraction as a function of d, γ. Top two graphs: LRTS(d, γ)
vs. LRTS2(d, γ). Bottom two graphs: LRTS2(d, γ) vs. LRTS4(d, γ).

Ω(d · 2`) at the ground graph. The latter quantity is simply the number of edges in the ground
path computed as the number of edges in the abstract path (d) multiplied by the reduction factor
of 2`. Adding  more abstraction levels increases the first-move lag to Ω(d · 2`+). The increase is
a linear function of lookahead depth d. Thus, larger values of d amplify the effect of adding extra
abstraction levels.

There are several points glossed over by our simplified analysis. First, the reduction in the
path length is not always two-fold as we assumed above. In the presence of walls, higher levels of
abstraction are less likely to locate and merge fully-fledged 4-element cliques. Second, boundaries
of the abstract graph can be reached by LRTS in less than d moves at the higher abstraction level.
This effectively decreases the quantity d in the formula above and the size of the corridor can be
reduced from our generous estimate d ·2`. Finally, “feeding” A* longer abstract path often improves
its performance as we have analyzed in a previous section (cf. Figure 22). This explains why at
abstraction level 4 deepening lookahead has diminishing returns as seen in Figure 33.

Optimality weight does not affect the number of states touched by LRTS at the abstract level.
On the other hand, it can change the cost of the resulting A* search as a different abstract path may
be computed by LRTS. Overall, however, the effect of γ on the first-move lag and the impact of
abstraction is inconsequential (Figure 33).
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Figure 34: Convergence planning: impact of abstraction as a function of d, γ. Top two graphs:
LRTS(d, γ) vs. LRTS2(d, γ). Bottom two graphs: LRTS2(d, γ) vs. LRTS4(d, γ).

Convergence planning: As the abstraction level increases, convergence planning generally
decreases. The effect of d is more complex, because deeper lookahead increases the cost of each
individual planning step, but overall decreases planning costs as convergence is faster. The interplay
of these two trends moderates the overall influence as seen in Figure 34.

The effect of γ on convergence planning is non-trivial. In general, lower values of γ reduce the
convergence planning cost. Note that convergence planning cost is a product of average planning
time per unit of distance and the convergence travel. As we discussed above, optimality weight
amplifies the effects of abstraction convergence travel. At the same time, it does not substantially
affect increase in planning per move as the abstraction goes up. Combining these two influences, we
conclude that optimality weight will amplify effects of abstraction on convergence planning. This
is confirmed empirically in Figure 34.

Convergence memory: Abstraction decreases the amount of memory used at convergence be-
cause there are fewer states over which to learn. The effects of d and γ are the same as for con-
vergence travel described above. This is because there is a strong correlation between convergence
travel and convergence memory that we have previously discussed. Visually Figures 32 and 35
display very similar trends.

Suboptimality: Increasing the abstraction level increases suboptimality. For plain LRTS, looka-
head depth has no effect on suboptimality of the final solution. However, when we combine deeper
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Figure 35: Convergence memory: impact of abstraction as a function of d, γ. Top two graphs:
LRTS(d, γ) vs. LRTS2(d, γ). Bottom two graphs: LRTS2(d, γ) vs. LRTS4(d, γ).

lookahead with abstraction the suboptimality arising from abstraction decreases. With deeper looka-
head the abstract goal state is seen earlier making PR LRTS a corridor-constrained A*. Additionally,
as we discussed in Section 5.2 and Figure 22, refining shorter paths (computed by LRTS with lower
d) introduces additional suboptimality. As suboptimality is lower bounded by 0%, increasing looka-
head diminishes the effects of abstraction on suboptimality (Figure 36) – hence “D” in Table 6.

Increasing γ decreases the amount of suboptimality when no abstraction is used. When com-
bined with abstraction increasing γ has a minor amplification effect on the difference abstraction
makes (Figure 36) for two reasons. First, at abstract levels the graphs are fairly small and γ makes
less difference there. Second, the degree suboptimality of an abstract path does not translate directly
into the degree of suboptimality of the resulting ground path as the A* may still find a reasonable
ground path. Thus, the influence of γ at the abstract level is overshadowed by the suboptimaly
introduced by the process of refinement itself (cf. Figure 21).
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Figure 36: Suboptimality: impact of abstraction as a function of d, γ. Top two graphs: LRTS(d, γ)
vs. LRTS2(d, γ). Bottom two graphs: LRTS2(d, γ) vs. LRTS4(d, γ).
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